Multiparadigm Parallel Programming with Charm++,
Featuring ParFUM as a case study

5th Annual Workshop on Charm++ and its Applications

Aaron Becker
abecker3@uiuc.edu
UIUC

18 April 2007

ROGRAMMING LAB

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

What is Multiparadigm Programming®?

There are lots of ways to write a parallel program

Global Arrays
SSF X10

OpenMP |
High Performance Fortran

Fortress

Parallel Matlab MP|

Charm++
Multiphase Shared Arrays

Unified Parallel C
Chapel

Why are there so many languages”?

Each is good at something different

Automatic parallelizing of loops
Fine-grained parallelism
Unpredictable communication patterns

S0, what is a multiparadigm program??

A program composed of modules,
where each module could be written
In a different language

Why would | want a Multiparadigm Program??

Suppose you have a complex program to parallelize

Lambda

Transpose

RealSpace

Vi

Transpose

IX

Reduction

Multicast

RhoRHart

Non-Local

RhoGHart Density

Suppose you have a complex program to parallelize

Each phase of the program may have different
patterns of communication

How can you decide which language touse”

Suppose you have a complex program to parallelize

A common approach:
shoehorn everything into MPI

A better approach:
choose the right language for each module

Suppose you have an existing MPI program

You want to add a new module,
out it will be tough to write in MPI

Suppose you have an existing MPI program

You want to add a new module,
out it will be tough to write in MPI

A common approach:
write it in MPIl anyway

A better approach:
choose a better suited language

Why aren’t multiparadigm programs more common?

Multiparadigm programs are hard to write:
You need a way to stick these modules together

It’s relatively simple if you only have one language
iNn use at once: MPI/OpenMP hybrid codes run just

one language at a time

For tightly integrated codes with multiple
concurrent modules, you need a runtime system

to manage them all

Where does Charm++ fit in?

The Charm++ runtime system (RTS) handles most
of the difficulties of multiparadigm programming

Modules using different languages are co-scheduled
and can integrate tightly with one another

The RTS supports several languages
We are interested in adding more

ParFUM: a Multiparadigm Charm++ Program

What is ParFUM?

ParFUM: a Parallel Framework for
Unstructured Meshing

Meant to simplity the development of parallel
unstructured mesh codes

Handles partitioning, synchronization,
adaptivity, and other difficult parallel tasks

ParFUM is multiparadigm

ParFUM consists of many modules, written in a
variety of languages. | will briefly present three
examples:

Charm++ for asynchronous adaptivity

Adaptive MPI for the user’s driver code and glue
code to connect modules

Multiphase shared arrays (MSA) for data distribution

Charm++ in ParFUM

Asynchronous Incremental Adaptivity

Local refinement or coarsening of the
mesh, without any global barriers.

) €

Edge bisection on a processor boundary

§_>

3 €

What is Charm++7

| hope you attended the fine tutorial by Pritish
Jetley and Lukasz Wesolowski

In a nutshell, parallel objects which
communicate via asynchronous method
iInvocations

Why is Charm++ good for incremental adaptivity?

Incremental adaptivity leads to unpredictable
communication patterns.

2

1
Suppose a boundary element
of partition 1 requests
refinement

How will partition 2 know to expect
communication from 1? In MPI, this is very hard.
In Charm++, it is natural.

Adaptive MPI in ParFUM

What is Adaptive MPI?

For our purposes, it’'s just an iImplementation
of MPI on top of the Charm++ RTS

For more information, see Celso Medes’s

tutorial on Friday at 3:10,
How to Write Applications using Adaptive MPI

Why is Adaptive MPI important in ParFUM?

User provided driver code

Glue code between modules

Why is Adaptive MPI important in ParFUM?

User provided driver code
Popularity
Legacy

Glue code between modules
Simple flow of control

Multiphase Shared Arrays (MSA) in ParFUM

A data distribution problem

<

After initial partitioning, we
need to determine which

boundary elements must be
exchanged.

A data distribution problem

<

What we would like:
an easily accessible
global table to look

up shared edges

\

After initial partitioning, we
need to determine which

boundary elements must be
exchanged.

What is MSA?

|dea: shared arrays, where only one type of access
IS allowed at a time

Access type is controlled by the array’s phase

Phases include:
read-only
write-by-one
accumulate

Processor () Processor 1 Processor 2
Threads 2,5 Threads 1,3 Threads 0.4

Read-only
mode

MSA Data Array
Elements 0-5

Processor 0 Processor 1 Processor 2
Threads 2,5 Threads 1,3 Threads 0.4

Write-by-one
mode

note: one thread could

Ihlfil:?A Da;;a 'ih%ray write to many
ements U= elements

Processor 0 Processor 1 Processor 2
Threads 2,5 Threads 1,3 Threads 0.4

N Accumulate

!-'f Accumulates mode

+ +' opersiors:

.-"

note: accumulation
operator must be
associative and
commutative

MSA Data Array
Elements 0-35

-

Distributed MSA
Hash Table

Partitioned Mesh

Each shared
edge Is hashed

Entries are added to the
table In accumulate mode

Now elements which
collide In the table
probably share an edge

Why is MSA good for this application”

Shared access to a global table is convenient
when trying to determine which partitions
you need to send to or receive from

Filling and consulting the array fit neatly into
MSA phases

How does this look in practice”?

MPI_Comm_rank ((MPI_Comm)comm_context,&myRank);
//printf("([%d] FEM Mesh Parallel broadcast called for mesh $d\n",myRank,fem mesh);
int new_mesh;
if (myRank == masterRank)
//I am the master, i have the element connectivity data and need
//to send it to everybody
printf("[%d] Memory usage on vp 0 at the begining of partition %d \n",CkMyPe(),CmiMemoryUsage());
new_mesh=FEM_master_parallel_part(fem mesh,masterRank,comm_context);
Yelse{
new_mesh=FEM_slave_parallel part(fem mesh,masterRank,comm_context)
//temp to keep stuff from falling apart
MPI_Barrier((MPI_Comm)comm_context);
if (myRank == masterRank)
clearPartition();

//printf("[%d] Partitioned mesh number $d \n",myRank,new_mesh);
return new_mesh;

}

int FEM master parallel part(int fem mesh,int masterRank,FEM_Comm_t comm_context){
const char *caller="FEM Create connmsa’;

FEMAPI (caller);
FEM_chunk *c=FEM_chunk: :get (caller);
FEM_Mesh *m=c->lookup(fem_mesh,caller);
m->setAbsoluteGlobalno();
int nelem = m->nElems();
int numChunks;
MPI_Comm_size((MPI_Comm)comm context,&numChunks)
printf('master -> number of elements %d

\n",nelem);
DEBUG (m->print(0));

/*1oad the connectivity information into the eptr and
eind datastructure. It will be read by the other slave
elements and used to call parmetis+/

MSAIDINT eptrMSA(nelem,numChunks);

MSAIDINT eindMSA(nelem*10,numChunks);

I

after the msa array has been created and loaded with connectivity data
tell the slaves about the msa array

*/
struct conndata data;

data.nelem = nelem;

data.nnode = m->node.size();

data.arrl = eptrMSa;

data.arr2 = eindMsA;

MPI_Bcast_pup(data,masterRank, (MPI_Comm)comm_context);

eptrMSA.enroll(nunChunks)
eindMSA.enroll (nunChunks)
int indcount=0,ptrcount=0;
for(int t=0;t<m->elem.size();t++){
if (m->elem.has(t)){
FEM_Elem sk=m->elem[t];
for(int e=0;e<k.size()je++){

eptrMsA.set (ptrcount)=indcount;
ptrcount++;

0;n<k.getNodesPer () ;n++) {
eptrMsA.; setkptzcount) mdcmmt.y frdnomne] Tt
printe(Crascer - o % indoount 4 si \n", percount, indcount , 51 ze0f (HSALDINT) , 51 ze0f (MSAL
break up the mesh such that each chunk gets the same mumber of elements
a4 the nodes corresponding to those elements. However this is not the pa:

that when parcition is done using parmetis
ata do not go to chunk 0. Instead
can send the element and node

s is just distributing the

all the requests for d after partition each chunk
data to the chunks that will need i

FEM_Mesh +mesh_array=FEM_break_mesh(m, ptrcount, nunchunks) ;

Send the broken up meshes to the diff

erent chunks

send!rakenﬁeshes(mesh array, comn_context);
delete (1

FEM_tesh mypis
UPT Recy_pup(nypLece, nasterRank MESH _CHONK TAG, (PT_Conm)comn_context);

a1l parmetis
double
rince

struct partconndata spartdata

 Smsiitiner();

pazmetis \n');
FEM_call_parmetis (data, comn_context);
printf(’done with parmetis Sd FEM Mesh id in 9.61f \n',CmiMemoryUsage(),sizeof (FEM Mesh),CkWallTimer()-parStartTime);

double dataArrangeStartTime = CkWallTimer():
Sot 17 = mun to store the partitions to which node belongs:
2 node can belong to mul tions

int totaltodes = m->node.size();

PI_Bcast_pup(nodepart, masterRank, (MPI_Conm)conn_context);
nodepart..enroll (nunChunks)

PRI vzt nodepart (nodepart, pastdata, (P Com)com context)!
printe(ng mapping of node to “ion took +.61f\n",CkWallTiner()-dataArzangeStartTine);
itarrangestarsTing = Chnaiiziner();

P a mea to store the nodes that belong o a part

HPI_Bast. p\-pqpanmae.maumank,nm o) conm_context)
part2node.enroll(nunchun)

FEM_write_part2node (nodepart, part2node, partdata, (MPI_Comn)comn_context);

Get the list of elements and nodes that belong to this
SodeList lLnodes = partanods.get (nasterRank);

nodes uniquity ()2

lelems = N

,CkiallTimer () Time)
JelenlistageTine) ;

print: . -
data =
Build an HsA
MSAIDFEMMESH part2nes .
Beast 2 . komn_d

TEM vrite s e e, G T T T

WeshElen me = partanssh.get(sastectank):
/Tprinet ("1va] Nambe in my partitioned mesh td numb nodes td \n',masterRank,me.n->nElens(),m
DERUG(prinee(sage on vp 0 close to max %d \n

LChiyPe (), CaiMemozyUsage()))
Tres up the eptr and sind Mh arays stored in date

® VP
O MSA
Charm++

intitsg +camboshHodi

TmAGaptAlgs—>pup(p);

enum {FEM_globalID=33};
void femMeshodify::ckJustMigrated(void) {
Arraymlensntin: icknstilgrated(
//set the pointer to fm
te = tproxy|idx). citocal();
erData> &veto-:
(FEM_C cnunkmvlrm 410bal10) . gotpata());
mesh = c- >gectosh{"ckJustiigzated”) s
Emtesh—>Emu
setrointershftertigrate (fntesh);
}

void
frdtesh =
fnInp->FEM InterpolateSetMesh (fmdesh);
fmAdapt->FEM_AdaptSetesh (£nesh) ;
fmAdaptL->FEN_AdaptLSetMesh (fmMesh)
fmAdaptAlgs->FEM_AdaptAlgsSetMesh (fmMesh
for(int i=0; i<fmLockN.size(); it++) fmLockN[i].setMeshModify(this);

: i FEM_Mesh *m) {

/** Part of the initialization phase,
Populate all data structures,

It also computes all
<

create all the new objects
include all locks
he fixed nodes and populates a data structure with
void femMeshModify: :setFemdesh (FEMMeshNsg *fm) {

fmesh = fm->m;

e = fmo>t;

tproxy = tc->getProxy();

fmMesh->setFemNeshNodify (this);

fmAdapt = new FEM_Adapt(fmdesh, this);

fmAdaptl = new FEM_Adaptl(fmMesh, this);

fnAdaptAlgs = new FEM Adapt Algs(fmMesh, this);

fminp = new FEM_Interpolate(fmdesh, this)

//populate the mode locks

int nsize = fmMesh->node.size();

For(int i=0; i<nsize; i+t

£nLockN. push_back (FEH_lockN (1, this)) ;

/+int gsize = fmMesh->node.ghost->size();
for(int i=0; i<gsize; i++)
mgLockN. push_back (new FEM_LockN(FEM_To_ghost_index(i),this));
for(int i<nunChunks; i++) {
£nIdxlLock.push_back(false);
)
//compute all the fixed nodes
for(int <nsize; it+) (
if(£mAdaptL->isCorner (i))
fmfixedNodes .push_} b.ckm,
}

i
delete fm;

/* Coarse chunk locks */
intieg +comHeshiodity: s ockRenotechunk (int2Hag *msg) {
CtvAccess(_curTCharm) = tc;
Cntiag +inag = new intwas(d);
int ret = fmLock->lock(msg->i, msg->3);
imsg->i = ret;
delete msg;
return imsg;
}

intMsg *femMeshlodify::unlockRemoteChunk(int2Msg *msg) {

mem _curtcham) = or
e - in_1oxiqtmtenn,
Schunks,

detote vmear
y

Findaping cemiesmonicy Eindghoseaen(ine £roncik, nt haredtn) (
Cevacass(curicharm) -
) > oekap_in_toXL (tmesh, sharedtds, fromcik, 015
ChkL, numehkl)
TomekL) Findses)

i ol irr) smes-somnrst) = enklii;
1% (numehk1>0) delecel] ch
2o

Sntitsg +femeshodif
cevaceess (_cvrrcharm)
it = e >)uuxup in_TOXL(Entesh, Ldushared, fromchk,
it ,\dx‘!hni\:ilnd

¥ (tocattax

sessdxchostsand(ine fronchk, iot Sdrshared, int tochk) {

I
Const DKL Rec irec = faMesh->nods.ghostsend.getRec(localidn);
e-sgetshazed; L) ¢

n < oeii sextets_in_TDNL(tmesh, locallex, ochk, 1);

inekog *d = new intsg(idxghostsend);

doubledneg »Comtasbodity 1 gethamotecoord(int £roachk, int ghostidn) (
cons(_curich
It ookup_in ToKL(E ghostrdx, fromchi, 1)
to3h->node . ghostSend dd!.)su[mmchk) size) (
a2 e doublommes(~

osh->node. ghostSend. addList (Fronch) (ghostIdx] ;

2
ocaz favesh, 72 voos, tada

Py ptalgs->coord ater, coord, localldx, 1, FEW DOUSLE, 2);
awm.zm o

v doubleZna (cooral 1], coordl1));

)
)

secemotaBound(ine £roscik, ine shoseiex) ¢
Cevccess(curicnara) -
int 1

o e - cokup_in_foXL (tavesh, shostrds, Sronchk, 1);

raxi=1) ¢
 faosh-onode ihestSond. removetiode(ocal 1dx Eromch) ;

it

B MPI

Charm++
B \VSA

—

Driver

A Typical ParFUM Program

Final Thoughts

Why should | avoid multiparadigm programming”?

You can only program In languages you know
MPI is safe and popular

You need modularity

Language choice is limited by the underlying RTS

Why should | write multiparadigm programs®?

Productivity

When adding new functionality to an existing
program, you aren’t constrained by past
language choices.

Why should | write multiparadigm programs”?

Productivity

When adding new functionality to an existing
program, you aren’t constrained by past
language choices.

Why should | write multiparadigm programs”?

Productivity

When adding new functionality to an existing
program, you aren’t constrained by past
language choices.

Why should | write multiparadigm programs?

When adding new functionality to an existing
program, you aren’t constrained by past
language choices.

Because it is a multiparadigm
program, ParFUM is:

e Fasier to develop and easier to understand
e More extensible and flexible

e Still easy to use by MPI programmers

Charm++ Is a great platform for multiparadigm
programming, and | encourage you to try it out.

Multiparadigm Parallel Programming with Charm++,
Featuring ParFUM as a case study

5th Annual Workshop on Charm++ and its Applications

Aaron Becker
abecker3@uiuc.edu
UIUC

18 April 2007

ROGRAMMING LAB

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

