
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Preparing for Extreme Heterogeneity
in High Performance Computing

Jeffrey S. Vetter
With many contributions from FTG Group and Colleagues

18th Annual Workshop on Charm++ and its Applications
October 20, 2020
University of Illinois at Urbana-Champaign (Virtual)

ORNL is managed by UT-Battelle
for the US Department of Energy http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/
mailto:vetter@computer.org

1616

Highlights

Recent trends in computing paint an
ambiguous future for architectures

• Contemporary systems provide
evidence that power constraints are
driving architectures to change
rapidly

• Multiple architectural dimensions are
being (dramatically) redesigned:
Processors, node design, memory
systems, I/O

• Entering an era of Extreme
Heterogeneity

• Complexity is our main challenge

Applications and software systems are
all reaching a state of crisis

• Applications will not be functionally
or performance portable across
architectures

• Programming and operating systems
need major redesign to address
these architectural changes

• Procurements, acceptance testing,
and operations of today’s new
platforms depend on performance
prediction and benchmarking.

• This is a crisis!

Programming systems must provide
performance portability (beyond

functional portability)!!

• Strive for ‘Write once, run anywhere’
• Descriptive models of parallelism and

data movement
• Introspective runtime systems
• Layered, modular, open source

approaches required

• Examples
• ECP investments in LLVM

• FORTRAN with GPU offloading
• Programming FPGAs

• Without Verilog
• Memory systems are changing too

• Language support for NVM

2929

Time for a short poll…

3030

History (circa 2010)

Q: Think back 10 years. How
many of you would have predicted

that many of our top HPC
systems would be heterogeneous

(GPU-based) architectures?

Yes

No

Revisionists

3131

Future (circa 2030)

Q: Think forward 10 years. How many
of you predict that our top 100 HPC

systems will have the following
architectural features?

Assume general purpose multicore
CPU

GPU

FPGA/Reconfigurable processor

Neuromorphic processor

Deep learning processor

Quantum processor

RISC-V processor

Some new unknown processor

All/some of the above in one SoC

3232

Implications for Science Applications Teams

Q: Now, imagine you are building a new
application with an expected ~3M LOC and
20 team members over the next 10 years.
What on-node programming model/system

do you use to future-proof your app?

Assume C and C++ (?)

Fortran XX

Metaprogramming, DSEL, etc (e.g., AMP, Kokkos, RAJA, SYCL)

CUDA, cu***, HIP, OpenCL

Directives: OpenMP, OpenACC

Python, Julia, Rust, R, Matlab, etc

Domain Specific Language (e.g., Claw, Hallide, PySL) or Domain Specific
Framework (e.g., PetSc, AMReX)

Legion, Charm++, HPX, etc

Some new unknown programming approach

Some combination of the above

3838

Motivating Trends

41

4242

https://www.top500.org/news/in-intels-arduous-journey-to-10-nm
short/

Business climate reflects this uncertainty, cost, complexity, consolidation

https://www.top500.org/news/in-intels-arduous-journey-to-10-nm-moores-law-comes-up-short/

43

Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition
Period

6th wave

4444

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

4545

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

4646

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

4747

Quantum computing: Qubit design and fabrication
have made recent progress but still face challenges

Science 354, 1091 (2016) – 2 December

http://nap.edu/25196

http://nap.edu/25196

51

Fun Question: when was the field effect transistor patented?

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-
transistor--October-8--1926

Moral of this story
It may take decades for a new

technology to be manufacturable,
economical, and usable, if ever.

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-transistor--October-8--1926

5252

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

61

Various Markets already Experiencing these Architectural Trends

65

DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

Sierra

FY 2023FY 2022

Exascale
Systems

Version 1.6
September 30, 2020

de
co

m
m

is
si

on
ed

Aurora

80

Future -> Open Source Hardware Enables a Rapid Design of
Specialized Chips and Effectively Mass Customization

A. Olofsson, 2018

87

Take away message
During this Sixth Wave transition, Complexity is our major challenge!

Architecture

• How do we design future systems so that
they are better than current systems on
important applications?

• Simulation and modeling are more difficult
• Entirely possible that the new system will be

slower than the old system!
• Expect ‘disaster’ procurements

Programmabili
ty

• How do we design applications with some
level of performance portability?

• Software lasts much longer than transient
hardware platforms

• Proper abstractions for flexibility and
efficiency

• Adapt or die

Final Report on Workshop on Extreme Heterogeneity : https://doi.org/10.2172/1473756
NITRD Software in the Era of Extreme Heterogeneity (Sep 2020) https://www.nitrd.gov/nitrdgroups/index.php?title=Software-Extreme-Heterogeneity

https://doi.org/10.2172/1473756
https://www.nitrd.gov/nitrdgroups/index.php?title=Software-Extreme-Heterogeneity

93

Implication for Applications and Software Explosion of
(incomplete) Programming Systems
Programming Models
• OpenMP
• OpenMP Offload
• OpenACC
• SYCL
• DPC++
• HIP
• CUDA
• OpenCL
• Kokkos
• Raja
• Many others…

Implementations (SYCL Example)

Inconsistent: feature support, performance, tools ecosystem

Software Strategies for
Extreme Heterogeneity

9595

Strategies for Programming Systems in this Era of Rapidly
Designed, Diverse Architectures

Goals
• Strive for ‘Write one, run anywhere’

• Descriptive models of parallelism and data
movement that enable effective code generation

• Introspective runtime systems

• Layered, modular, open source approaches
required
– One organization can’t do it all

Examples
• Contributing to LLVM

– FORTRAN with GPU offloading

• Programming FPGAs
– Without Verilog

• Memory systems are changing too
– Language support for NVM

96

Contributing to LLVM

99

The three technical areas in ECP have the necessary components
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale

Foster application
development

Ease
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP
products on targeted systems at
leading DOE computing facilities

Produce expanded and vertically
integrated software stack to achieve
full potential of exascale computing

Develop and enhance the predictive
capability of applications critical to

the DOE

25 applications ranging from
national security, to energy, earth

systems, economic security,
materials, and data

80+ unique software
products spanning

programming models
and run times, math
libraries, data and

visualization

6 vendors supported
by PathForward

focused on memory,
node, connectivity

advancements;
deployment to facilities

159

ECP is Improving the LLVM Compiler Ecosystem

LLVM

• Very popular
open source
compiler
infrastructure

• Easily extensible
• Widely used and

contributed to in
industry

• Permissive license
• Used for

heterogeneous
computing

+SOLLVE

• Enhancing the
implementation
of OpenMP in
LLVM

• Unified memory
• OMP

Optimizations
• Prototype OMP

features for LLVM
• OMP test suite
• Tracking OMP

implementation
quality

+PROTEAS-
TUNE

• Core optimization
improvements to
LLVM

• OpenACC
capability for
LLVM
• Clacc
• Flacc

• Autotuning for
OpenACC and
OpenMP in LLVM

• Integration with
Tau performance
tools

+FLANG

• Developing an
open-source,
production
Fortran frontend

• Upstream to
LLVM public
release

• Support for
OpenMP and
OpenACC

• Recently
approved by
LLVM

+HPCToolkit

• Improvements to
OpenMP profiling
interface OMPT

• OMPT
specification
improvements

• Refine HPCT for
OMPT
improvements

+ATDM

• Enhancing LLVM
to optimize
template
expansion for
FlexCSI, Kokkos,
RAJA, etc.

• Flang testing and
evaluation

Vendors

• Increasing
dependence on
LLVM

• Collaborations
with many
vendors using
LLVM
• AMD
• ARM
• Cray
• HPE
• IBM
• Intel
• NVIDIA

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM
https://github.com/llvm-doe-org/llvm-project

https://github.com/llvm-doe-org/llvm-project

160

Leveraging LLVM Ecosystem
to Meet a Critical ECP (community) need : FORTRAN

• Fortran support continues to be an
ongoing requirement

• Flang project started in NNSA funding
NVIDIA/PGI to open source compiler front-
end into LLVM ecosystem

• SOLLVE is improving OpenMP dialect,
implementation, and core optimizations

• PROTEAS-TUNE is creating OpenACC
dialect and improving MLIR

• ECP projects are contributing many
changes upstream to LLVM core, MLIR, etc

• Many others are contributing: backends for
processors, optimizations in toolchain, …

– Google contributed MLIR

ECP Projects: Flang, SOLLVE, PROTEAS-TUNE
Many other contributors: NNSA, NVIDIA, ARM, Google, …

161

PROTEAS-TUNE: Clacc – OpenACC in Clang/LLVM

• Develop production-quality, standard-conforming
traditional OpenACC compiler and runtime support by
extending Clang and LLVM

– Build on existing OpenMP infrastructure

• Enable research and development of source-level
OpenACC tools

– Design compiler to leverage Clang/LLVM ecosystem
extensibility

– E.g., Pretty printers, analyzers, lint tools, and debugger and
editor extensions

• Actively contribute improvements to the OpenACC
specification

• Actively contribute upstream all Clang and LLVM
improvements that are mutually beneficial

– Many contributions are already in LLVM

• Open-source with multiple collaborators (vendors,
universities)

Clacc: Translating OpenACC to OpenMP in Clang, Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter, 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC), Dallas, TX, USA, (2018).

2.3.2.10 PROTEAS-TUNE

POC Joel Denny, ORNL

164164

Programming FPGAs with OpenACC

169169

Challenges in FPGA Computing

• Programmability and Portability Issues
– Best performance for FPGAs requires writing

Hardware Description Languages (HDLs) such
as VHDL and Verilog; too complex and low-
level
• HDL requires substantial knowledge on

hardware (digital circuits).
• Programmers must think in terms of a state

machine.
• HDL programming is a kind of digital circuit

design.

– High-Level Synthesis (HLS) to provide better
FPGA programmability
• SRC platforms, Handel-C, Impulse C-to-FPGA

compiler, Xilinx Vivado (AutoPilot), FCUDA, etc.
• None of these use a portable, open standard.

170170

Standard, Portable Programming Models for Heterogeneous Computing

• OpenCL
– Open standard portable across diverse heterogeneous platforms (e.g.,

CPUs, GPUs, DSPs, Xeon Phis, FPGAs, etc.)
– Much higher than HDL, but still complex for typical programmers.

• Directive-based accelerator programming models
– OpenACC, OpenMP4, etc.
– Provide higher abstraction than OpenCL.
– Most of existing OpenACC/OpenMP4 compilers target only specific

architectures; none supports FPGAs.

172172

Directive-based Strategy with OpenARC: Open Accelerator
Research Compiler

• Open-Sourced, High-Level Intermediate
Representation (HIR)-Based, Extensible
Compiler Framework.

– Perform source-to-source translation from
OpenACC C to target accelerator models.
• Support full features of OpenACC V1.0 (+ array

reductions and function calls)
• Support both CUDA and OpenCL as target accelerator

models

– Provide common runtime APIs for various back-
ends

– Can be used as a research framework for various
study on directive-based accelerator computing.
• Built on top of Cetus compiler framework, equipped with

various advanced analysis/transformation passes and
built-in tuning tools.

• OpenARC’s IR provides an AST-like syntactic view of the
source program, easy to understand, access, and
transform the input program.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,”
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014

175175

FPGAs|Approach

• Design and implement an OpenACC-to-FPGA translation
framework, which is the first work to use a standard and portable
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma
extensions to improve performance.

• Evaluate the functional and performance portability of the
framework across diverse architectures (Altera FPGA, NVIDIA
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.

177177

Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler
(AOC) as its backend compiler.

• Translates the input OpenACC program into a host code
containing HeteroIR constructs and device-specific kernel codes.
– Use the same HeteroIR runtime system of the existing OpenCL backends,

except for the device initialization.
– Reuse most of compiler passes for kernel generation.

179

FPGA OpenCL Architecture

FPGA

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory
Controller and PHY

External Memory
Controller and PHY

Host Processor

External DDR Memory External DDR Memory

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Pipeline
Depth

Vector
Width

Number of Replicated Compute Units

182182

Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with

each other only through the device
global memory.

– Synchronizations between kernels are
at the granularity of a kernel
execution.

• Altera OpenCL channels
– Allows passing data between kernels

and synchronizing kernels with high
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through
global memory in OpenACC

Kernel communications with
Altera channels

183

Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;
__kernel void kernel1(__global float* a) {

int i = get_global_id(0);
write_channel_altera(pipe_b, a[i]*a[i]);

}
__kernel void kernel2(__global float* c) {

int i = get_global_id(0);
c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

184

Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)
{

#pragma acc kernels loop gang worker pipeout (b) present (a)
For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker pipein (b) present (c)
For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining
transformation

Valid under
specific conditions

185

201

Overall Performance of OpenARC FPGA Evaluation

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.
For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

Emerging Memory Systems

214

Memory Hierarchy is Specializing too

Image Source: IMEC

216

NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

226226

Language support for NVM:
NVL-C - extending C to support NVM

228

Design Goals: Familiar programming interface

#include <nvl.h>
struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node
= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next = after->next;

after->next = node;

}

• Small set of C language extensions:
– Header file
– Type qualifiers
– Library API
– Pragmas

• Existing memory interfaces remain:
– NVL-C is a superset of C
– Unqualified types as specified by C
– Local/global variables stored in volatile

memory (DRAM or registers)
– Use existing C standard libraries for HDD

229

Design Goals: Avoiding persistent data corruption

• New categories of pointer bugs:
– Caused by multiple memory types:

• E.g., pointer from NVM to volatile memory will
become dangling pointer

– Prevented at compile time or run time

• Automatic reference counting:
– No need to manually free
– Avoids leaks and dangling pointers

• Transactions:
– Avoids persistent data corruption across

software and hardware failures

• High performance:
– Performance penalty from memory

management, pointer safety, and
transactions

– Compiler-based optimizations
– Programmer-specified hints

230

Design Goals: Modular implementation

• Core is common compiler middle-end

• Multiple complier front ends for multiple
high-level languages:
– For now, just OpenARC for NVL-C

• Multiple runtime implementations:
– For now, just Intel’s pmem (pmemobj)

231231

NVL-C: Programming Model
• Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM

• Pointer safety:
– Persistence creates new categories of pointer bugs
– Best to enforce pointer safety constraints at

compile time rather than run time

• Transactions:
– Prevent corruption of persistent memory in case of

application or system failure

• Language extensions enable:
– Compile-time safety constraints
– NVM-related compiler analyses and optimizations

• LLVM-based:
– Core of compiler can be reused for other front

ends and languages
– Can take advantage of LLVM ecosystem

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {
nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {
if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

Denny, J.E., Lee, S., and Vetter, J.S.: ‘NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems’. Proc.
Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing, Kyoto, Japan2016 pp. Pages

235

Programming Model: NVM Pointers

#include <nvl.h>
struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next = after->next;

after->next = node;

}

• nvl type qualifier:
– Indicates NVM storage
– On target type, declares NVM pointer
– No NVM-stored local or global variable

• Stricter type safety for NVM pointers:
– Does not affect other C types
– Avoids persistent data corruption
– Facilitates compiler analysis
– Needed for automatic reference counting
– E.g., pointer conversions involving NVM

pointers are strictly prohibited

struct list *node
= malloc(sizeof(struct list));

compile-time error
explicit cast won’t help

236236

Programming Model: Bare NVM Pointers

• NVM pointers are wide:
– Facilitates: automatic reference counting, pointer constraints, transactions
– NVM pointers must be decoded for target architecture’s load/store
– Bare NVM pointer = virtual address with all NVL-C metadata stripped away

• NVM pointer hoisting is important for performance:
– Conversion to bare NVM pointer is many instructions longer than load/store
– In tight loop, the performance penalty is severe
– If conversion is loop-invariant, it can be hoisted
– Currently, we implement per application with an informal NVL-C extension
– Future work: eliminate extension and automate in compiler

238238

Programming Model: Accessing NVM

NVM Heap A
("A.nvl")

Volatile Memory
(registers, stack, bss, heap)

nvl T *root =
nvl_get_root(heap, T);

nvl_heap_t

How do we access allocations
within an NVM heap?

nvl_heap_t *heap =
nvl_open("A.nvl");

heap

root

Checksum error if T is
incorrect type.

Set root with nvl_set_root.

Before first nvl_set_root,
nvl_get_root returns null.

243243

Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss, heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when
memory segments close

244244

Programming Model: Transactions: Purpose

• Ensures data consistency
• Handles unexpected application termination:

– Hardware failure (e.g., power loss)
– Application or OS failure (e.g., segmentation fault)
– NVL-C safety constraint violation (e.g., inter-heap NV-to-NV pointer)

• Does not handle concurrent access to NVM:
– Future work
– Concurrency is still possible
– Programmer must safeguard NVM data from concurrent access

249

Programming Model: Transactions: Undo logs

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {

#pragma nvl atomic heap(heap)
{

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];

a[*i][j] = sum;
}
++*i;

}
}

}

• Before every NVM store, transaction
creates undo log to back up old data

• Undo log contains metadata plus old
data being overwritten

• Problem: large overhead because an
undo log is created for every element of
a (every iteration of j loop)

251

Programming Model: Transactions: clobber clause

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {
#pragma nvl atomic heap(heap) \

clobber(a[*i:1])
{
for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];
a[*i][j] = sum;

}
++*i;

}
}

}

• clobber clause suppresses undo logs

• Durability after transaction commit is
still guaranteed

257

Evaluation: LULESH

211

59626

1343 1343 902 677 677

1

10

100

1000

10000

100000

ExM T1 T2 T3 T1 T2 T3

ND BlockNVM ByteNVM

Hoisting

N
or

m
al

iz
ed

 T
im

e
(%

)

• ExM = use SSD as extended DRAM

• T1 = BSR + transactions

• T2 = T1 + backup clauses

• T3 = T1 + clobber clauses

• BlockNVM = msync included

• ByteNVM = msync suppressed

• backup is important for performance
• clobber cannot be applied because old data is needed

better

worse

258258

NVL-C Summary

• Motivated a new programming model for NVM as persistent
memory

• Introduced NVL-C, a new programming system for this purpose
– First class language construct
– Transactions

• Described several performance optimizations for NVL-C
• Showed performance results for these optimizations on an SSD
• Working on Optane DIMMs now

262262

Recap

• Visit us
– We host interns and other

visitors year round
• Faculty, grad, undergrad,

high school, industry

• Jobs at ORNL
– Postdoctoral Research

Associate in Computer
Science

– Software Engineer
– Computer Scientist
– Visit https://jobs.ornl.gov

• Contact me
vetter@ornl.gov

https://jobs.ornl.gov/
mailto:vetter@ornl.gov

263263

Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756

	Preparing for Extreme Heterogeneity in High Performance Computing
	Highlights
	Time for a short poll…
	History (circa 2010)
	Future (circa 2030)
	Implications for Science Applications Teams
	Motivating Trends
	Slide Number 41
	Business climate reflects this uncertainty, cost, complexity, consolidation
	Sixth Wave of Computing
	Predictions for Transition Period
	Predictions for Transition Period
	Predictions for Transition Period
	Quantum computing: Qubit design and fabrication have made recent progress but still face challenges
	Fun Question: when was the field effect transistor patented?
	Predictions for Transition Period
	Various Markets already Experiencing these Architectural Trends
	DOE HPC Roadmap to Exascale Systems
	Future -> Open Source Hardware Enables a Rapid Design of Specialized Chips and Effectively Mass Customization
	Take away message �During this Sixth Wave transition, Complexity is our major challenge!
	Implication for Applications and Software Explosion of (incomplete) Programming Systems
	Software Strategies for Extreme Heterogeneity
	Strategies for Programming Systems in this Era of Rapidly Designed, Diverse Architectures
	Contributing to LLVM
	The three technical areas in ECP have the necessary components to meet national goals
	ECP is Improving the LLVM Compiler Ecosystem
	Leveraging LLVM Ecosystem �to Meet a Critical ECP (community) need : FORTRAN
	PROTEAS-TUNE: Clacc – OpenACC in Clang/LLVM
	Programming FPGAs with OpenACC
	Challenges in FPGA Computing
	Standard, Portable Programming Models for Heterogeneous Computing
	Directive-based Strategy with OpenARC: Open Accelerator Research Compiler
	FPGAs|Approach
	Baseline Translation of OpenACC-to-FPGA
	FPGA OpenCL Architecture
	Kernel-Pipelining Transformation Optimization
	Kernel-Pipelining Transformation Optimization (2)
	Kernel-Pipelining Transformation Optimization (3)
	Slide Number 185
	Overall Performance of OpenARC FPGA Evaluation
	Emerging Memory Systems
	Memory Hierarchy is Specializing too
	NVRAM Technology Continues to Improve – Driven by Broad Market Forces
	Language support for NVM:�NVL-C - extending C to support NVM
	Design Goals: Familiar programming interface
	Design Goals: Avoiding persistent data corruption
	Design Goals: Modular implementation
	NVL-C: Programming Model
	Programming Model: NVM Pointers
	Programming Model: Bare NVM Pointers
	Programming Model: Accessing NVM
	Programming Model: Pointer types (like Coburn et al.)
	Programming Model: Transactions: Purpose
	Programming Model: Transactions: Undo logs
	Programming Model: Transactions: clobber clause
	Evaluation: LULESH
	NVL-C Summary
	Recap
	Final Report on Workshop on Extreme Heterogeneity
	Introspective Runtime Systems
	IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming Models
	The IRIS Architecture
	Supported Architectures and Programming Systems by IRIS
	IRIS Booting on Various Platforms
	SAXPY Example on Xavier
	SAXPY: Python host code & CUDA kernel code

