
1

Charm++ on the Cell ProcessorCharm++ on the Cell Processor

David David KunzmanKunzman, , GengbinGengbin ZhengZheng,,

Eric Eric BohmBohm, , LaxmikantLaxmikant V. KaleV. Kale

2

MotivationMotivation

�� Cell Processor (CBEA) is powerful (peakCell Processor (CBEA) is powerful (peak--flops)flops)

�� Allow Charm++ applications utilize the Cell processorAllow Charm++ applications utilize the Cell processor

�� Cell Processor has a difficult architectureCell Processor has a difficult architecture

�� Programmer specifically programs Programmer specifically programs DMAsDMAs, local store , local store

management, and so on (diverts programmers attention from management, and so on (diverts programmers attention from

problem at hand)problem at hand)

�� Cell specific code interleaved in with application codeCell specific code interleaved in with application code

�� Use the flexibility and abstracting abilities of the Use the flexibility and abstracting abilities of the

Charm++ programming model to help the Charm++ programming model to help the

programmerprogrammer

3

Overview of TalkOverview of Talk

�� Quick introduction to the Cell ProcessorQuick introduction to the Cell Processor

�� Quick introduction to Charm++Quick introduction to Charm++

�� Affinity of Charm++ to the Cell processorAffinity of Charm++ to the Cell processor

�� Adaptation of Charm++ and Charm++ related Adaptation of Charm++ and Charm++ related

toolstools

4

Cell ProcessorCell Processor

�� Power Processor Element (PPE) (x1)Power Processor Element (PPE) (x1)

�� Access to system memoryAccess to system memory

�� 22--way SMTway SMT

�� Synergistic Processor Element (SPE) (x8)Synergistic Processor Element (SPE) (x8)

�� No direct access to system memoryNo direct access to system memory

�� Local Store (LS): 256KBLocal Store (LS): 256KB

�� DMA transactions to move data between system DMA transactions to move data between system

memory and LSmemory and LS

5

Cell ProcessorCell Processor

6

Charm++Charm++

�� ObjectObject--Oriented, MessageOriented, Message--Driven Parallel Driven Parallel

Programming ParadigmProgramming Paradigm

�� Application broken up into objects called Application broken up into objects called chareschares

�� Chares communicate using asynchronous messagesChares communicate using asynchronous messages

�� Chares have special member functions called Chares have special member functions called entry methodsentry methods

that receive messagesthat receive messages

�� Programmer doesnProgrammer doesn’’t worry about t worry about

processors/interconnect/etc. when programmingprocessors/interconnect/etc. when programming

�� HPC Applications: Molecular Dynamics (NAMD), HPC Applications: Molecular Dynamics (NAMD),

Cosmology (Cosmology (ChangaChanga), Rocket Simulation (), Rocket Simulation (RocstarRocstar), etc.), etc.

7

UserUser’’s View of Charm++s View of Charm++

8

System View of Charm++System View of Charm++

9

ObservationsObservations

�� Chares tend to be smallChares tend to be small

�� Increase concurrency in the application (many Increase concurrency in the application (many

objects to spread across many processors)objects to spread across many processors)

�� Chares tend to be selfChares tend to be self--containedcontained

�� Their entry methods access data within the chare Their entry methods access data within the chare

object itself and/or the messageobject itself and/or the message

�� Via PackVia Pack--UnPackUnPack (PUP) routines, chares are (PUP) routines, chares are

migratablemigratable between processing elementsbetween processing elements

10

Why Charm++ & Cell?Why Charm++ & Cell?

�� Data Encapsulation / LocalityData Encapsulation / Locality
�� Each message associated withEach message associated with……

�� Code : Entry MethodCode : Entry Method

�� Data : Message & Chare DataData : Message & Chare Data

�� Entry methods tend to access dataEntry methods tend to access data

local to chare and messagelocal to chare and message

�� Virtualization (many chares per processor)Virtualization (many chares per processor)
�� Provides opportunity to overlap SPE computation with DMA Provides opportunity to overlap SPE computation with DMA

transactionstransactions

�� Helps ensure there is always useful work to doHelps ensure there is always useful work to do

�� Message Queue PeekMessage Queue Peek--Ahead / PredictabilityAhead / Predictability
�� PeekPeek--ahead in message queue to determine future workahead in message queue to determine future work

�� Fetch code and data before execution of entry methodFetch code and data before execution of entry method

S S
Q Q

11

RoadmapRoadmap

12

Development of Offload APIDevelopment of Offload API

�� Goal: Offload chunks of computation, called Goal: Offload chunks of computation, called ““Work Work

RequestsRequests”” onto the onto the SPEsSPEs

�� Design guided by needs of the Charm++ runtime Design guided by needs of the Charm++ runtime

system / programming modelsystem / programming model

�� However, independent of Charm++: Sequential C/C++ However, independent of Charm++: Sequential C/C++

programs can use Offload API to utilize programs can use Offload API to utilize SPEsSPEs

�� More Info:More Info:

�� In Papers section of In Papers section of http://charm.cs.uiuc.eduhttp://charm.cs.uiuc.edu

�� Paper : 06Paper : 06--16 16 -- ““Charm++ on the Cell ProcessorCharm++ on the Cell Processor””

�� Paper : 06Paper : 06--14 14 -- ““Charm++, Offload API, and the Cell ProcessorCharm++, Offload API, and the Cell Processor””

13

Basic Idea of Offload APIBasic Idea of Offload API

�� User writes functions that execute on the SPEUser writes functions that execute on the SPE

�� Each function takes input and output buffersEach function takes input and output buffers

�� User code handlesUser code handles……
�� Making a Work RequestMaking a Work Request

�� Indicates which function to executeIndicates which function to execute

�� Indicates where to get/put data in memoryIndicates where to get/put data in memory

�� Offload API handlesOffload API handles…… (everything else)(everything else)
�� Issuing Work Request to a particular SPEIssuing Work Request to a particular SPE

�� Transferring input/output data (issuing DMA commands, Transferring input/output data (issuing DMA commands,
managing local store memory)managing local store memory)

�� Scheduling of Work Request executionScheduling of Work Request execution

14

Offload API Code ExampleOffload API Code Example
///// hello.cpp (PPE Only) ///////////////////////

#include <stdio.h>

#include <string.h>
#include <spert_ppu.h> // Offload API Header

#include "hello_shared.h"

#define NUM_WORK_REQUESTS 10

int main(int argc, char* argv[]) {
WRHandle wrHandle[NUM_WORK_REQUESTS];

char msg[] __attribute__((aligned(128))) = { "Hello" };

int msgLen = ROUNDUP_16(strlen(msg));

InitOffloadAPI();

// Send some work requests

for (int i = 0; i < NUM_WORK_REQUESTS; i++)

wrHandle[i] = sendWorkRequest(FUNC_SAYHI,

NULL, 0,
msg, msgLen,

NULL, 0

);

// Wait for the work requests to finish

for (int i = 0; i < NUM_WORK_REQUESTS; i++)

waitForWRHandle(wrHandle[i]);

CloseOffloadAPI();
return EXIT_SUCCESS;

}

///// hello_spe.cpp (SPE Only) ////////////////

#include <stdio.h>

#include "spert.h" // SPE Runtime Header
#include "hello_shared.h"

inline void sayHi(char* msg) {

printf("\"%s\" from SPE %d...\n",

msg, (int)getSPEID());
}

#ifdef __cplusplus

extern "C"

#endif
void funcLookup(int funcIndex,

void* readWritePtr, int readWriteLen,

void* readOnlyPtr, int readOnlyLen,

void* writeOnlyPtr, int writeOnlyLen,

DMAListEntry* dmaList) {
switch (funcIndex) {

case SPE_FUNC_INDEX_INIT: break;

case SPE_FUNC_INDEX_CLOSE: break;

case FUNC_SAYHI:
sayHi((char*)readOnlyPtr);

break;

default: // should never occur

printf("ERROR :: Invalid funcIndex (%d)\n",

funcIndex);
break;

}

}

///// Output //////

"Hello" from SPE 0...

"Hello" from SPE 7...
"Hello" from SPE 4...

"Hello" from SPE 5...

"Hello" from SPE 6...

"Hello" from SPE 2...

"Hello" from SPE 3...
"Hello" from SPE 0...

"Hello" from SPE 1...

"Hello" from SPE 1...

15

Structure of Offload APIStructure of Offload API

16

SPE RuntimeSPE Runtime

�� [1] : PPE Sends Work Request[1] : PPE Sends Work Request

�� [2] : SPE Receives Work Request (through Work Request List)[2] : SPE Receives Work Request (through Work Request List)

�� [3] : DMA[3] : DMA--Get used to retrieve input data from system memoryGet used to retrieve input data from system memory

�� [4] : Work Request is executed[4] : Work Request is executed

�� [5] : DMA[5] : DMA--Put used to place output data into system memoryPut used to place output data into system memory

�� [6] : SPE notifies PPE of Work Request Completion[6] : SPE notifies PPE of Work Request Completion

(NOTE : Not to Scale)(NOTE : Not to Scale)

17

Phase 2Phase 2

�� Execution of Charm++ applications on Cell Execution of Charm++ applications on Cell

(with some modification to application code)(with some modification to application code)

�� AllowsAllows……

�� Charm++ applications to take advantage of Charm++ applications to take advantage of SPEsSPEs

�� Charm++ applications to run across multiple Cell chipsCharm++ applications to run across multiple Cell chips

�� HoweverHowever……

�� Requires user code to explicitly issue Work Requests using Requires user code to explicitly issue Work Requests using

Offload APIOffload API

18

Charm++ Code ExampleCharm++ Code Example
///// hello.C (PPE Only) ///////////////////////

#include "#include "hello_shared.hhello_shared.h""

class Main : public class Main : public CBase_MainCBase_Main {{

public:public:

Main(CkArgMsgMain(CkArgMsg* m) {* m) {

// ...// ...

CProxy_HelloCProxy_Hello arrarr = = CProxy_Hello::ckNew(nElementsCProxy_Hello::ckNew(nElements););

arr[0].SayHi(17);arr[0].SayHi(17);

};};

void void done(voiddone(void) {) {

CkPrintf("AllCkPrintf("All donedone\\n");n");

CkExitCkExit();();

};};

};};

class Hello : public class Hello : public CBase_HelloCBase_Hello {{

public:public:

void void SayHi(intSayHi(int hiNohiNo) {) {

char buf[16] __attribute__((aligned(16)));char buf[16] __attribute__((aligned(16)));

sprintf(bufsprintf(buf, "%d", , "%d", thisIndexthisIndex););

sendWorkRequest(FUNC_SAYHIsendWorkRequest(FUNC_SAYHI,,

NULL, 0, // RWNULL, 0, // RW

bufbuf, strlen(buf)+1, // RO, strlen(buf)+1, // RO

NULL, 0, // WONULL, 0, // WO

CthSelfCthSelf()()

););

CthSuspendCthSuspend();();

if (if (thisIndexthisIndex < nElements< nElements--1)1)

thisProxy[thisIndex+1].SayHi(hiNo+1);thisProxy[thisIndex+1].SayHi(hiNo+1);

elseelse

mainProxy.donemainProxy.done();();

}}

};};

///// hello_spe.cpp (SPE Only) ////////////////

#include "spert.h"

#include "hello_shared.h"

#ifdef __cplusplus

extern "C"

#endif

void funcLookup(int funcIndex,

void* readWritePtr, int readWriteLen,

void* readOnlyPtr, int readOnlyLen,

void* writeOnlyPtr, int writeOnlyLen,

DMAListEntry* dmaList

) {

switch (funcIndex) {

case FUNC_SAYHI: sayHi((char*)readWritePtr,

(char*)readOnlyPtr); break;

default:

printf("!!! WARNING !!! Invalid funcIndex (%d)\n",

funcIndex);

break;

}

}

void sayHi(char* readWritePtr, char* readOnlyPtr) {

printf("\"Hi\"... \"%s\"\n", readOnlyPtr);

}

///// Output //////

“Hi“… “0”

“Hi“… “1”
“Hi“… “2”

“Hi“… “3”

…

(through nElements
lines)

///// hello.ci //////

mainmodule hello {

readonly CProxy_Main mainProxy;

readonly int nElements;

mainchare Main {

entry Main(CkArgMsg *m);

entry void done(void);

};

array [1D] Hello {

entry Hello(void);

entry [threaded] void SayHi(int hiNo);

};

};

19

ProjectionsProjections

�� Projections is a performance visualization tool Projections is a performance visualization tool

used to access the performance of Charm++ used to access the performance of Charm++

applicationsapplications

�� Allows user to visually see how the processing Allows user to visually see how the processing

elements are being utilized through various elements are being utilized through various

graphs/toolsgraphs/tools

20

Projections Projections -- TimelineTimeline

21

Phase 3 (future work)Phase 3 (future work)

�� Modification of Charm++ runtime system and toolsModification of Charm++ runtime system and tools

�� CharmxiCharmxi

�� Generate SPE code from userGenerate SPE code from user’’s code (from entry method code)s code (from entry method code)

�� Generate Generate funcLookupfuncLookup() function for the user() function for the user

�� Runtime implicitly generates work requests when pulling Runtime implicitly generates work requests when pulling

entries off the message queueentries off the message queue

�� Object data, code for entry method, and message passed as part oObject data, code for entry method, and message passed as part of f

work requestwork request

�� Removes overhead of having to enter user codeRemoves overhead of having to enter user code

�� User does not have to issue Work Requests directly from applicatUser does not have to issue Work Requests directly from application ion

codecode

22

Summary Summary -- RoadmapRoadmap

23

AcknowledgementsAcknowledgements

�� Thanks toThanks to……

�� Everyone at IBM that has helped with this work Everyone at IBM that has helped with this work

(especially (especially HemaHema Reddy and Bob Reddy and Bob SzaboSzabo))

�� NCSA for allowing us to use their Cell BladesNCSA for allowing us to use their Cell Blades

24

Questions?Questions?

25

More Involved Example: 2D More Involved Example: 2D JacobiJacobi

�� 2D 2D JacobiJacobi written using Charm++ with required written using Charm++ with required

modifications for Cell (same as 5modifications for Cell (same as 5--point stencil)point stencil)

�� PPE handles communication via Charm++ modelPPE handles communication via Charm++ model

�� Actual calculation offloaded to Actual calculation offloaded to SPEsSPEs via Work via Work

RequestsRequests

�� Code in Charm++ Distribution: Code in Charm++ Distribution:

[[charmDir]/examples/charm++/cell/jacobicharmDir]/examples/charm++/cell/jacobi//

