NAMD 3 Design Issues

Reflections for a Second Decade of Scalable Molecular Dynamics

Jim Phillips

Theoretical and Computational Biophysics Group http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

What is NAMD?

- Molecular dynamics and related algorithms
 - e.g., minimization, steering, locally enhanced sampling, alchemical and conformational free energy perturbation
- Efficient algorithms for full electrostatics
- Effective on affordable commodity hardware
- Read file formats from standard packages: X-PLOR (NAMD 1.0), CHARMM (NAMD 2.0), Amber (NAMD 2.3), GROMACS (NAMD 2.4)
- Building a complete modeling environment

Molecular Mechanics Force Field

Biomolecular Time Scales

Motion	Time Scale	
	(sec)	
Bond stretching	10 ⁻¹⁴ to 10 ⁻¹³	
Elastic vibrations	10 ⁻¹² to 10 ⁻¹¹	
Rotations of surface sidechains	10 ⁻¹¹ to 10 ⁻¹⁰	
Hinge bending	10 ⁻¹¹ to 10 ⁻⁷	
Rotation of buried side chains	10 ⁻⁴ to 1 sec	
Allosteric transistions	10 ⁻⁵ to 1 sec	
Local denaturations	10 ⁻⁵ to 10 sec	

Sizes of Simulations Over Time

Estrogen Receptor 36K atoms (1996)

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Our Solution: Parallel Computing

HP 735 cluster 12 processors (1993)

SGI Origin 2000 128 processors (1997) PSC Lemieux AlphaServer SC 3000 processors (2002)

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Example Simulation: GlpF

NAMD with PME Periodic boundary conditions NPT ensemble at 310 K

Protein:	\sim	15,000	atoms
Lipids:	\sim	40,000	atoms
Water:	\sim	51,000	atoms
Total:	~ 1	.06,000	atoms

1024 PSC TCS CPUs 4 hours per ns

M. Jensen, E. Tajkhorshid, K. Schulten, *Structure* **9**, 1083 (2001) E. Tajkhorshid et al., *Science* **296**, 525-530 (2002)

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Typical Simulation Statistics

- 100,000 atoms (including water, lipid)
- 10-20 MB of data for entire system
- 100 A per side periodic cell
- 12 A cutoff of short-range nonbonded terms
- 10,000,000 timesteps (10 ns)
- 4 s/step on one processor (1.3 years total!)

Parallel MD: Easy or Hard?

- Easy
 - Tiny working data
 - Spatial locality
 - Uniform atom density
 - Persistent repetition
 - Multiple timestepping

- Hard
 - Sequential timesteps
 - Short iteration time
 - Full electrostatics
 - Fixed problem size

Basis of NAMD Scalability

- Very active computer science collaboration
 - UIUC Parallel Programming Lab, since 1992
 - Charm++ system: message driven objects
 - Constant tuning for evolving parallel platforms
- Designed for parallel efficiency
 - NAMD 1: discrete spatial decomposition, fast multipole
 - NAMD 2: hybrid force-spatial decomposition, PME
 - Dependency-driven execution, no barriers
 - Measurement-based load balancing system

Poorly Scaling Approaches

- Replicated data
 - All atom coordinates stored on each processor
 - Communication/Computation ratio: O(P log P)
- Partition the atom array across processors
 - Nearby atoms may not be on the same processor
 - C/C ratio: O(P)
- Distribute force matrix to processors
 - Matrix is sparse, non uniform
 - C/C Ratio: O(sqrt P)

Spatial Decomposition: NAMD 1

- Atoms spatially distributed to cubes
- Size of each cube :
 - Just a larger than cut-off radius
 - Communicate only w/ neighbors
 - Work for each pair of neighbors
- C/C ratio: O(1)
- However:
 - Load Imbalance
 - Limited Parallelism

Hybrid Decomposition: NAMD 2

- Spatially decompose data and communication.
- Separate but related work decomposition.
- "Compute objects" facilitate iterative, measurement-based load balancing system.

Particle Mesh Ewald

- Particle Mesh Ewald (PME) calculation adds:
 - A global grid of modest size (e.g. 192x144x144).
 - Distributing charge from each atom to 4x4x4 sub-grid.
 - 3D FFT over the grid, hence O(N log N) performance.
- Strategy:
 - Use a smaller subset of processors for PME.
 - Overlap PME with cutoff computation.
 - Use same processors for both PME and cutoff.
 - Multiple time-step reduces scaling impact.

NAMD 2 w/PME Parallelization using Charm++

Avoiding Barriers

- In NAMD:
 - The energy reductions were made asynchronous.
 - No other global barriers are used in cut-off simulations.
- This came handy when:
 - Running on Pittsburgh Lemieux (3000 processors).
 - The machine (and how Converse uses the network) produced unpredictable, random communication delay.
 - A send call would remain stuck for 20 ms, for example.
 - Each timestep, ideally, was 12-14 ms.

Handling Network Delays

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

SC2002 Gordon Bell Award

Ankyrin on TeraGrid Phase 2

Performance on Local Linux Clusters

New Xeon clusters are only 12% faster for typical production runs, but much more compact, versatile, and manageable.

Older (2003):

- 24 Dual Athlon
 2133 MHz
- Desktop tower
- No hard drives
- Clustermatic 3 on RedHat 8.0
- Floppy boot
- \$1200 per node

Newer (2004):

- 24 Dual Xeon
 3.06 GHz
- Rackmount
- Fully loaded
- Clustermatic 4 on RedHat 9.0
- Network boot
- \$2000 per node

92K atoms w/ PME

ns per week (more is better)

Interactive Molecular Dynamics

steps per second (more is better)

New Xeon clusters give a 39% boost to IMD performance.

(HHS Secretary Thompson)

User

GlpF IMD Benchmark:

- 4210 atoms
- 3295 fixed atoms
- 10A cutoff, no PME
- Limited by network latency

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Platforms on the Horizon

- IBM Blue Gene/L (2005)
 - Currently scaling to 1000 (slow) CPUs, collaboration in place.
- UIUC Macintosh G5 cluster (2005)
 - Hardware sitting in boxes, waiting on machine room.
- PSC Cray Red Storm Opteron cluster (2005)
 - Should be fast, but new OS may have Charm thread problems.
- Graphics Cards with Programmable Shaders (2005)
 - Low cost, ubiquitous acceleration, but painful programming.
- ClearSpeed Accelerator Boards (2005)
 - Small memory SIMD, Gromacs port already underway.
- MDGRAPE-3 Accelerator Boards (2006?)
 - Even faster, if we can use the algorithms as implemented.

NAMD 3 Vision

- Make NAMD a widely used MD program
 - For large molecular systems,
 - Scaling from PCs, clusters, to large parallel machines
 - For interactive molecular dynamics
- Specific Goals for NAMD 3:
 - High performance: sub-ms timesteps
 - Ease of use: simple to configure, set-up, and run
 - Ease of modification (for developers and users)
 - Incorporation of features needed by scientists

Step One: Modern Charm++

- NAMD 2:
 - Groups explicitly control data and work objects.
 - Proxies make data available on nodes as required.
 - Explicit messages and entry points drive progress.
- NAMD 3 (and LeanMD already):
 - System-managed arrays distribute data and work.
 - Communication optimized by multicast and reduction.
 - Explicit control flow expressed in structured dagger.
- User-visible benefits:
 - Advanced checkpoint/restart and node-death tolerance.
 - Dynamically resize running jobs via faucets scheduler.

Step Two: Modular Design

- Modifications for a new force in NAMD 2:
 - SimParameters, Parameters, ComputeMgr, WorkDistrib
 - Possibly also ReductionMgr, Sequencer, LdbCoordinator, ...
- NAMD 3:
 - Write a single module to define all aspects of the force.
 - Multiple instances of the same force in one simulation.
- User-visible benefits:
 - Redesigned and legacy modules coexist in one code.
 - Customization and extension are more convenient.
 - Experiment with new methods and analysis in scripts.

Step Three: Orthogonal Layers

- NAMD 2:
 - All forces deal with periodic boundaries, pressure calculation, chemical free energy perturbation, interaction analysis, locally enhanced sampling, etc.
 - Specific forces specialize from parallel base classes.
- NAMD 3:
 - Isolate as much as possible into "physics layer."
 - Some forces, such as PME, require special methods.
 - Similarly isolate parallelization and integration.
- User-visible benefits:
 - Minimal knowledge required to implement new forces.

Step Four: Front End Separation

MDAPI with dynamic discovery of engine capabilities:

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Step Five: New Science

- Implicit solvent models (e.g, generalized Born)
- Replica exchange (e.g., 10 replicas on 16 processors)
- Hybrid quantum/classical mechanics
- Self-consistent polarizability
 - with a (sequential) CPU penalty of less than 100%.
- Fast nonperiodic (and periodic) electrostatics
 - using multiple grid methods.
- A Langevin integrator that permits larger time steps
 - by being exact for constant forces
- An integrator module that computes shadow energy.

NAMD: Scalable Molecular Dynamics

Interdisciplinary Software for the Simulation of Large Biomolecular Systems

NIH Resource for Biomolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/