
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Advances in VT’s Load Balancing
Infrastructure and Algorithms

Jakub Domagala (NGA)

Ulrich Hetmaniuk (NGA)

Jonathan Lifflander (SNL)

Braden Mailloux (NGA)

Phil B. Miller (IC)

Nicolas Morales (SNL)

Cezary Skrzynski (NGA)

Nicole Slattengren (SNL)

Paul Stickney (NGA)

Jakub Strzeboński (NGA)

Philippe P. Pébaÿ (NGA)

Team (alphabetically):

NGA = NexGen Analytics, Inc

SNL = Sandia National Labs

IC = Intense Computing
SAND2020-11823

What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library

DARMA/LBAF Load Balancing Analysis

Framework

Python framework for simulating LBs and

experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates

serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications

Load Balancing R&D Lifecycle

▪ Application runs with VT runtime with designated phases and subphases

▪ VT exports LB statistics files containing object loads, communication, and mapping

▪ LBAF loads the statistics files, and simulates possible strategies
▪ LBAF analyzes the mapping and can produce a new mapping with an experimental LB

implemented in Python

▪ LBAF exports a new set of mapping files

▪ The application can be re-run with StatsMapLB to follow the LBAF-generated
mapping and measure the actual impact

▪ Process can be iterated, shortening LB development and tuning cycle

Phase Management

▪ A phase is a collective interval of time over all ranks that is typically synchronized
▪ In an application, a phase may be a timestep

▪ In VT parlance, a phase will often be a “collective epoch” under termination detection

▪ Load balancing in VT fundamentally operates over phases

▪ A phase can be broken down into subphases
▪ A subphase is typically a substructure within a phase of an application’s work that has further

synchronization

▪ Creates vector representation of workload

▪ We have explored the idea of further ontological structuring for the purpose
enriching LB knowledge, but so far have only implemented phases and subphases

Phase Management

▪ Building general interface for general phase management

▪ Many components can naturally do things at phase boundaries
▪ LB

▪ Running a strategy (or several) and migrating objects accordingly

▪ Outputting statistic files

▪ Tracing

▪ Specifying which phases traces should be enabled for which ranks

▪ Specifying phase intervals for flushing traces to disk

▪ Memory levels/high-water watermark for runtime/application usage

▪ Diagnostics

▪ Just finished developing a general diagnostic framework for performance counters/gauges of runtime
behavior (e.g., messages sent/node, bytes sent/node, avg/max/min handler duration)

▪ Checkpointing of system/application state

▪ Termination

▪ Recording state of epochs for debugging purposes

Phase Management

▪ A phase is a collective interval of time over all ranks that is typically synchronized
▪ In an application, a phase may be a timestep

▪ In VT parlance, a phase will often be a “collective epoch” under termination detection

▪ Load balancing in VT fundamentally operates over phases

▪ A phase can be broken down into subphases
▪ A subphase is typically a substructure within a phase of an application’s work that has further

synchronization

▪ Creates vector representation of workload

▪ We have explored the idea of further ontological structuring for the purpose
enriching LB knowledge, but so far have only implemented phases and subphases

EMPIRE Load Structure – Phases, Subphases, Iterations

Subphase Vector Loads

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑡 =

𝑠

𝑡𝑠 𝑡𝑠 = max
𝑝

𝑤𝑝𝑠 𝑾 = 𝑨𝑳

𝑃 × 𝑆

𝑳: ℝ𝑁×𝑆

Object

Loads

𝑨: 𝔹𝑃×𝑁

Object

Assignments

∀
𝑛

𝑝

𝑎𝑝𝑛 = 1

min
𝐴
𝑡

Objective Function:

Total

Time

Subphase

Times

Subphase Vector Loads

▪ From 0-1 optimization to smaller Integer Program optimization

▪ Replace with to (partially) linearize

▪ Plug this in to standard solvers
▪ Possibly MPI-based for live use!

𝑎𝑝𝑛 = 1 ⟺ 𝑚𝑛 = 𝑝𝑨: 𝔹𝑃×𝑁

Object

Assignments

𝑀: ℕ𝑁

Object

Mappings

𝑡𝑠 = max
𝑝

𝑤𝑝𝑠 ∀
𝑝
𝑡𝑠 ≥ 𝑤𝑝𝑠

Load Modeling

▪ When a selected strategy runs after a phase completes, it has access to data from
the application’s execution

▪ Load models provide a novel mechanism for manipulating how the load balancer
observes instrumented data from phases and subphases, past and future
▪ The most basic, naïve model would read raw instrumented data and assume it persists to the

next phase/subphase to perform task assignment calculations for the subsequent phase

▪ Explicit embodiment of “principle of persistence”

▪ Offers configuration, alternatives

▪ Composable functions, easy extension

▪ Can also map vector of per-subphase data to scalars for current strategies

Load Modeling

struct PhaseOffset {
int phases;
static constexpr unsigned int NEXT_PHASE = 0;
unsigned int subphase;
static constexpr unsigned int WHOLE_PHASE = ~0u;

};

class LoadModel {
virtual TimeType getWork(
ElementIDType object,
PhaseOffset when

) = 0;
// ...

};

Default:

NaivePersistence . Norm(1) . RawData

Load Balancing Strategies

Conclusions and Future Work

▪ Increase expressiveness of load data

▪ Shorten LB development and tuning cycles

▪ Improve abstractions in real implementations

▪ Formalize time-vector balancing challenge
▪ Can actually try out dedicated solvers and general heuristics

