ChaNGa: The Charm N-Body GrAvity Solver

Filippo Gioachin¹ Pritish Jetley¹ Celso Mendes¹ Laxmikant Kale¹ Thomas Quinn²

¹ University of Illinois at Urbana-Champaign
² University of Washington

Outline

- Motivations
- Algorithm overview
- Scalability
- Load balancer
- Multistepping

2

Motivations

- Need for simulations of the evolution of the universe
- Current parallel codes:
 - PKDGRAV
 - Gadget

3

- Scalability problems:
 - load imbalance
 - expensive domain decomposition
 - limit to 128 processors

ChaNGa: main characteristics

• Simulator of cosmological interaction

- Newtonian gravity
- Periodic boundary conditions
- Multiple timestepping
- Particle based (Lagrangian)
 - high resolution where needed
 - based on tree structures
- Implemented in Charm++
 - work divided among chares called *TreePieces*
 - processor-level optimization using a Charm++ group called *CacheManager*

Space decomposition

Parallel Programming Laboratory @ UIUC

Basic algorithm ...

0

• Newtonian gravity interaction

– Each particle is influenced by all others: $O(n^2)$ algorithm

• Barnes-Hut approximation: O(nlogn)

Influence from distant particles combined into center of mass

... in parallel

- Remote data
 - need to fetch from other processors
- Data reusage
 - same data needed by more than one particle

Overall algorithm

8

Datasets

lambs 3 million particles (47 MB) with subsets

dwarf 5 and 50 million particles (80 MB and 1,778 MB)

hrwh_LCDMs 16 milllion particles (576 MB)

drgas 700 million particles (25.2 GB)

Parallel Programming Laboratory (a) UIUC

6

System	Location	Procs	Procs per node	CPU	Memory per node	Network
Tungsten	NCSA	2,560	2	Xeon 3.2 Ghz	3 GB	Myrinet
Cray XT3	Pittsburgh	4,136	2	Opteron 2.6GHz	2 GB	Torus
BlueGene/L	IBM-Watson	40,000	2	Power440 700MHz	512 MB	Torus

Parallel Programming Laboratory @ UIUC

Scaling: comparison

11

lambs 3M on Tungsten

Parallel Programming Laboratory @ UIUC

Scaling: IBM BlueGene/L

12

Parallel Programming Laboratory @ UIUC

Scaling: Cray XT3

13

Parallel Programming Laboratory @ UIUC

Load balancing with GreedyLB

dwarf 5M on 1,024 BlueGene/L processors

04/23/07

Parallel Programming Laboratory (a) UIUC

1

Load balancing with OrbLB

lambs 5M on 1,024 BlueGene/L processors

white is good

15

Parallel Programming Laboratory @ UIUC

Load balancing with OrbRefineLB

dwarf 5M on 1,024 BlueGene/L processors

Scaling with load balancing

Multistepping

- Particles with higher accelerations require smaller integration timesteps to be accurately predicted.
- Compute particles with highest accelerations every step, and particles with lower accelerations every few steps.
- Steps become different in terms of load.

Parallel Programming Laboratory @ UIUC

ChaNGa scalability - multistepping

dwarf 5M on Tungsten

Parallel Programming Laboratory @ UIUC

ChaNGa scalability - multistepping

20

Parallel Programming Laboratory @ UIUC

Future work

- Adding new physics
 - Smoothed Particle Hydrodynamics
- More load balancer / scalability
 - Reducing overhead of communication
 - Load balancing without increasing communication volume
 - Multiphase for multistepping
 - Other phases of the computation

Thank you

Parallel Programming Laboratory @ UIUC

Decomposition types

• OCT

- Contiguous cubic volume of space to each TreePiece

• SFC – Morton and Peano-Hilbert

- Space Filling Curve imposes total ordering of particles
- Segment of this line to each TreePiece
- ORB

23

- Space divided by Orthogonal Recursive Bisection on the number of particles
- Contiguous non-cubic volume of space to each TreePiece
- Due to the shapes of the decomposition, requires more computation to produce correct results

Serial performance

Execution Time on Tungsten (in seconds)

Simulator	Lambs datasets					
Simulator	30,000	300,000	1,000,000	3,000,000		
PKDGRAV	0.8	12.0	48.5	170.0		
ChaNGa	0.8	13.2	53.6	180.6		
Time difference	0.00%	9.09%	9.51%	5.87%		

Parallel Programming Laboratory @ UIUC

CacheManager importance

25

1 million lambs dataset on HPCx

		Number of Processors				
		4	8	16	32	64
Number of messages (in thousand)	No Cache	48,723	59,115	59,116	68,937	78,086
	With Cache	72	115	169	265	397
Time (accorde	No Cache	730.7	453.9	289.1	67.4	42.1
Time (Seconds)	With Cache	39.0	20.4	11.3	6.0	3.3
Speedup		18.74	22.25	25.58	11.23	12.76

Parallel Programming Laboratory @ UIUC

Prefetching

1) explicit

- before force computation, data is requested for preload
- 2) implicit in the cache
 - computation performed with tree walks
 - after visiting a node, its children will likely be visited
 - while fetching remote nodes, the cache prefetches some of its children

Cache implicit prefetching

Parallel Programming Laboratory @ UIUC

04/23/0′

Load balancer

lambs 300K subset on 64 processors of Tungsten

Processors

Parallel Programming Laboratory @ UIUC

while: high utilization

dark: processor idle

28

Charm++ Overview

System view

- work decomposed into objects called *chares*
- message driven

29

- mapping of objects to processors transparent to user
- automatic load balancing
- communication optimization

Tree decomposition

Space decomposition

31

Parallel Programming Laboratory @ UIUC

Overall algorithm

32

Scalability comparison (old result)

dwarf 5M comparison on Tungsten

Parallel Programming Laboratory @ UIUC

ChaNGa scalability (old results)

results on BlueGene/L

Parallel Programming Laboratory @ UIUC

34

Interaction list

35

Parallel Programming Laboratory @ UIUC

Parallel Programming Laboratory @ UIUC

36

Interaction list: results

Number of checks for opening criteria, in millions

	lambs 1M	dwarf 5M
Original code	120	1,108
Interaction list	66	440

38

• 10% average performance improvement

Parallel Programming Laboratory @ UIUC

Tree-in-cache

lambs 300K subset on 64 processors of Tungsten

04/23/07

Parallel Programming Laboratory (*a*) UIUC

39

Load balancer

dwarf 5M dataset on BlueGene/L

Parallel Programming Laboratory @ UIUC

ChaNGa scalability

