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What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library

DARMA/LBAF Load Balancing Analysis 

Framework

Python framework for simulating LBs and 

experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates 

serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications



Load Balancing R&D Lifecycle

▪ Application runs with VT runtime with designated phases and subphases

▪ VT exports LB statistics files containing object loads, communication, and mapping

▪ LBAF loads the statistics files, and simulates possible strategies
▪ LBAF analyzes the mapping and can produce a new mapping with an experimental LB 

implemented in Python

▪ LBAF exports a new set of mapping files

▪ The application can be re-run with StatsMapLB to follow the LBAF-generated 
mapping and measure the actual impact

▪ Process can be iterated, shortening LB development and tuning cycle



Phase Management

▪ A phase is a collective interval of time over all ranks that is typically synchronized
▪ In an application, a phase may be a timestep

▪ In VT parlance, a phase will often be a “collective epoch” under termination detection

▪ Load balancing in VT fundamentally operates over phases

▪ A phase can be broken down into subphases
▪ A subphase is typically a substructure within a phase of an application’s work that has further 

synchronization

▪ Creates vector representation of workload

▪ We have explored the idea of further ontological structuring for the purpose 
enriching LB knowledge, but so far have only implemented phases and subphases



Phase Management

▪ Building general interface for general phase management

▪ Many components can naturally do things at phase boundaries
▪ LB

▪ Running a strategy (or several) and migrating objects accordingly

▪ Outputting statistic files

▪ Tracing

▪ Specifying which phases traces should be enabled for which ranks

▪ Specifying phase intervals for flushing traces to disk

▪ Memory levels/high-water watermark for runtime/application usage

▪ Diagnostics

▪ Just finished developing a general diagnostic framework for performance counters/gauges of runtime 
behavior (e.g., messages sent/node, bytes sent/node, avg/max/min handler duration)

▪ Checkpointing of system/application state

▪ Termination

▪ Recording state of epochs for debugging purposes
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EMPIRE Load Structure – Phases, Subphases, Iterations



Subphase Vector Loads
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Subphase Vector Loads

▪ From 0-1 optimization to smaller Integer Program optimization

▪ Replace                                   with                                         to (partially) linearize

▪ Plug this in to standard solvers
▪ Possibly MPI-based for live use!
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Load Modeling

▪ When a selected strategy runs after a phase completes, it has access to data from 
the application’s execution

▪ Load models provide a novel mechanism for manipulating how the load balancer 
observes instrumented data from phases and subphases, past and future
▪ The most basic, naïve model would read raw instrumented data and assume it persists to the 

next phase/subphase to perform task assignment calculations for the subsequent phase

▪ Explicit embodiment of “principle of persistence”

▪ Offers configuration, alternatives

▪ Composable functions, easy extension

▪ Can also map vector of per-subphase data to scalars for current strategies



Load Modeling

struct PhaseOffset {
int phases;
static constexpr unsigned int NEXT_PHASE = 0;
unsigned int subphase;
static constexpr unsigned int WHOLE_PHASE = ~0u;

};

class LoadModel {
virtual TimeType getWork(
ElementIDType object,
PhaseOffset when

) = 0;
// ...

};

Default:

NaivePersistence . Norm(1) . RawData



Load Balancing Strategies



Conclusions and Future Work

▪ Increase expressiveness of load data

▪ Shorten LB development and tuning cycles

▪ Improve abstractions in real implementations

▪ Formalize time-vector balancing challenge
▪ Can actually try out dedicated solvers and general heuristics


