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Euler Equations

Two views of these equations

Eulerian Lagrangian (SPH)

Follow the fluid elementTrack the fluid flow

continuity Momentum



Smooth Particle Hydrodynamics

• Main computational challenge is doing a rapid 
search for the n-th nearest neighbors

• Maps well with n-body tree codes.

• Model fluids as a number of discrete particles 
subject to F=ma forcing.

• Pressure forces depend of continuum values 
(density) so need an estimate for density.

• Density estimate provide by a weighed count 
(kernel) over a volume that includes the n-th 
nearest neighbors.

Wikipedia



Eulerian Scheme
Euler equation among others can be written as a flux-conservative equation

Can be solve in a finite volume scheme

Fluxes are solved with a (approximate) Riemann solver



Arbitrary Lagrangian-Eulerian (ALE) 
Scheme

● Move the mesh cells arbitrarily
● Usually at the local “flow” velocity

● Used in continuum mechanics 
● Meshes are unstructured
● Strange arbitrarily shaped 

boundaries

● Great for fluid/solid interactions

● Big speed improvements possible if 
flow velocity >> sound speed

Abaqus finite element

Abaqus finite element





• Not widely use in astronomy until about 2010.

• Development of numerical hydrodynamics on Voronoi meshes solves the problem of remeshing 
(Springel 2010)

Arbitrary Lagrangian-Eulerian (ALE) 
Scheme

• Traditional ALE methods suffer from 
mesh-distortion.

• Usually requires a re-mesh – 
fundamentally a numerically diffusive 
action.

• Standard practice in continuum 
mechanics.

Anderson et al. 2018




Voronoi Tessellation
• Voronoi tesslation divides up space given an 

arbitrary distribution of points.

• Each face (edge) is a perpendicular bisecting-
plane (bisector) of the line connecting adjacent 
points.

• Three important properties
• Uniqueness
• Cells are convex
• Cells deform continuously under small 

perturbations. 

• Well defined faces and volumes allow finite 
volume methods to be applied (Springel 2010).

• Any Flux-conservative equation can be solved on 
these unstructured meshes.

• Codes that use this methodology include AREPO 
(Springel 2010), RICH (Steinberg et al. 2016), 
TESS (Duffell & Macfadyen 2012), & MANGA 
(Chang et al. 2017)

Vandenbroucke & De Rijcke (2016)




Pros and Cons of Voronoi Hydrodynamics
Pros

• Far better advection than Eulerian.

• Superior conservation of momentum and 
angular momentum compared to 
Eulerian schemes

• Superior shock capturing compared to 
SPH.

• Better capture of interface instabilities in 
principle.

• Can do MHD – unlike SPH

• Continuously varying resolution – no 
factor of 2 or 4 jumps as in AMR. 

• Almost anything solvable on Eulerian 
grids map to Voronoi methods.

Cons

• Much more complex – combination of 
SPH and Eulerian + computational 
geometry

• Have to think about the grid (on top of 
everything else).

• “slower”

• MHD is divergence cleaning or vector 
potential based – no “staggered” CT 
scheme exists.

• Might be overkill for many problems

Advantages in advection, shock capturing and conservation law make it great for 
dynamical stellar problems.



MANGA
Voronoi hydro solver for the Charm++ N-body Gravity (ChaNGa) – 

an N-body/SPH code 
Uses Charm++ programming model – “easier” to make large 

hybrid MPI/OpenMP codes
ChaNGa scales in pure Gravity to 0.5M cores with 93% efficiency

Menon et al (2014)



MANGA
Chang et al (2017) Chang et al (2017)

hydrodynamics

Self Gravity

Prust & Chang (2019)

Stellar EOS






MANGA

Radiation

Chang, Davis & Jiang (2020) Chang & Etienne (2020)

GR Hydrodynamics
In static spacetimes





MANGA - A Moving Mesh Solver for ChaNGa
Current Features

• Hydrodynamics on Voronoi Mesh, Self-gravity, Entropy or Energy solving (Chang, 
Quinn & Wadsley 2017)

• Multistepping (Prust & Chang 2019)
• MESA Stellar Equation of State (Prust & Chang 2019)
• Moving and Reactive Boundary Conditions (Prust 2020)
• Radiation Hydrodynamics (Chang, Davis & Jiang 2020)
• GR hydrodynamics on the moving-mesh (Chang & Etienne 2020)

Near-Term Goals (< 2 years)

• Open source version in early-mid 2021
• MHD: constrained transport scheme (Prust & Chang, in prep)
• Moving-mesh GRHD for BNS Mergers 

Longer Term Goals (~ 2-4 years)

• High Order Spatial Reconstruction Methods
• Core-collapse SN on a moving-mesh with neutrino radiation
• Point Source Radiation  
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Common Envelope Evolution
• In a close binary system, a star that 

evolves up the RGB/AGB may fill its 
Roche lobe.

• For unstable mass transfer, the 
secondary may fall into the primary’s 
envelope – “common envelope”

• The secondary and primary’s core spiral 
in toward each other.

• Release of gravitational potential energy 
is balanced by ejection of the envelope.

• Results in a close binary pair
• Possibly responsible for progenitors 

of:
● SN Ia
● millisecond pulsars
● binary neutron stars
● binary black holes. 

Ivanova et al. (2012)



CEE using MANGA

We use similar initial 
conditions as Ohlmann et al 
(2016)

2 solar mass RG at 52 solar 
radii, 1 solar mass 
secondary – treated as DM 
particle.

Use about 400K particles to 
model the RG, 800K 
particles altogether 
(including atmospheric 
particles).

Run for 240 days – 110 
shown here.

Prust & Chang (2019)




Prust & Chang (2019)CEE using MANGA

We find that a substantial amount of envelope can be ejected depending on how you 
account for the energy of expansion.  

Including thermal energy, we get 66% ejection of the envelope.

Only mechanical energy, we get ~10% ejection – similar to other workers

The orbit shrinks substantially – near the limits of the gravitational softening.



Moving/Reactive Boundary Conditions

Start/End of Wall

Apply reflecting boundary conditions 
to certain cells, but account for the 
forces applied on it.

Linked these boundary cells to 
move with a common velocity + 
center

Gas cells immediately neighboring 
the boundary cells are also locked 
into their motion.

“1-d” problem of a Sedov shock 
hitting a piston at x=3 to 5 initially.

Conservation of linear momentum 
to within a few percent for sufficient 
resolution.

Prust  (2020)

• Secondary star is “dense” relative to the envelope – treat it as a moving (reflecting) 
boundary condition.

• Moving bc must be influenced by the flow – to preserve conservation laws




CEE with a “hard” secondary

Prust  (2020)
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Moving BC run with same initial 
conditions as Prust & Chang (2019)

Somewhat different inspiral evolution

More analysis remains to be done

Prust  (2020)
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Tidal Disruption Events

Emission during TDE events occurs in several different phases:
• Initial disruption + shock breakout (Guillochon et al 2009)
• Collision of streams (Jiang et al. 2016)
• Fallback and circularization (Hayasaki et al. 2016)
• Accretion disk
• Reprocessed radiation (Strubbe & Quataert 2011) – emission line transients
• Shocking of unbound gas (Yalinewich et al. 2019) – radio transients

Komossa (2015)

A star that falls in close to a SMBH can 
get ripped apart by tides.

Called a tidal disruption event (TDE)

Half of the star is bound to the BH and 
will accrete onto the BH on a month-
year-decade long timescale.

Accretion rate and luminosity follows a 
t-5/3 power law.



Simulations of Tidal Disruption Events

● Simulations of TDEs were first done with SPH (Evans & Kochanek 1989, 

● Simulations of TDEs with Eulerian codes, AMR grid centered on the star (black hole 
moving by)

● Find t-5/3 power law, larger energy distribution – earlier start times for fallback, possible 
shock breakout during initial disruption, importance of GR for circularization

● Why Moving-mesh?
● Capture shocks – initial disruption shock
● Can include additional physics – (diffuse) radiation, magnetic fields
● Capture the entire domain 

● Few simulations already with moving mesh



Tidal Disruption Events





Effect of β

• Spread in energy depends on β < 9.

• Scales like β-1/2 for β = 2-9, fixed afterwards

• Gives a corresponding decrease in accretion rate
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GRHD on a Moving-mesh
GRHD can also be written as a flux-conservative equation

Where , h is the enthalpy

So GRHD can also be solved on a moving unstructured mesh!



TOV star on a Moving-mesh

At “high” resolution, secular drift of 
central density of 2% over 24 
dynamical times.

Single star evolutions is really 
sensitive to spatial reconstruction 
(Duez et al 2005)

May be fixed in near-term with 
developments in unstructured high-
order methods.

● Star modelled by 106 mesh generating points.

● Fixed TOV metric. Run for 24 dynamical 
times. 

● Diffusion of material due to sharp gradient in 
outer boundary of star




TOV star on a Moving-mesh

Oscillations match those generated 
by IllinoisGRMHD for same initial 
conditions

Future is incorporating a dynamical 
spacetime solver into MANGA for full 
moving-mesh BNS mergers 
simulations.

● Reduce pressure by 10% globally

● Star oscillates radially at the fundamental 
mode.

● Loss of mass and energy across the sharp 
gradient at the edge of the star.




Conclusions
● Moving-mesh schemes have a number of advantages (and disadvantages) for 

astrophysics.
● A number of open source codes (AREPO, MANGA) will be available soonish

● Particularly well suited to a number of dynamical stellar problems
● Common Envelope Evolution (shocks, moving boundaries, magnetic fields, radiation)
● Tidal Disruption Events (shocks, v >> c

s
, magnetic fields, radiation)

● We have found that envelope ejection is possible provide a means to “tap” thermal 
energy
● Require radiative transfer to do this correctly
● Moving/reactive BC work ongoing

● We have found that energy distribution and mass accretion rate depends on impact 
parameter – possible means to constrain impact parameter

● GR Hydrodynamics with static spacetimes is now working; dynamical spacetimes are 
next.

● We anticipate open-source version available sometime in 2021 



Radiation Hydro on a Moving-mesh
Euler equation among others can be written as a flux-conservative equation

Can be solve in a finite volume scheme

Fluxes are solved with a (approximate) Riemann solver



MANGA vs AREPO
AREPO

• Based on Gadget 3 SPH/N-body code

• Voronoi tessellation based on computing 
dual to Delauncy tessellation.

• Can do 1-, 2-, 3-d calculations

• Gradient estimate using least-squares 
fitting.

• Second order scheme needs 1 voronoi 
construction, 2 Riemann solves.

• Used mainly for cosmology/galaxies

• Is now “open source”. 

MANGA

• Based on ChaNGa SPH/N-body code
• Successor to Gasoline

• Directly computes Voronoi tessellation 
using VORO++ library (Rycroft 2009)

• Only 3-d calculations

• Gradient estimation based on center of 
mass coordinates of cell. 

• Second order scheme needs 2 voronoi 
constructions, 1 Riemann solve.

• Used mainly for dynamical stellar 
problems

• Planned “open source” – 1H 2020
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