
Dynamic Load Balancing in
Charm++

Abhinav S Bhatele

Parallel Programming Lab, UIUC

Outline

• Dynamic Load Balancing framework in
Charm++

• Measurement Based Load Balancing

• Examples:
– Hybrid Load Balancers

– Topology-aware Load Balancers

• User Control and Flexibility

• Future Work

Dynamic Load-Balancing
• Task of load balancing (LB)

– Given a collection of migratable objects and a set
of processors

– Find a mapping of objects to processors
• Almost same amount of computation on each processor

– Additional constraints
• Ensure communication between processors is minimum

• Take topology of the machine into consideration

• Dynamic mapping of chares to processors
– Load on processors keeps changing during the

actual execution

Load-Balancing Approaches
• A rich set of strategies in Charm++

• Two main ideas
– No correlation between successive iterations

• Fully dynamic

• Seed load balancers

– Load varies slightly over iterations
• CSE, Molecular Dynamics simulations

• Measurement-based load balancers

Principle of Persistence
• Object communication patterns and

computational loads tend to persist over
time
– In spite of dynamic behavior

• Abrupt and large, but infrequent changes (e.g. AMR)

• Slow and small changes (e.g. particle migration)

• Parallel analog of principle of locality
– Heuristics, that hold for most CSE

applications

Measurement Based Load Balancing

• Based on principle of persistence

• Runtime instrumentation (LB Database)
– communication volume and computation time

• Measurement based load balancers
– Use the database periodically to make new

decisions

– Many alternative strategies can use the
database

• Centralized vs. distributed

• Greedy improvements vs. complete reassignment

• Topology-aware

Load Balancer Strategies

• Centralized
– Object load data are
sent to processor 0

– Integrate to a
complete object graph

– Migration decision is
broadcasted from
processor 0

– Global barrier

• Distributed
– Load balancing
among neighboring
processors

– Build partial object
graph

– Migration decision is
sent to its neighbors

– No global barrier

Load Balancing on Large Machines

• Existing load balancing strategies don’t
scale on extremely large machines

• Limitations of centralized strategies:
– Central node: memory/communication

bottleneck

– Decision-making algorithms tend to be
very slow

• Limitations of distributed strategies:
– Difficult to achieve well-informed load

balancing decisions

Simulation Study - Memory Overhead

0
50
100
150
200
250
300
350
400
450
500

Memory usage
(MB)

128K 256K 512K 1M

Number of objects

32K processors

64K processors

lb_test benchmark is a parameterized program that creates a
specified number of communicating objects in 2D-mesh.

Simulation performed with the performance simulator BigSim

Load Balancing Execution Time

0

50

100

150

200

250

300

350

400

Execution
Time (in
seconds)

128K 256K 512K 1M

Number of Objects

GreedyLB
GreedyCommLB
RefineLB

Execution time of load balancing algorithms on a 64K processor simulation

Hierarchical Load Balancers

• Hierarchical distributed load
balancers
– Divide into processor groups

– Apply different strategies at each level

– Scalable to a large number of
processors

Hierarchical Tree (an example)

0 … 1023 6553564512 …1024 … 2047 6451163488 ……...

0 1024 63488 64512

1

64K processor hierarchical tree

Apply different strategies at each level

Level 0

Level 1

Level 2

1024

64

An Example: Hybrid LB
• Dividing processors into independent sets of

groups, and groups are organized in
hierarchies (decentralized)

• Each group has a leader (the central node)
which performs centralized load balancing

• A particular hybrid strategy that works well

Gengbin Zheng, PhD Thesis, 2005

Our HybridLB Scheme

0 … 1023 6553564512 …1024 … 2047 6451163488 ……...

0 1024 63488 64512

1

Load Data (OCG)

Refinement-based Load balancing

Greedy-based Load balancing

Load Data

token

object

Memory Overhead

0
50
100
150
200
250
300
350
400
450
500

Memory usage
(MB)

256K 512K 1M

Number of Objects

CentralLB

HybridLB

Simulation of lb_test (for 64k processors)

Total Load Balancing Time

0
50
100
150
200
250
300
350
400
450

Time(s)

256K 512K 1M

Number of Objects

Simulation of lb_test for 64K processors

GreedyCommLB

HybridLB(GreedyCommLB)

22.63MB22.57MB6.8MBMemory

1638481924096N procs

lb_test benchmark’s actual run on BG/L at IBM (512K objects)

Load Balancing Quality

0
0.02
0.04
0.06
0.08
0.1
0.12

Maximum predicted
load (seconds)

256K 512K 1M

Number of Objects

Simulation of lb_test for 64K processors

GreedyCommLB

HybridLB

Topology-aware mapping of tasks

• Problem
– Map tasks to processors connected in a

topology, such that:
•Compute load on processors is balanced

•Communicating chares (objects) are placed on
nearby processors.

Mapping Model

• Task Graph :
– Gt = (Vt , Et)
– Weighted graph, undirected edges
– Nodes chares, w(va) computation
– Edges communication, cab bytes between

va and vb

• Topology-graph :
– Gp = (Vp , Ep)
– Nodes processors
– Edges Direct Network Links
– Ex: 3D-Torus, 2D-Mesh, Hypercube

Model (Contd.)

•Task Mapping
– Assigns tasks to processors

– P : Vt Vp

• Hop-Bytes
– Hop-Bytes Communication cost

– The cost imposed on the network is more if
more links are used

– Weigh inter-processor communication by
distance on the network

Load Balancing Framework in Charm++

• Issues of mapping and decomposition
separated

• User had full control over mapping

• Many choices
– Initial static mapping

– Mapping at run-time as newer objects
created

– Write a new load balancing strategy: inherit
from BaseLB

Future Work

• Hybrid Model-based Load Balancers
– User gives a model to the LB

– Combine it with measurement based load
balancer

• Multicast aware Load Balancers
– Try and place targets of multicast on the

same processor

Conclusions
• Measurement based LBs are good for most

cases
• Need scalable LBs in the future due to large

machines like BG/L
– Hybrid Load Balancers
– Communication sensitive LBs
– Topology aware LBs

