Sparse Approximate Inverse

Based on Processor Virtualization

Kai Wang Parallel Programming Laboratory Department of Computer Science University of Illinois At Urbana-Champaign

- Introduction
- Preconditioning
- Sparse Approximate Inverse Preconditioning
- Virtualization
- SAI based on virtualization

What is our problem?

In scientific and engineering applications, we often need to slove

- A partial Differential Equation (PDE)
- Discretize to get a matrix A, here A is a n * n matrix and
 - Sparse: Very few nonzero elements
 - Large: Millions of unknowns
- Solve the large sparse linear system

$$Ax = b$$

A small sparse matrix (5point)

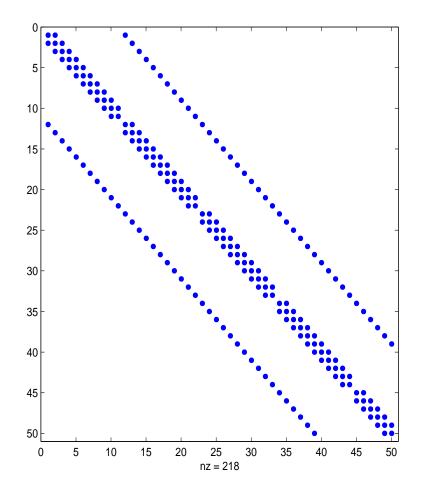


Figure 1: The structure of a small sparse matrix, 50 * 50.

How to solve this sparse linear system Ax = b?

- When A is a small matrix, Gaussian Eliminations are enough.
- However when A is very large, Gaussian Eliminations are not applicable, since their
 - $O(n^3)$ computational cost
 - $O(n^2)$ memory cost
 - Difficult to implement on parallel computers

 $n=10^{6}$, computational cost $=O(10^{18})$ and memory cost $=O(10^{12}).$

Research interest:

Solve this linear system

- Low memory and computational cost (efficiency)
- Robustness (effectiveness)
- On parallel platforms (Parallelism)

Solution: Iterative methods

Basic iterative methods

• Jacobi, Gauss-Seidel, and SOR

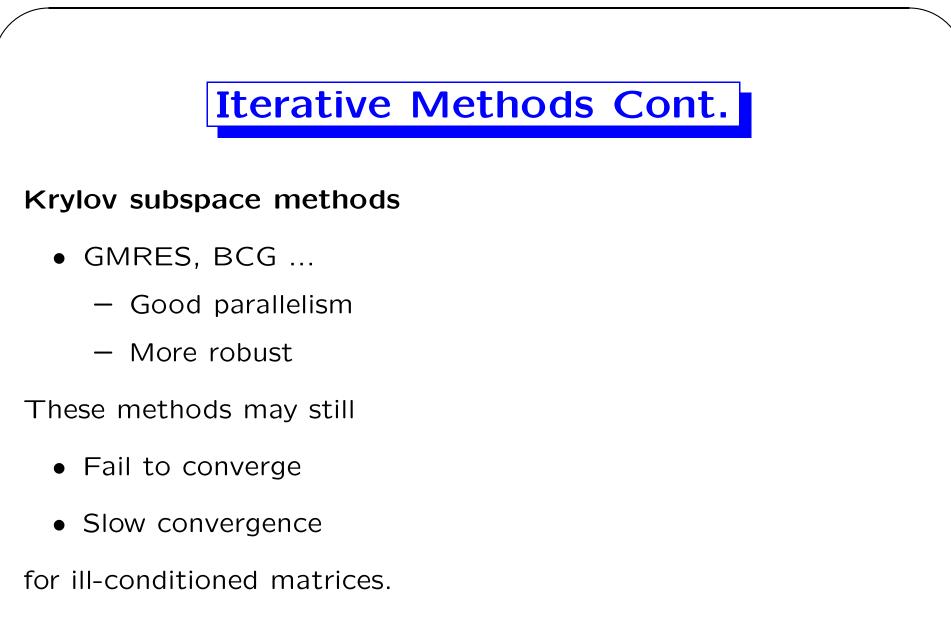
They all have the form

$$x_{k+1} = Gx_k + f$$

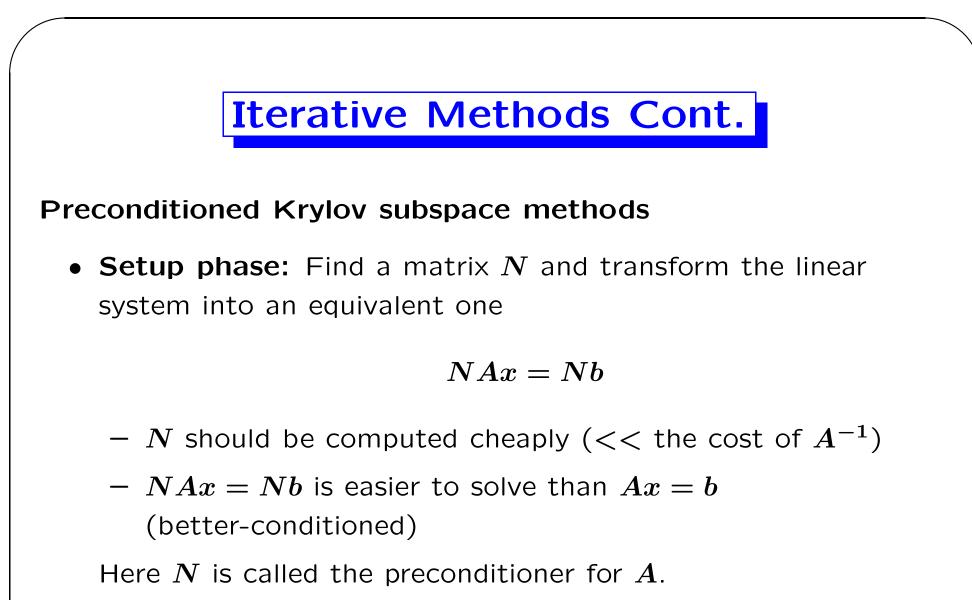
• Advantage

- Good parallelism (Matrix Vector Product)

- Disadvantages
 - Not robust
 - Slow convergence



Solution: Change to a good-conditioned matrix



• **Solve phase:** Solve the transformed system by Krylov subspace methods (GMRES algorithm, BCG algorithm)

Two typical preconditioning techniques to compute ${\boldsymbol N}$

- ILU
 - Form: $N=(LU)^{-1}$, LUpprox A
 - Transformed equation:

$$(LU)^{-1}Ax = (LU)^{-1}b$$

- Sparse approximate inverse (SAI)
 - Form: N=M, $Mpprox A^{-1}$
 - Transformed equation:

$$MAx = Mb$$

SAI Preconditioners

Goal: $M \approx A^{-1}$, $AM \approx I$

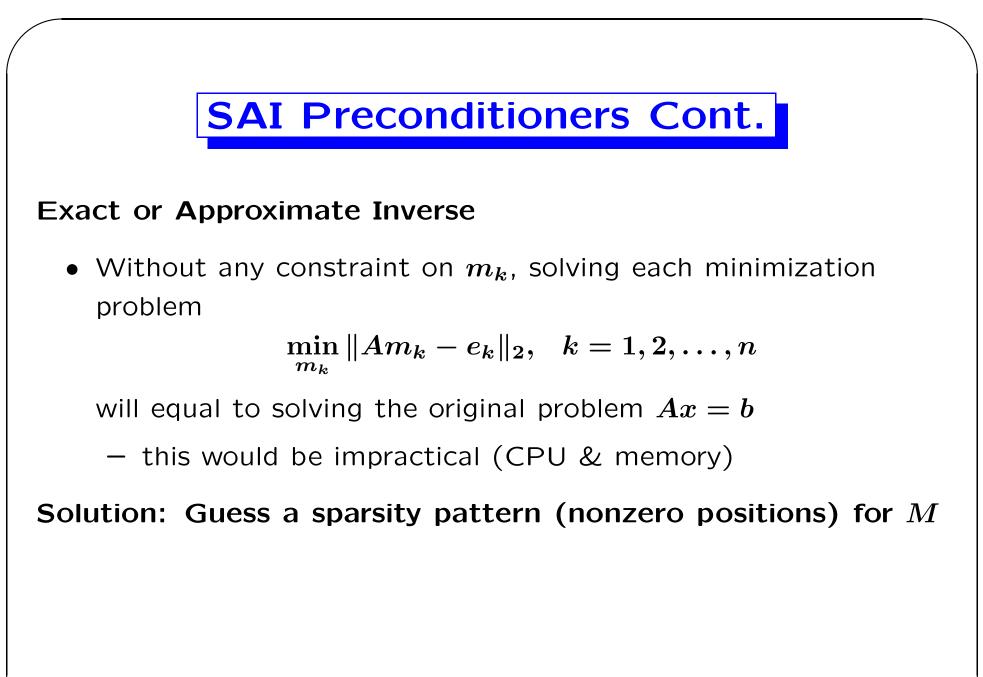
• Frobenius norm minimization:

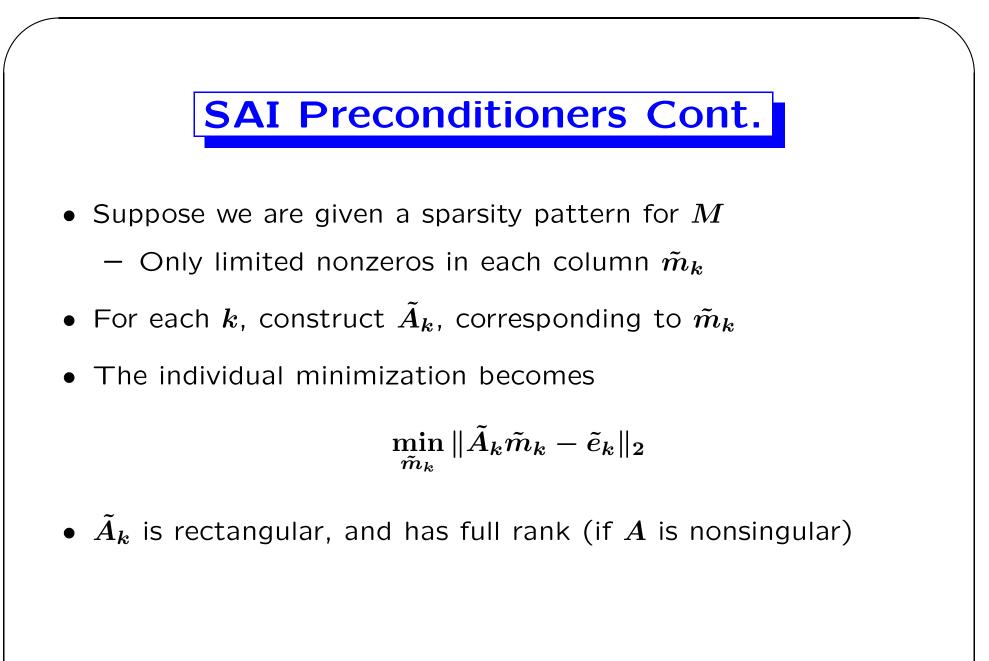
$$egin{aligned} \|AM-I\|_{F}^{2} &=& \sum_{k=1}^{n} \|(AM-I)e_{k}\|_{2}^{2} \ &=& \sum_{k=1}^{n} \|Am_{k}-e_{k}\|_{2}^{2} \ && M=(m_{1},m_{2},...,m_{n}) \end{aligned}$$

• We have n independent minimization problems

$$\min_{m_k} \|Am_k - e_k\|_2, \ \ k = 1, 2, \dots, n$$

Good parallelism





• We can perform a QR factorization on $ilde{A}_k$ (small)

$$ilde{A}_{m{k}} = Q_{m{k}} \left(egin{array}{c} R_{m{k}} \ 0 \end{array}
ight)$$

- Q_k is orthogonal, $Q_k^T Q_k = I$
- R_k is nonsingular upper triangular
- Compute

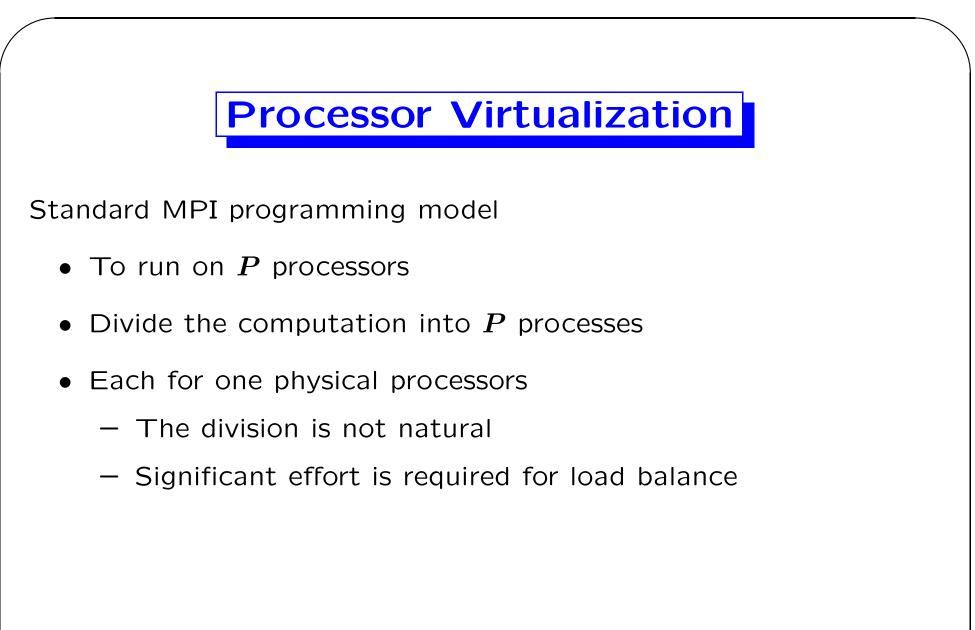
$$ilde{c}_k = Q_k^T ilde{e}_k$$

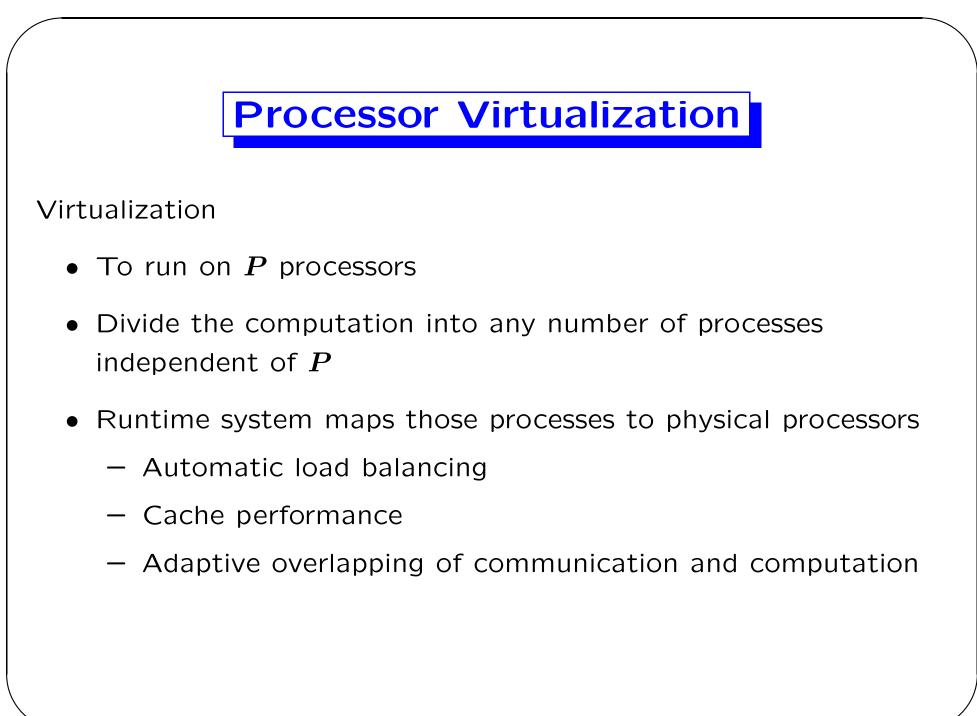
• and solve

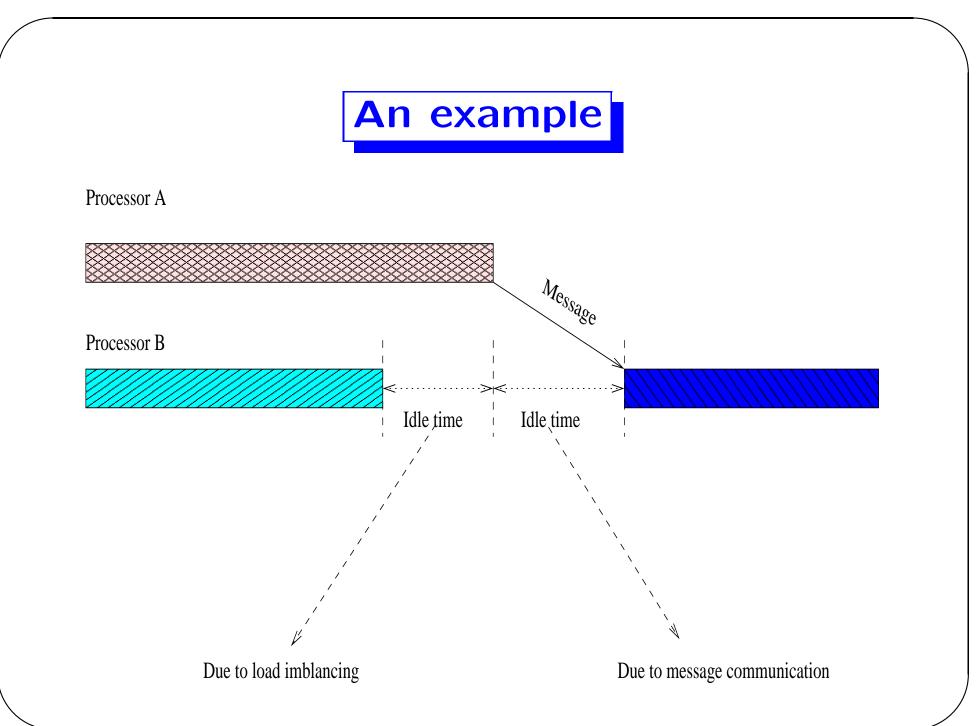
$$ilde{m}_k = R_k^{-1} ilde{c}_k$$

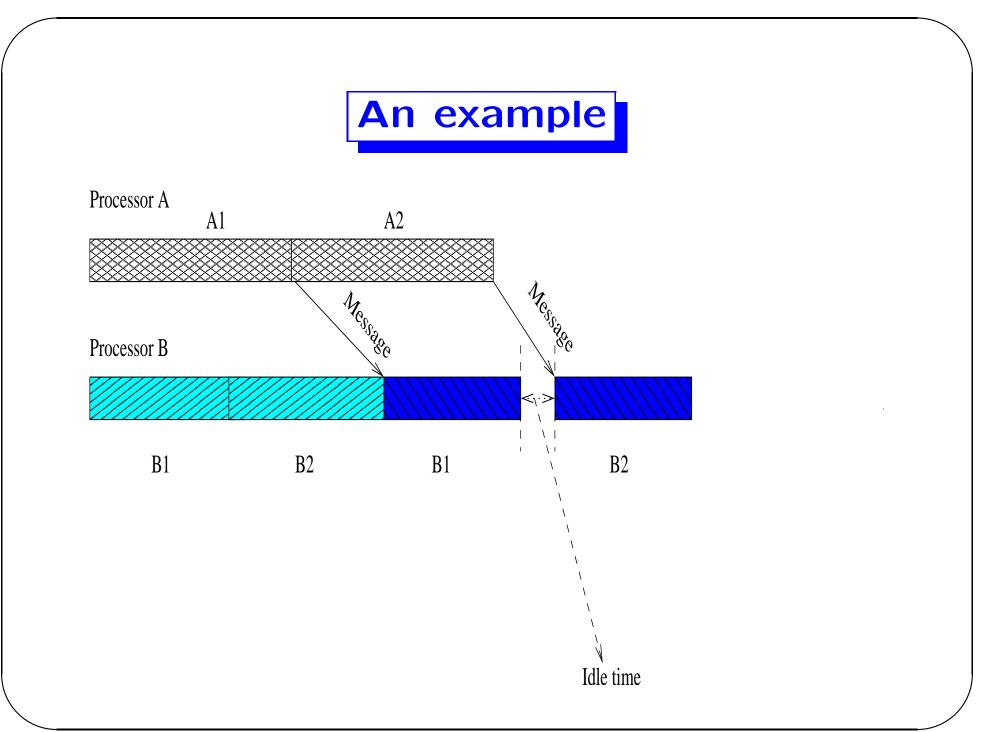
Algorithm **0.1** Construct a static pattern sparse approximate inverse preconditioner.

- 1. Given a drop tolerance ϵ
- 2. Sparsify A with respect to ϵ
- 3. Compute a sparse approximate inverse M according to the sparsity pattern of A
- 4. Drop small entries of M with respect to ϵ
- 5. *M* is the preconditioner for Ax = b
- $\bullet\,$ Matrix A is partitioned and distributed row by row
- The nonzero position of A (sparsified) is the sparsity pattern.
- If preconditioner is not good enough, use the nonzero pattern of A^2 , or A^3 as the sparsity pattern





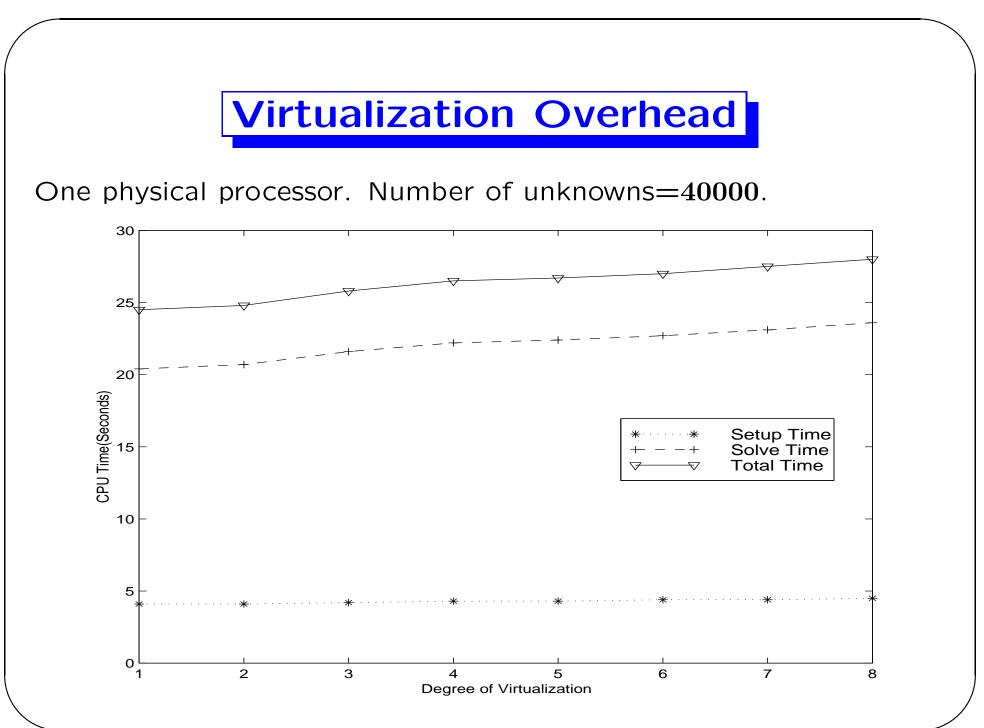


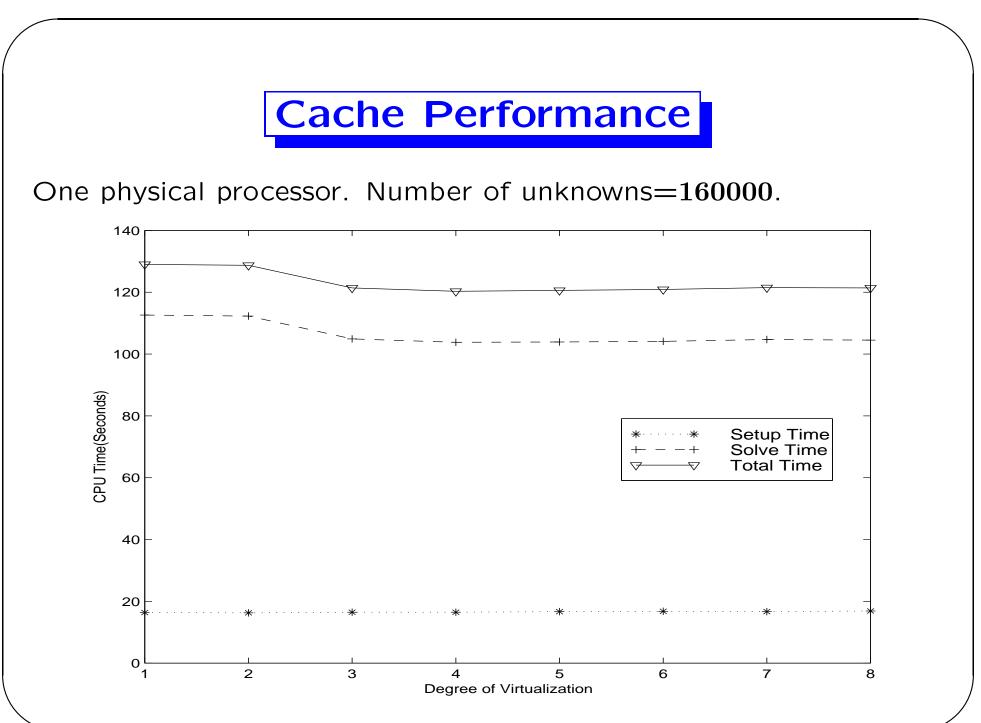


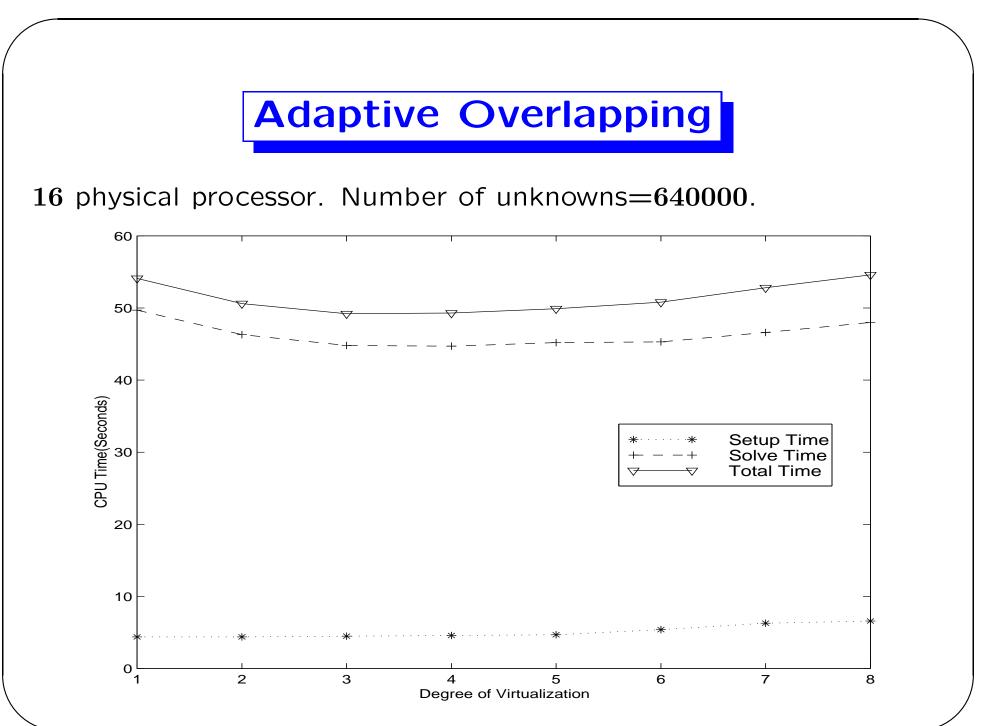
Can the computation and communication be overlapped?

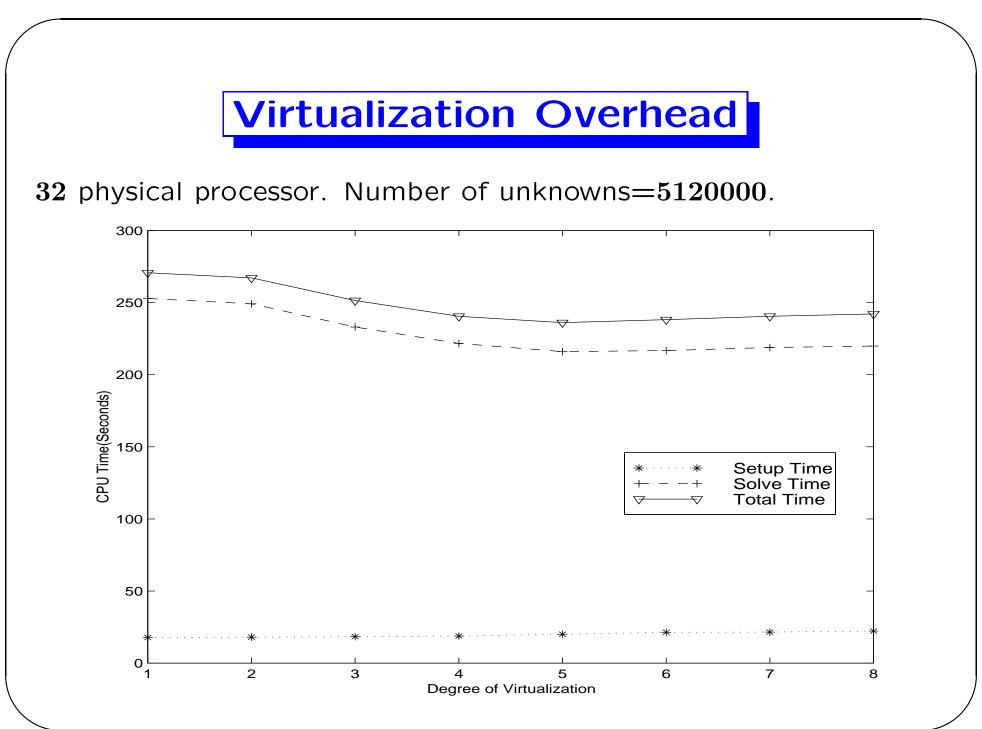
- Matrix vector product is the main computation
- Each virtual processor need the vector store in other processors
- If dense matrix, this is an all to all communication. No overlapping
- Sparse matrix has limited nonzeros
 - Communication happens in a subset
 - Can overlap

- Implementation is based ParaSails of Edmond. Chow
 - It uses static sparsity pattern
 - Use Lapack and Blas to deal with cache performance
- Use AMPI
- Run on Tungsten
- Solving 3D convection-diffusion equations.
- 1000 iterations.









- Show the performance of SAI preconditioning when using processor virtualization.
- Speedup in solving phase
 - Benefits from cache performance
 - Benefits from adaptive overlapping
- No speedup in setup phase
 - Setup phase has good cache management and few communications.
 - Speedup may be expected in setup phase of multilevel or multistep preconditioning.