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Overview

Increasing gap between single-node computational power and
iInter-node communication performance on modern supercomputers

Can be tackled from at least 2 directions

1. Improve communication performance itself with software optimizations and better
utilization of hardware support (e.g. GPUDirect, SHARP, hardware tag-matching)

2. Reduce impact of communication on overall performance
(e.g. computation-communication overlap)

* Focus on computation-communication overlap
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Asynchronous Message-Driven Execution

Chares

PE Message queue



GPU Execution in Charm++
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Achieving Computation-Communication Overlap

Support asynchronous progress in the runtime

Avoid synchronization CUDA APIs (e.g. cudaStreamSynchronize)
Charm++ scheduler blocked from performing other chares’ work
Cannot make forward progress on communication (without comm. threads)
Directly using CUDA async APIs to determine completion is infeasible
Scheduler-driven execution in Charm++
CUDA-generated thread disassociated from the Charm++ runtime
hapiAddCallback(cudaStream t stream, CkCallback* callback)

Allows user to schedule a Charm++ callback to be invoked when GPU operations complete in the
specified CUDA stream

Two compile-time configurable mechanisms based on CUDA Callback and
CUDA Events (default)

https://charm.readthedocs.io/en/latest/charm++/manual.html#gpu-support



https://charm.readthedocs.io/en/latest/charm++/manual.html#gpu-support

Achieving Computation-Communication Overlap

Prioritize communication-related GPU operations in the application

Single CUDA stream per chare: delays in communication-related operations
(host-device data transfers, packing/unpacking kernels) due to computational
kernels offloaded from other chares to the same GPU

Need separate streams for compute and communication (with higher priority for communication)

More complex design may be necessary, as for MiniMD (described in paper)



Achieving Computation-Communication Overlap
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(a) Single CUDA stream per chare. Communication is delayed (b) Separate compute/communication CUDA streams per chare,
by a computational kernel enqueued from another chare, causing with the communication stream given higher priority. Iterations
idle time between iterations. continue without idle times in between.

Fig. 3. Execution timelines of Jacobi2D with four chares mapped to a single GPU.



Evaluation Platforms

OLCF Summit
6 NVIDIA Tesla V100s per node

LLNL Lassen
4 NVIDIA Tesla V100s per node

PAMILRTS, SMP version of Charm++

1 process with 1PE/core per GPU
e.g. 6 PEs and 6 GPUs per compute node on Summit



Benchmarks

lterative proxy apps

Jacobi3D

Jacobi iteration performed on 3D grid, overdecomposed into chares
Near-neighbor exchange of halo data (up to 6 neighbors)
MiniMD
Proxy app for LAMMPS molecular dynamics code
Converted MPI-Kokkos to Charm++-Kokkos
CUDA-aware MPI converted to explicit host-device transfers and host messages

Kokkos responsible for computational kernels and intra-process data movement

Neighbor exchange of atoms, Lennard-Jones force calculation
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Performance Results — Jacobi3D

cudaStreamSynchronize —E&—  HAPI-Callback = -O - HAPI-Polling

» 50

= I

c

o 40 F

4

g —H o

£ 30g.. .

— L .

g BT o

@ 20 0 TTUms ¢ DUl

=

=)

@ 10 [

©

| -

g

I 0 1 1 1 ]
1 2 4 8 16

Overdecomposition factor (ODF)

Fig. 5. Performance of Jacobi3D with varying overdecomposition factors on
a single node of OLCF Summit.



Performance Results — Jacobi3D
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Fig. 6. Weak & strong scaling performance of Jacobi3D.



Performance Results — MiniMD
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Fig. 7. Weak & strong scaling performance of MiniMD. 13



Conclusion

Up to 50% and 47% improvement in overall performance with
Jacobi3D and MiniMD, respectively

With careful design of the application to prioritize communication and
support for asynchronous progress of GPU work in the runtime system,
computation-communication overlap can significantly improve
performance (esp. in weak scaling)

Future work: improve communication performance with GPU messaging
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GPU Messaging in Charm++ 6.11

Direct data transfer between GPUs using GPUDirect & CUDA IPC, bypassing host memory
Currently supports intra-node messages, support for inter-node coming soon

Regular API

For point-to-point messages between chares

Currently undergoing performance optimizations

Included in 6.11-beta as experimental feature

Similar to Zerocopy Post Entry Method API, sender sends metadata & receiver performs a get

Documentation: https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging

Persistent API
For persistent P2P messages between chares (reuse of GPU buffers)
Useful for iterative applications
Will also be part of 6.11 (merged for 2" beta)
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https://charm.readthedocs.io/en/latest/charm++/manual.html#direct-gpu-messaging
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Thank you! Questions?



