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Introduction

� Metacomputer — A network of 
heterogeneous, computational resources 
linked by software in such a way that they 
can be used as easily as a single computer

[Smarr, Catlett - CACM, June 1992]

� This idea was further developed as “Grid 
Computing” by Foster & Kesselman (and 
many others) in the mid-1990’s and later
[Foster, Kesselman - The Grid: Blueprint for a New Computing 
Infrastructure, 1998 (1st Edition), 2004 (2nd Edition)]





Example Grid Computing 
Applications

� NEKTAR (George Karniadakis, Brown University)

� Simulation of blood flow in the human arterial tree (fluid 
dynamics)

� SPICE, Simulated Pore Interactive Computing 
Environment (Peter Coveney, University of London)

� Translocation of nucleic acids across membrane channel 
pores in biological cells

� VORTONICS (Bruce Boghosian, Tufts University)

� Vortex dynamics (3D Navier-Stokes computations)



Goals of this Project

� Good performance when executing 
tightly-coupled parallel applications in 
Grid metacomputing environments

� Require minimal or no changes to the 
parallel applications themselves
� This implies that techniques must be developed at 

the runtime system (middleware) layer



Challenges

� Need for efficient 
mapping of work to 
resources

� Grids are a dynamic 
environment

� Grids involve 
pervasive 
heterogeneity

� Cost of cross-site
communication (i.e., 
cross-site latency)

Cluster A Cluster B

Intra-cluster latency 
(microseconds)

Inter-cluster latency 
(milliseconds)



Charm++ and Adaptive MPI

� Charm++ is a parallel implementation of the C++ 
programming language complemented by an adaptive runtime 
system

� A programmer decomposes a program into parallel message-
driven objects (called chares)

� The adaptive runtime system maps (and re-maps) objects 
onto physical processors; a message-driven scheduler on each 
processor drives the execution of the objects mapped to the 
same physical processor; each processor typically holds many 
(tens or hundreds) of objects

� Adaptive MPI (AMPI) brings the features of the Charm++ 
runtime system to more traditional MPI applications



Virtual Machine Interface (VMI)

� VMI is an event-driven messaging layer 
that provides an abstraction above lower-
level layers such as Myrinet, InfiniBand, or 
Ethernet

� VMI Goals
� Application portability across interconnects

� Data striping and automatic failover

� Support for Grid-computing applications

� Dynamic monitoring and management



Implementation of Charm++ on 
Virtual Machine Interface (VMI)

� Message data are 
passed along VMI 
“send chain” and 
“receive chain”

� Devices on each 
chain may deliver 
data directly, 
manipulate data, 
or pass data to 
next device
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The Charm++ Approach to Grid 
Computing

� Leverage the use of message-driven 
objects in the Charm++ runtime system to 
mask latency

� Each processor holds a small number of 
remotely-driven objects and a much larger 
number of locally-driven objects; overlap 
the latency of remote communication with 
locally-driven work



Hypothetical Timeline View of a 
Multi-Cluster Computation

A

B

C

cross-cluster boundary

� Processors A and B are on one cluster, Processor C on a 
second cluster

� Communication between clusters via high-latency WAN

� Work driven by “local objects” allows latency masking



Five-Point Stencil (Jacobi2D)

� Simple finite difference 
method considering 
neighbors above, below, 
left, right

� Problem size is fixed
(2048x2048 or 8192x8192)

� Problem is evenly 
divided between two 
clusters (e.g., 32 
processors means 16 
processors in Cluster A and 
16 processors in Cluster B)

� Number of objects used 
to decompose problem 
varies (allowing the effects 
of varying the number of 
objects to be studied)



Five-Point Stencil Performance
(2048x2048 mesh, 32 Processors)



Object Prioritization

� Latency masking via message-driven objects works by 
overlapping the communication in border objects with 
work in local-only objects

� Optimization — Prioritize the border objects to give 
maximum chance for overlapping cross-site 
communication with locally-driven work

� Implementation
� Any time an object sends a message that crosses a cluster 

boundary, record that object’s ID in a table of border objects on 
the processor

� Any incoming messages to the processor are checked to determine 
the destination object ID
� Destined for local-only object, place in Scheduler Queue

� Destined for border object, place in high-priority Grid Queue



� Prioritization Example

� 2 Clusters

� 3 Processors

� 6 Objects

� On PE1, Object C is a 
border object, Objects 
D and E are local-only 
objects

� Incoming Messages 1, 
2, and 3 to PE1 are 
examined

� Messages 1 and 2, 
destined for local-only 
objects are placed in 
Scheduler Queue

� Message 3, destined 
for Object C is placed 
in high-priority Grid 
Queue



Grid Topology-Aware Load Balancing

� Charm++ Load Balancing Framework measures 
characteristics of objects in a running application 
(e.g., CPU load, number of messages sent)

� Load balancing can greatly improve performance of 
traditional parallel applications because many 
applications are dynamic (change as they run)

� In a Grid metacomputing environment, 
characteristics of the environment can change too

� Couple measured application characteristics 
with knowledge of the Grid environment to 
make better object mapping decisions



Basic Communication
Load Balancing (GridCommLB)

� Strategy — Use a greedy algorithm to evenly 
distribute the border objects over the 
processors in each cluster

� Does not consider relationship between objects 
(communication volume internal to each 
cluster can increase)

� Objects never migrate across cluster boundary 
(i.e., they stay inside the cluster in which they 
were originally mapped)

� Must also take into consideration the measured 
CPU load of each object to avoid overloading 
processors



Graph Partitioning
Load Balancing (GridMetisLB)

� Strategy — Partition the object communication 
graph (using Metis [Karypis,Kumar - 1995]) to 
attempt to reduce the amount of cross-cluster 
communication

� Objects that communicate frequently with each 
other are mapped to be “close” to each other 
(same cluster or same processor)

� Two-phase algorithm
� Phase 1 — Partition objects onto clusters by using Metis to 

find a “good” cut across cluster boundaries

� Phase 2 — In each cluster, partition objects onto 
processors by using Metis to find a “good” partition that 
balances CPU load and reduces inter-processor 
communication volume



Case Studies

� Applications
� Molecular dynamics (LeanMD)
� Finite element analysis (Fractography3D)

� Grid environments
� Artificial latency environment — VMI “delay 

device” adds a pre-defined latency between 
arbitrary pairs of nodes

� TeraGrid environment — Experiments run 
between NCSA and Argonne National Laboratory 
machines (1.7 milliseconds latency) and 
between NCSA and SDSC machines (30.1 
milliseconds latency)



Molecular Dynamics (LeanMD)

� Simulation box made up of cells, responsible for 
all atoms within a given boundary; KxKxK
regions of cells are organized into patches

� The fundamental unit of decomposition is a cell-
pair object

� 216 cells and 3024 cell pairs in the molecular 
system examined here



LeanMD Performance
32 Processors (16 Processors + 16 Processors)



LeanMD Performance
64 Processors (32 Processors + 32 Processors)



LeanMD Performance
128 Processors (64 Processors + 64 Processors)



Conclusion

� Techniques developed at the runtime system 
(middleware) level can enable tightly-coupled 
applications to run efficiently in Grid 
metacomputing environments with few or no 
changes necessary to the application software
� Latency masking with message-driven objects
� Border object prioritization
� Grid topology-aware load balancing

� Case studies
� Molecular dynamics (LeanMD)
� Finite element analysis (Fractography3D)


