Dynamic Load Balan *
Charm-++

Abhinav S Bhatele
Parallel Programming Lab, UIUC



Outline

e Dynamic Load Balancing framework
Charm++

e Measurement Based Load Balancing

e Examples:

— Hybrid Load Balancers
— Topology-aware Load Balancers

e User Control and Flexibility
e Future Work




Dynamic Load-Balancing

e Task of load balancing (LB)

— Given a collection of migratable objects and a set
of processors

— Find a mapping of objects to processors
< Almost same amount of computation on each processor

— Additional constraints
e Ensure communication between processors is minimum
= Take topology of the machine into consideration

< Dynamic mapping of chares to processors

— Load on processors keeps changing during the
actual execution




1

Load-Balancing Approache

e A rich set of strategies in Charm++

e Two main ideas

— No correlation between successive iteratiogﬁ
e Fully dynamic |
« Seed load balancers

— Load varies slightly over iterations

= CSE, Molecular Dynamics simulations
e Measurement-based load balancers




Principle of Persistence

e Object communication patterns and
computational loads tend to persist ov
time
— In spite of dynamic behavior

= Abrupt and large, but infrequent changes (e.g. AMR)
= Slow and small changes (e.g. particle migration)

= Parallel analog of principle of locality

— Heuristics, that hold for most CSE
applications

o~




Measurement Based Load Bala

« Based on principle of persistence

e Runtime instrumentation (LB Database)
— communication volume and computation tjﬂme

e Measurement based load balancers

— Use the database periodically to make new
decisions

— Many alternative strategies can use the
database
e Centralized vs. distributed
= Greedy improvements vs. complete reassignment
= Topology-aware




Load Balancer Strategies

e Centralized

— Object load data are
sent to processor O

— Integrate to a
complete object graph
— Migration decision is
broadcasted from
processor O

— Global barrier

e Distributed

— Load balancing
among neighboring
processors

— Build partial object
graph

— Migration decision Is
sent to its neighbors

— No global barrier




= Existing load balancing strategies d¢
scale on extremely large machines

e Limitations of centralized strategies:

— Central node: memory/communication
bottleneck

— Decision-making algorithms tend to be
very slow

e Limitations of distributed strategies:

— Difficult to achieve well-informed load
balancing decisions




Simulation Study - Memory

Simulation performed with the performance simulator BigSim

2

W 32K processors
M 64K processors

500~
4350 -
400 -
350
300~
250 -
200
150 A
100
50 -

Memory usage
(MB)

N

N

128K 256K 512K 1M

Number of objects

Ib_test benchmark is a parameterized program that creates a
specified number of communicating objects in 2D-mesh.




Load Balancing Execution

400 T

3501

300 A
Execution 250~
Time (in 200 A
seconds) 150
100 A

501

0 -

B GreedyLB
B GreedyCommLB
B RefinelLB

128K 256K 512K 1M

Number of Objects

Execution time of load balancing algorithms on a 64K processor simulation

I




Hierarchical Load Balancer |

e Hierarchical distributed load
balancers
— Divide Into processor groups P
— Apply different strategies at each level

— Scalable to a large number of
Processors




Hierarchical Tree (an exa

64K processor hierarchical tree

___________

Apply different strategies at each level




An Example: Hybrid LB

e Dividing processors into independent se

groups, and groups are organized In
hierarchies (decentralized)

e Each group has a leader (the central noﬁe)
which performs centralized load balancing

e A particular hybrid strategy that works well

Gengbin Zheng, PhD Thesis, 2005




Our HybridLB Scheme

Refinement-based Load balanci

Load Data



Memory Overhead

Memory usage
(MB)

500 -
450 -
400 -
350+
300+
250 1
200 -
1501

100

501

S

W CentralL
H HybridL

256K 512K 1M

Number of Objects

imulation of Ib_test (for 64k processors)

a




Total Load Balancing Tim

Simulation of Ib_test for 64K processors

450
4001
3501
3001
250+

Time(s)
2001 1 GreedyCommLB

150 ® HybridLB(GreedyCommLB)
100 ¢

50 1]
0_

256K 512K iM

Number of Objects

N procs 4096 8192 16384
Memory 6.8MB 22.57MB 22.63MB

Ib_test benchmark’s actual run on BG/L at IBM (512K objects)

-



Load Balancing Quality

Simulation of Ib_test for 64K processors

0.12
0.11
0.08 1
0.06 1
0.04 1
0.02 1

Maximum predicted
load (seconds)

OJ

256K 512K 1M

Number of Objects

»

W GreedyCommLB
W HybridLB




Topology-aware mapping of |

e Problem

— Map tasks to processors connected In
topology, such that: y
e Compute load on processors is balanced

= Communicating chares (objects) are placed on
nearby processors.




Mapping Model

e Task Graph :
- G = (Vi BY
— Weighted graph, undirected edges
— Nodes < chares, m(v,) < computation
— Edges < communication, ¢, < bytes between
v, and v,
* Topology-graph :
-G, =(Vp. Ep)
— Nodes & processors
— Edges < Direct Network Links
— Ex: 3D-Torus, 2D-Mesh, Hypercube




Model (Contd.)

eTask Mapping
— Assigns tasks to processors
-P:V 2>V,

e Hop-Bytes
— Hop-Bytes <& Communication cost

— The cost imposed on the network Is more If
more links are used

— Weigh inter-processor communication by
distance on the network




Load Balancing Framework in Chal

e |ssues of mapping and decomposm
separated

= User had full control over mapping

e Many choices
— Initial static mapping

— Mapping at run-time as newer objects
created

— Write a new load balancing strategy: inherit =
from BaselB




Future Work

= Hybrid Model-based Load Balancers

— User gives a model to the LB

— Combine it with measurement based load
balancer

e Multicast aware Load Balancers

— Try and place targets of multicast on the
same processor




Conclusions

e Measurement based LBs are good for m
cases

e Need scalable LBs in the future due to large
machines like BG/L »
— Hybrid Load Balancers
— Communication sensitive LBs
— Topology aware LBs




