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Highlights

Recent trends in computing paint an 
ambiguous future for architectures

• Contemporary systems provide 
evidence that power constraints are 
driving architectures to change 
rapidly

• Multiple architectural dimensions are 
being (dramatically) redesigned: 
Processors, node design, memory 
systems, I/O

• Entering an era of Extreme 
Heterogeneity

• Complexity is our main challenge

Applications and software systems are 
all reaching a state of crisis

• Applications will not be functionally 
or performance portable across 
architectures

• Programming and operating systems 
need major redesign to address 
these architectural changes

• Procurements, acceptance testing, 
and operations of today’s new 
platforms depend on performance 
prediction and benchmarking.

• This is a crisis!

Programming systems must provide 
performance portability (beyond 

functional portability)!!

• Strive for ‘Write once, run anywhere’
• Descriptive models of parallelism and 

data movement
• Introspective runtime systems
• Layered, modular, open source 

approaches required 

• Examples
• ECP investments in LLVM

• FORTRAN with GPU offloading
• Programming FPGAs

• Without Verilog
• Memory systems are changing too

• Language support for NVM
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Time for a short poll…
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History (circa 2010)

Q: Think back 10 years. How 
many of you would have predicted 

that many of our top HPC 
systems would be heterogeneous 

(GPU-based) architectures?

Yes

No

Revisionists 
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Future (circa 2030)

Q: Think forward 10 years. How many 
of you predict that our top 100 HPC 

systems will have the following 
architectural features?

Assume general purpose multicore 
CPU

GPU

FPGA/Reconfigurable processor

Neuromorphic processor

Deep learning processor

Quantum processor

RISC-V processor

Some new unknown processor

All/some of the above in one SoC
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Implications for Science Applications Teams

Q: Now, imagine you are building a new 
application with an expected ~3M LOC and 
20 team members over the next 10 years. 
What on-node programming model/system 

do you use to future-proof your app? 

Assume C and C++ (?)

Fortran XX

Metaprogramming, DSEL, etc (e.g., AMP, Kokkos, RAJA, SYCL)

CUDA, cu***, HIP, OpenCL

Directives: OpenMP, OpenACC

Python, Julia, Rust, R, Matlab, etc

Domain Specific Language (e.g., Claw, Hallide, PySL)  or Domain Specific 
Framework (e.g., PetSc, AMReX)

Legion, Charm++, HPX, etc

Some new unknown programming approach

Some combination of the above
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Motivating Trends
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https://www.top500.org/news/in-intels-arduous-journey-to-10-nm
short/

Business climate reflects this uncertainty, cost, complexity, consolidation

https://www.top500.org/news/in-intels-arduous-journey-to-10-nm-moores-law-comes-up-short/
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Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition 
Period

6th wave
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Predictions for Transition Period

Optimize Software and 
Expose New Hierarchical 

Parallelism

• Redesign software to 
boost performance on 
upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
effectively for specific 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

• Workload specific 
memory+storage
system design

Emerging Technologies

• Investigate new 
computational 
paradigms
• Quantum 
• Neuromorphic
• Advanced Digital
• Emerging Memory 

Devices
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Quantum computing: Qubit design and fabrication 
have made recent progress but still face challenges

Science 354, 1091 (2016) – 2 December

http://nap.edu/25196

http://nap.edu/25196
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Fun Question: when was the field effect transistor patented?

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-
transistor--October-8--1926

Moral of this story
It may take decades for a new 

technology to be manufacturable, 
economical, and usable, if ever.

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-transistor--October-8--1926
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Various Markets already Experiencing these Architectural Trends
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DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA
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Future -> Open Source Hardware Enables a Rapid Design of 
Specialized Chips and Effectively Mass Customization

A. Olofsson, 2018
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Take away message 
During this Sixth Wave transition, Complexity is our major challenge!

Architecture

• How do we design future systems so that 
they are better than current systems on 
important applications?

• Simulation and modeling are more difficult
• Entirely possible that the new system will be 

slower than the old system!
• Expect ‘disaster’ procurements

Programmabili
ty

• How do we design applications with some 
level of performance portability?

• Software lasts much longer than transient 
hardware platforms

• Proper abstractions for flexibility and 
efficiency

• Adapt or die

Final Report on Workshop on Extreme Heterogeneity : https://doi.org/10.2172/1473756
NITRD Software in the Era of Extreme Heterogeneity (Sep 2020) https://www.nitrd.gov/nitrdgroups/index.php?title=Software-Extreme-Heterogeneity

https://doi.org/10.2172/1473756
https://www.nitrd.gov/nitrdgroups/index.php?title=Software-Extreme-Heterogeneity
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Implication for Applications and Software  Explosion of 
(incomplete) Programming Systems 
Programming Models
• OpenMP
• OpenMP Offload
• OpenACC
• SYCL
• DPC++
• HIP
• CUDA
• OpenCL
• Kokkos
• Raja
• Many others…

Implementations (SYCL Example)

Inconsistent: feature support, performance, tools ecosystem



Software Strategies for 
Extreme Heterogeneity
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Strategies for Programming Systems in this Era of Rapidly 
Designed, Diverse Architectures

Goals
• Strive for ‘Write one, run anywhere’

• Descriptive models of parallelism and data 
movement that enable effective code generation

• Introspective runtime systems

• Layered, modular, open source approaches 
required 
– One organization can’t do it all

Examples
• Contributing to LLVM

– FORTRAN with GPU offloading

• Programming FPGAs
– Without Verilog

• Memory systems are changing too
– Language support for NVM
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Contributing to LLVM
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The three technical areas in ECP have the necessary components 
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware 
and Integration (HI)

Performant mission and science applications @ scale

Foster application 
development

Ease 
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP 
products on targeted systems at 
leading DOE computing facilities

Produce expanded and vertically 
integrated software stack to achieve 
full potential of exascale computing

Develop and enhance the predictive 
capability of applications critical to 

the DOE

25 applications ranging from 
national security, to energy, earth 

systems, economic security, 
materials, and data

80+ unique software 
products spanning 

programming models 
and run times, math 
libraries, data and 

visualization

6 vendors supported 
by PathForward

focused on memory, 
node, connectivity 

advancements; 
deployment to facilities
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ECP is Improving the LLVM Compiler Ecosystem

LLVM

• Very popular 
open source 
compiler 
infrastructure

• Easily extensible
• Widely used and 

contributed to in 
industry

• Permissive license
• Used for 

heterogeneous 
computing

+SOLLVE

• Enhancing the 
implementation 
of OpenMP in 
LLVM

• Unified memory
• OMP 

Optimizations
• Prototype OMP 

features for LLVM
• OMP test suite
• Tracking OMP 

implementation 
quality

+PROTEAS-
TUNE

• Core optimization 
improvements to 
LLVM

• OpenACC
capability for 
LLVM
• Clacc
• Flacc

• Autotuning for 
OpenACC and 
OpenMP in LLVM

• Integration with 
Tau performance 
tools

+FLANG

• Developing an 
open-source, 
production 
Fortran frontend 

• Upstream to 
LLVM public 
release

• Support for 
OpenMP and 
OpenACC

• Recently 
approved by 
LLVM

+HPCToolkit

• Improvements to 
OpenMP profiling 
interface OMPT

• OMPT 
specification 
improvements

• Refine HPCT for 
OMPT 
improvements

+ATDM

• Enhancing LLVM 
to optimize 
template 
expansion for 
FlexCSI, Kokkos, 
RAJA, etc.

• Flang testing and 
evaluation

Vendors

• Increasing 
dependence on 
LLVM

• Collaborations 
with many 
vendors using 
LLVM
• AMD
• ARM
• Cray
• HPE
• IBM
• Intel
• NVIDIA

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM
https://github.com/llvm-doe-org/llvm-project

https://github.com/llvm-doe-org/llvm-project
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Leveraging LLVM Ecosystem 
to Meet a Critical ECP (community) need : FORTRAN

• Fortran support continues to be an 
ongoing requirement

• Flang project started in NNSA funding 
NVIDIA/PGI to open source compiler front-
end into LLVM ecosystem

• SOLLVE is improving OpenMP dialect, 
implementation, and core optimizations

• PROTEAS-TUNE is creating OpenACC
dialect and improving MLIR

• ECP projects are contributing many 
changes upstream to LLVM core, MLIR, etc

• Many others are contributing: backends for 
processors, optimizations in toolchain, …

– Google contributed MLIR

ECP Projects: Flang, SOLLVE, PROTEAS-TUNE
Many other contributors: NNSA, NVIDIA, ARM, Google, …
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PROTEAS-TUNE: Clacc – OpenACC in Clang/LLVM

• Develop production-quality, standard-conforming 
traditional OpenACC compiler and runtime support by 
extending Clang and LLVM

– Build on existing OpenMP infrastructure

• Enable research and development of source-level 
OpenACC tools

– Design compiler to leverage Clang/LLVM ecosystem 
extensibility

– E.g., Pretty printers, analyzers, lint tools, and debugger and 
editor extensions

• Actively contribute improvements to the OpenACC
specification

• Actively contribute upstream all Clang and LLVM 
improvements that are mutually beneficial

– Many contributions are already in LLVM

• Open-source with multiple collaborators (vendors, 
universities)

Clacc: Translating OpenACC to OpenMP in Clang, Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter, 2018 IEEE/ACM 5th Workshop on the LLVM 
Compiler Infrastructure in HPC (LLVM-HPC), Dallas, TX, USA, (2018).

2.3.2.10 PROTEAS-TUNE

POC Joel Denny, ORNL
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Programming FPGAs with OpenACC
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Challenges in FPGA Computing

• Programmability and Portability Issues
– Best performance for FPGAs requires writing 

Hardware Description Languages (HDLs) such 
as VHDL and Verilog; too complex and low-
level
• HDL requires substantial knowledge on 

hardware (digital circuits).
• Programmers must think in terms of a state 

machine.
• HDL programming is a kind of digital circuit 

design.

– High-Level Synthesis (HLS) to provide better 
FPGA programmability
• SRC platforms, Handel-C, Impulse C-to-FPGA 

compiler, Xilinx Vivado (AutoPilot), FCUDA, etc.
• None of these use a portable, open standard.
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Standard, Portable Programming Models for Heterogeneous Computing

• OpenCL
– Open standard portable across diverse heterogeneous platforms (e.g., 

CPUs, GPUs, DSPs, Xeon Phis, FPGAs, etc.)
– Much higher than HDL, but still complex for typical programmers.

• Directive-based accelerator programming models
– OpenACC, OpenMP4, etc.
– Provide higher abstraction than OpenCL.
– Most of existing OpenACC/OpenMP4 compilers target only specific 

architectures; none supports FPGAs.
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Directive-based Strategy with OpenARC: Open Accelerator 
Research Compiler

• Open-Sourced, High-Level Intermediate 
Representation (HIR)-Based, Extensible 
Compiler Framework.

– Perform source-to-source translation from 
OpenACC C to target accelerator models.
• Support full features of OpenACC V1.0 ( + array 

reductions and function calls)
• Support both CUDA and OpenCL as target accelerator 

models

– Provide common runtime APIs for various back-
ends 

– Can be used as a research framework for various 
study on directive-based accelerator computing. 
• Built on top of Cetus compiler framework, equipped with 

various advanced analysis/transformation passes and 
built-in tuning tools.

• OpenARC’s IR provides an AST-like syntactic view of the 
source program, easy to understand, access, and 
transform the input program.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,” 
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014
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FPGAs|Approach

• Design and implement an OpenACC-to-FPGA translation 
framework, which is the first work to use a standard and portable 
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma 
extensions to improve performance.

• Evaluate the functional and performance portability of the 
framework across diverse architectures (Altera FPGA, NVIDIA 
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 
International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.
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Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler 
(AOC) as its backend compiler.

• Translates the input OpenACC program into a host code 
containing HeteroIR constructs and device-specific kernel codes.
– Use the same HeteroIR runtime system of the existing OpenCL backends, 

except for the device initialization.
– Reuse most of compiler passes for kernel generation.



179

FPGA OpenCL Architecture

FPGA

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory 
Controller and PHY

External Memory 
Controller and PHY

Host Processor

External DDR Memory External DDR Memory

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Pipeline 
Depth

Vector 
Width

Number of Replicated Compute Units
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Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with 

each other only through the device 
global memory.

– Synchronizations between kernels are 
at the granularity of a kernel 
execution.

• Altera OpenCL channels
– Allows passing data between kernels 

and synchronizing kernels with high 
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through 
global memory in OpenACC

Kernel communications with 
Altera channels
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Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;
__kernel void kernel1(__global float* a) {

int i = get_global_id(0);
write_channel_altera(pipe_b, a[i]*a[i]);

}
__kernel void kernel2(__global float* c) {

int i = get_global_id(0);
c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel
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Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)
{

#pragma acc kernels loop gang worker pipeout (b) present (a)
For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker pipein (b) present (c)
For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining 
transformation

Valid under 
specific conditions
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Overall Performance of OpenARC FPGA Evaluation

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and 
FFT-2D), performing much higher than other accelerators.
For traditional HPC applications with abundant parallel floating-point operations, 
it seems to be difficult for FPGAs to beat the performance of other accelerators, 
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point 
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators, 
while remaining power-efficient.



Emerging Memory Systems
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Memory Hierarchy is Specializing too

Image Source: IMEC
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NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Language support for NVM:
NVL-C - extending C to support NVM
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Design Goals: Familiar programming interface

#include <nvl.h>
struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node
= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next  = after->next;

after->next = node;

}

• Small set of C language extensions:
– Header file
– Type qualifiers
– Library API
– Pragmas

• Existing memory interfaces remain:
– NVL-C is a superset of C
– Unqualified types as specified by C
– Local/global variables stored in volatile 

memory (DRAM or registers)
– Use existing C standard libraries for HDD
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Design Goals: Avoiding persistent data corruption

• New categories of pointer bugs:
– Caused by multiple memory types:

• E.g., pointer from NVM to volatile memory will 
become dangling pointer

– Prevented at compile time or run time

• Automatic reference counting:
– No need to manually free
– Avoids leaks and dangling pointers

• Transactions:
– Avoids persistent data corruption across 

software and hardware failures

• High performance:
– Performance penalty from memory 

management, pointer safety, and 
transactions 

– Compiler-based optimizations
– Programmer-specified hints
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Design Goals: Modular implementation

• Core is common compiler middle-end

• Multiple complier front ends for multiple 
high-level languages:
– For now, just OpenARC for NVL-C

• Multiple runtime implementations:
– For now, just Intel’s pmem (pmemobj)
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NVL-C: Programming Model
• Minimal, familiar, programming interface:

– Minimal C language extensions.
– App can still use DRAM

• Pointer safety:
– Persistence creates new categories of pointer bugs
– Best to enforce pointer safety constraints at 

compile time rather than run time

• Transactions:
– Prevent corruption of persistent memory in case of 

application or system failure

• Language extensions enable:
– Compile-time safety constraints
– NVM-related compiler analyses and optimizations

• LLVM-based:
– Core of compiler can be reused for other front 

ends and languages
– Can take advantage of LLVM ecosystem

#include <nvl.h>
struct list {
int value;
nvl struct list *next;

};
void remove(int k) {
nvl_heap_t *heap
= nvl_open("foo.nvl");

nvl struct list *a
= nvl_get_root(heap, struct list);

#pragma nvl atomic
while (a->next != NULL) {
if (a->next->value == k)
a->next = a->next->next;

else
a = a->next;

}
nvl_close(heap);

}

Denny, J.E., Lee, S., and Vetter, J.S.: ‘NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems’. Proc. 
Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing, Kyoto, Japan2016 pp. Pages
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Programming Model: NVM Pointers

#include <nvl.h>
struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next  = after->next;

after->next = node;

}

• nvl type qualifier:
– Indicates NVM storage
– On target type, declares NVM pointer
– No NVM-stored local or global variable

• Stricter type safety for NVM pointers:
– Does not affect other C types
– Avoids persistent data corruption
– Facilitates compiler analysis
– Needed for automatic reference counting
– E.g., pointer conversions involving NVM 

pointers are strictly prohibited

struct list *node
= malloc(sizeof(struct list));

compile-time error
explicit cast won’t help
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Programming Model: Bare NVM Pointers

• NVM pointers are wide:
– Facilitates: automatic reference counting, pointer constraints, transactions
– NVM pointers must be decoded for target architecture’s load/store
– Bare NVM pointer = virtual address with all NVL-C metadata stripped away

• NVM pointer hoisting is important for performance:
– Conversion to bare NVM pointer is many instructions longer than load/store
– In tight loop, the performance penalty is severe
– If conversion is loop-invariant, it can be hoisted
– Currently, we implement per application with an informal NVL-C extension
– Future work: eliminate extension and automate in compiler
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Programming Model: Accessing NVM

NVM Heap A
("A.nvl")

Volatile Memory
(registers, stack, bss, heap)

nvl T *root =
nvl_get_root(heap, T);

nvl_heap_t

How do we access allocations 
within an NVM heap?

nvl_heap_t *heap =
nvl_open("A.nvl");

heap

root

Checksum error if T is 
incorrect type.

Set root with nvl_set_root.

Before first nvl_set_root, 
nvl_get_root returns null.
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Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss, heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when 
memory segments close



244244

Programming Model: Transactions: Purpose

• Ensures data consistency
• Handles unexpected application termination:

– Hardware failure (e.g., power loss)
– Application or OS failure (e.g., segmentation fault)
– NVL-C safety constraint violation (e.g., inter-heap NV-to-NV pointer)

• Does not handle concurrent access to NVM:
– Future work
– Concurrency is still possible
– Programmer must safeguard NVM data from concurrent access
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Programming Model: Transactions: Undo logs

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {

#pragma nvl atomic heap(heap)
{

for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];

a[*i][j] = sum;
}
++*i;

}
}

}

• Before every NVM store, transaction 
creates undo log to back up old data

• Undo log contains metadata plus old 
data being overwritten

• Problem: large overhead because an 
undo log is created for every element of 
a (every iteration of j loop)
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Programming Model: Transactions: clobber clause

#include <nvl.h>
void matmul(nvl float a[I][J],

nvl float b[I][K],
nvl float c[K][J],
nvl int *i)

{
while (*i<I) {
#pragma nvl atomic heap(heap) \

clobber(a[*i:1])
{
for (int j=0; j<J; ++j) {
float sum = 0.0;
for (int k=0; k<K; ++k)
sum += b[*i][k] * c[k][j];
a[*i][j] = sum;

}
++*i;

}
}

}

• clobber clause suppresses undo logs

• Durability after transaction commit is 
still guaranteed
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Evaluation: LULESH
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• ExM = use SSD as extended DRAM

• T1 = BSR + transactions

• T2 = T1 + backup clauses

• T3 = T1 + clobber clauses

• BlockNVM = msync included

• ByteNVM = msync suppressed

• backup is important for performance
• clobber cannot be applied because old data is needed

better

worse
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NVL-C Summary

• Motivated a new programming model for NVM as persistent 
memory

• Introduced NVL-C, a new programming system for this purpose
– First class language construct
– Transactions

• Described several performance optimizations for NVL-C
• Showed performance results for these optimizations on an SSD
• Working on Optane DIMMs now
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Recap

• Visit us
– We host interns and other 

visitors year round
• Faculty, grad, undergrad, 

high school, industry

• Jobs at ORNL
– Postdoctoral Research 

Associate in Computer 
Science

– Software Engineer
– Computer Scientist
– Visit https://jobs.ornl.gov

• Contact me 
vetter@ornl.gov

https://jobs.ornl.gov/
mailto:vetter@ornl.gov
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Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756

	Preparing for Extreme Heterogeneity in High Performance Computing
	Highlights
	Time for a short poll…
	History (circa 2010)
	Future (circa 2030)
	Implications for Science Applications Teams
	Motivating Trends
	Slide Number 41
	Business climate reflects this uncertainty, cost, complexity, consolidation
	Sixth Wave of Computing
	Predictions for Transition Period
	Predictions for Transition Period
	Predictions for Transition Period
	Quantum computing: Qubit design and fabrication have made recent progress but still face challenges
	Fun Question: when was the field effect transistor patented?
	Predictions for Transition Period
	Various Markets already Experiencing these Architectural Trends
	DOE HPC Roadmap to Exascale Systems
	Future -> Open Source Hardware Enables a Rapid Design of Specialized Chips and Effectively Mass Customization
	Take away message  �During this Sixth Wave transition, Complexity is our major challenge!
	Implication for Applications and Software  Explosion of (incomplete) Programming Systems  
	Software Strategies for Extreme Heterogeneity
	Strategies for Programming Systems in this Era of Rapidly Designed, Diverse Architectures
	Contributing to LLVM
	The three technical areas in ECP have the necessary components to meet national goals
	ECP is Improving the LLVM Compiler Ecosystem
	Leveraging LLVM Ecosystem �to Meet a Critical ECP (community) need : FORTRAN
	PROTEAS-TUNE: Clacc – OpenACC in Clang/LLVM
	Programming FPGAs with OpenACC
	Challenges in FPGA Computing
	Standard, Portable Programming Models for Heterogeneous Computing
	Directive-based Strategy with OpenARC: Open Accelerator Research Compiler
	FPGAs|Approach
	Baseline Translation of OpenACC-to-FPGA
	FPGA OpenCL Architecture
	Kernel-Pipelining Transformation Optimization
	Kernel-Pipelining Transformation Optimization (2)
	Kernel-Pipelining Transformation Optimization (3)
	Slide Number 185
	Overall Performance of OpenARC FPGA Evaluation
	Emerging Memory Systems
	Memory Hierarchy is Specializing too
	NVRAM Technology Continues to Improve – Driven by Broad Market Forces
	Language support for NVM:�NVL-C - extending C to support NVM
	Design Goals: Familiar programming interface
	Design Goals: Avoiding persistent data corruption
	Design Goals: Modular implementation
	NVL-C: Programming Model
	Programming Model: NVM Pointers
	Programming Model: Bare NVM Pointers
	Programming Model: Accessing NVM
	Programming Model: Pointer types (like Coburn et al.)
	Programming Model: Transactions: Purpose
	Programming Model: Transactions: Undo logs
	Programming Model: Transactions: clobber clause
	Evaluation: LULESH
	NVL-C Summary
	Recap
	Final Report on Workshop on Extreme Heterogeneity
	Introspective Runtime Systems
	IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming Models
	The IRIS Architecture
	Supported Architectures and Programming Systems by IRIS
	IRIS Booting on Various Platforms
	SAXPY Example on Xavier
	SAXPY: Python host code & CUDA kernel code



