
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Design and Implementation Techniques for
an MPI-Oriented AMT Runtime

Jakub Domagala (NGA)

Ulrich Hetmaniuk (NGA)

Jonathan Lifflander (SNL)

Braden Mailloux (NGA)

Phil B. Miller (IC)

Nicolas Morales (SNL)

Cezary Skrzynski (NGA)

Nicole Slattengren (SNL)

Paul Stickney (NGA)

Jakub Strzeboński (NGA)

Philippe P. Pébaÿ (NGA)

Team (alphabetically):

NGA = NexGen Analytics, Inc

SNL = Sandia National Labs

IC = Intense Computing
SAND2020-11597 C

What is DARMA?

Module Name Description

DARMA/vt Virtual Transport MPI-oriented AMT HPC runtime

DARMA/checkpoint Checkpoint Serialization & checkpointing library

DARMA/detector C++ trait detection Optional C++14 trait detection library

DARMA/LBAF Load Balancing Analysis

Framework

Python framework for simulating LBs and

experimenting with load balancing strategies

DARMA/checkpoint-analyzer Serialization Sanitizer Clang AST frontend pass that generates

serialization sanitization at runtime

DARMA Documentation: https://darma-tasking.github.io/docs/html/index.html

A toolkit of libraries to support incremental AMT adoption in production scientific applications

Outline

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
▪ Handler registration

▪ Lightweight, composable termination detection

▪ Safe MPI collectives

3. Serialization
▪ ‘Serialization Sanitizer’ Analysis

▪ Polymorphic classes

4. Application demonstration

5. Conclusion

Outline

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
▪ Handler registration

▪ Lightweight, composable termination detection

▪ Safe MPI collectives

3. Serialization
▪ ‘Serialization Sanitizer’ Analysis

▪ Polymorphic classes

4. Application demonstration

5. Conclusion

▪ MPI has dominated as a distributed-memory programming model (SPMD-style)
▪ Deep technical and intellectual ecosystem

▪ Developers and training materials, courses, experiences

▪ Ubiquitous implementations across a variety of platforms

▪ Application code & Libraries

▪ Integration with execution environments

▪ Development tools for debugging and performance analysis

▪ Extensive research literature

▪ Production Sandia applications are developed atop large MPI libraries/toolkits
▪ e.g., Trilinos (linear solvers, etc.); STK (Sierra ToolKit) for meshing

▪ There’s little chance that the litany of MPI libraries used by production apps at Sandia will be
rewritten to target an AMT runtime

▪ Conclusion
▪ We must coexist and provide transitional AMT runtimes to demonstrate incremental value

Motivation
➤ Context of AMT development

▪ Thus, our philosophy:
▪ AMT runtimes must be highly interoperable allowing parts of applications to be incrementally

overdecomposed
▪ This provides an incremental value model for adoption

▪ Transition between MPI/AMT must be inexpensive; expect frequent context switches from MPI
to AMT runtime (many times, every timestep!)

▪ For domain developers:
▪ Provide SPMD constructs in AMT runtimes for a natural transition while retaining asynchrony

▪ Coexist with existing diversity of on-node techniques
▪ CUDA, OpenMP, Kokkos, etc.

▪ Allow MPI operations to be safely interwoven with AMT execution

▪ Side note:
▪ We’ve found that serialization and checkpointing is a backdoor into introducing AMT libraries

Motivation
➤ Philosophy

Outline

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
▪ Handler registration

▪ Lightweight, composable termination detection

▪ Safe MPI collectives

3. Serialization
▪ ‘Serialization Sanitizer’ Analysis

▪ Polymorphic classes

4. Application demonstration

5. Conclusion

Execution Model

▪ Handler registration across nodes
▪ Many lower-level runtimes (e.g., GASNet, Converse) rely on manual registration of function

pointers/methods for correctness

▪ Manual registration is error prone and is not cleanly composable across modules of an
application

▪ Any potential solution must be valid with ASLR (memory addresses can vary across nodes)

▪ Example of manual registration:

➤ Handler Registration

▪ Potential solutions
▪ Code generation to generate registrations at startup

▪ Charm++ does this with the CI file

▪ Disadvantage: requires an extra step/interpreter

▪ Try to match the name of the function/method at runtime?

▪ Not C++ standard compliant/fragile

▪ In the future: maybe C++ proposals on reflection could aid?

▪ VT’s solution:
▪ We initially started with manual, collective registration; then, we had a breakthrough

▪ Build a static template registration pattern that consistently maps types (encoded as “non-type”
templates) to contiguous integers across ranks

▪ Across a broad range of compilers, linkers, loaders, and system configurations we find this
method to be effective!

▪ i.e., GNU (4.9.3, 5, 6, 7, 8, 9, 10), Clang (3.9, 4, 5, 6, 7, 8, 9, 10), Intel (18, 19), Nvidia (10.1, 11)

Execution Model
➤ Handler Registration

▪ C++11 compatible technique

▪ User code in VT with automatic
registration
▪ The highlighted handler automatically

registers the function pointer across all ranks
at the send callsite through a non-type
template instantiation

▪ Registration occurs at load time during
dynamic initialization

▪ This technique is highly composable,
coupling the use of a handler with its
registration across all ranks

Execution Model
➤ Handler Registration

▪ C++11 compatible technique

▪ User code in VT with automatic
registration
▪ The highlighted handler automatically

registers the function pointer across all ranks
at the send callsite through a non-type
template instantiation

▪ Registration occurs at load time during
dynamic initialization

▪ For details on the C++ implementation
and example code, read our paper at the
SC’20 workshop ExaMPI ¹

Execution Model
➤ Handler Registration

¹ J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney, P. P. Pébaÿ
Design and Implementation Techniques for an MPI-Oriented AMT Runtime, ExaMPI 2020

▪ Granular, multi-algorithm distributed termination detection with epochs
▪ Rooted epochs (starts on a single rank and uses a DS-style algorithm)

▪ Collective epochs (starts on a set of ranks and uses a wave-based algorithm)

▪ Rooted and collective epochs can be nested arbitrarily

▪ Runtime manages a graph of epoch dependencies

Execution Model
➤ Lightweight, composable termination detection

Rooted example:

*After this statement, all messages are received,

including causally-related message chains

Collective example:

▪ What does vt::runInEpochCollective actually do?

Execution Model
➤ Lightweight, composable termination detection

▪ Advantages
▪ Asynchronous runtimes often induce a pattern where work must be synchronized with messages

if there is a dependency or work relies on the completion

▪ For example, broadcasts followed by a reduction

▪ Epochs make ordering work (especially in a SPMD context) easier and enable lookahead

Execution Model
➤ Lightweight, composable termination detection

Ordering two operations (e1, e2) with epochs

Execution Model
➤ Lightweight, composable termination detection

▪ EMPIRE
▪ Electromagnetic/electrostatic plasma physics application

▪ Initial PIC particle distributions can be spatially concentrated, creating heavy load imbalance

▪ Particles may move rapidly across the domain, inducing dynamic workload variation over time

▪ Our overdecomposition strategy
▪ Develop VT implementation of PIC while retaining the existing pure MPI implementation to

demonstrate the value of load balancing

▪ Main application/PIC driver should be agnostic to backend implementation or asynchrony that is
introduced

▪ EMPIRE physics developers should not need to fully understand VT’s asynchrony to add
operations

▪ Example code of EMPIRE’s VT code

▪ Calls into VT implementation
without knowing about the
asynchrony or overdecomposition

Execution Model
➤ Lightweight, composable termination detection

▪ Problem
▪ A runtime, application, or library may want to embed MPI

operations while the runtime scheduler is running

▪ Multiple asynchronous operations dispatched to collective
MPI calls might be ordered improperly (see example)

▪ A rank might hold up progress on another rank

– The runtime scheduler and progress function may stop turning
when one rank starts executing a collective MPI invocation

– That progress might be required to start the operation (e.g.,
broadcast along spanning tree) on another node

▪ Any blocking call that uses MPI can cause this problem

▪ MPI window creation for one-sided RDMA

▪ MPI barriers, reduces, gathers, scatters, group creation, …

▪ Zoltan hypergraph partitioning invocation

▪ Libraries that rely on blocking MPI collectives

Execution Model
➤ Safe MPI Collectives

Example code snippet:

• What order do these get scheduled?

• Is that order consistent across

nodes?

• Program specification? What did the

user intend here?

• How do we guarantee that all ranks

are ready for an operation before we

start it?

▪ Our solution
▪ We use distinct collective scopes to create independently matched strands of collective

operations

▪ Each collective scope is identified with a tag: t

▪ Each operation within a scope is identified with a sequence integer: s

▪ Thus, every operation can be distinctly identified as the tuple (t, s)

▪ Runtime employs a distributed consensus algorithm to agree on a collective operation (t, s) to
execute across ranks

Execution Model
➤ Safe MPI Collectives

Example user code: Optional tag, defaults to increment

▪ Consensus Algorithm
1. When a MPI collective is enqueued, start

an asynchronous VT reduction tagged on
(t, s)

2. When the reduction completes, broadcast
a message that puts (t, s) in a special queue

3. Achieve consensus by picking an operation
consistently

▪ Could also be achieved with an async all-
reduce min over (t, s)

4. Use an Ibcast to inform all ranks of (t, s)

5. Use an Ibarrier to ensure all ranks have the
operation

6. Stop running the scheduler and execute
the action on every rank

Execution Model
➤ Safe MPI Collectives

Outline

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
▪ Handler registration

▪ Lightweight, composable termination detection

▪ Safe MPI collectives

3. Serialization
▪ ‘Serialization Sanitizer’ Analysis

▪ Polymorphic classes

4. Application demonstration

5. Conclusion

Serialization
➤ ‘Serialization Sanitizer’ Analysis

▪ Serializers are difficult and error prone to maintain

▪ Difficult to test and maintain as application evolves
▪ If serialization tests aren’t updated with changes to a class, a difficult-to-find bug can be easily

introduced

▪ C++ static reflection proposals may address this problem (and even make explicit
traversal unnecessary?)
▪ For now, we are stuck with manually traversing classes

▪ Our prototyped solution:
▪ A combination of static instrumentation and dynamic analysis to verify serializers

▪ Relies on a new Clang frontend AST pass which can be hooked into the build process

Serialization
➤ ‘Serialization Sanitizer’ Analysis

▪ Static instrumentation using Clang frontend compiler toolkit
▪ Traverse all members of all classes with intrusive or non-intrusive serialization methods

▪ Generate an alternative partial specialization of the serialize method that traverses all members
with a special serializer type

▪ Dynamic checks at runtime
▪ Run the checker specialization alongside the serialize method; use sets to compare memory

addresses of actually serialized and checked members; allow users to explicitly skip members

Serialization
➤ Polymorphic classes

▪ Applications often use object polymorphism to express hierarchies of classes and
behaviors
▪ Polymorphic objects may need to be serialized

▪ While messages and simple structures used for communication may avoid polymorphism,
checkpoints of application data will often include these data structures

▪ Polymorphic objects are difficult to serialize correctly
▪ The serializer needs to be invoked on all classes in the hierarchy recursively

▪ The proper concrete type must be transmitted/reconstituted if the object is sent

▪ Existing solutions rely on C++ strings
▪ PUP: uses register_PUP_ID with a string to register the type

▪ Boost: uses BOOST_CLASS_EXPORT_GUID or register_type to rely on typeinfo or
user-specified strings to register the classes

▪ For templates this might be difficult and very expensive, especially when writing to disk or
sending across the network

Serialization
➤ Polymorphic classes

▪ We exploit the static template registration pattern to generate integers for each
type
▪ This solves the problem of generating a unique, consistent identifier across ranks for each type

▪ We insert with a shim layer in the hierarchy or a macro virtual methods that
automatically traverse the hierarchy

▪ Because serializers are templated, we explicitly instantiate them at compile time
with all possible serializer types and register the serializer types

Serialization
➤ Polymorphic classes

▪ Example user code:

Automatically
serializes and
reconstructs the
correct type

Base class

A

B C

Outline

1. Motivation for developing our AMT runtime

2. Execution model and implementation ideas
▪ Handler registration

▪ Lightweight, composable termination detection

▪ Safe MPI collectives

3. Serialization
▪ Polymorphic classes

▪ ‘Serialization Sanitizer’ Analysis

4. Application demonstration

5. Conclusion

Application Demonstration: EMPIRE

Conclusion

▪ We are working on an AMT runtime that provides incremental value as users adopt
it for small segments of their applications

▪ We’ve found that serialization/checkpointing is a good way to introduce our toolkit
to applications
▪ Thus, we’ve build the DARMA/checkpoint library as a small, distinct piece that can be used

standalone

▪ We can retain a SPMD style that is familiar to domain experts while still obtaining
the benefits of asynchrony, overdecomposition, and load balancing

▪ Virtual Transport is moving into production use for the EMPIRE L1 milestone
▪ Supports a wide range of problem configurations on the largest supercomputers

Execution Model

▪ In our ideal vision, driving execution progress to termination of an epoch, would be
expressed as an MPI_Wait or MPI_Test
▪ Generalized MPI requests as standardized are insufficient due to our need to call the VT

scheduler inline

▪ The Extended Generalized Requests interface proposed by Latham, et al. would suffice

➤ Generalized Requests

