
Hurricane Storm Surge
Analysis and Prediction

Using ADCIRC-CG and AMPI
Part - 2 AMPIzation

Presented by Eric Bohm
Team: Damrongsak Wirasaet, Dylan Wood, Sam White, Justin Szaday

Laxmikant V. Kale

ADCIRC-CG

• ADCIRC-CG : FORTRAN based MPI code

• > 100k SLOC

• Wet cells <- real physics computation

• Mostly 2d with relatively fine granularity

• Dry cells <- bookkeeping, is water here yet?

• Dynamic load imbalance emergent from the simulation

AMPI
• Each AMPI Ranks run in a user level thread

• Breaks the Rank <=> Process assumption

• Supports migratability and therefore load balancing

• Process global mutable state is a correctness issue

• Mostly equivalent to privatizing global state to be
specific to the user level thread

• AMPI supports a variety of solutions

TLS Privatization
• Thread local storage is supported in FORTRAN

• -fopenmp

• Can also be leveraged by Charm++ user level threads

• Supports virtual AMPI ranks

• Add -tlsglobals to ampiCC compile line

• Add !$omp threadprivate(YourVariable)

• For each variable declaration

TLS in FORTAN
• Over 2,000 module variables in ADCIRC-CG

• Motivating an automatic transformation approach

• Fortran global state has several complications

• Variables declared at the Module level are global <- TLS

• Variables declared with Parameter attribute are constant and cannot be thread local

• Variables declared in a subroutine with Save attribute have global extent <- TLS

• Variables declared in a subroutine with an initial value are implicitly Save <- TLS

• Variables declared in a subroutine are otherwise local

• Common blocks promote variables listed therein to global

• The common block needs TLS

• the variables within the common block do not.

FORTRAN I/O
• FORTRAN I/O assigns the Logical Unit Number (LUN) in every IO statement.

• Roughly equivalent to a stream or file identifier, the LUN is global to the FORTRAN
runtime.

• Therefore, each virtual rank performing file operations must have its own LUN

• Code transform must alter each I/O operation to add a virtual rank offset to every LUN

• e.g., WRITE(UNIT=APPLUN, …)

• -> WRITE(UNIT=APPLUN+CK_LUN,…)

• Must NOT transform when the LUN variable is not an INTEGER

• FORTRAN I/O commands may also be used to operate on “Internal” data.

• String operations that look like file operations

• Must NOT transform operations that merely resemble file operations

(Semi) Automatic FORTRAN
AMPIzation

• FLANG was not (still not) at a level where it could support these

• Actual transformation are relatively simple

• Perl implementation using REGEX based parsing of FORTRAN variable declarations and I/O
statements

• Adds thread private only where necessary

• LUN privatization module

• Insert an import of ck_lun to each module with FORTRAN I/O

• Arithmetically add ck_lun to each fortran I/O statement LUN

• Unless that LUN is not an integer

• Detect that based on extracting variable type by module so the type of each LUN in scope
can be determined

• Need to close and reopen open LUNs when a rank is migrated out of the process

• Required manual implementation by Damrongsak Wirasaet <dwirasae@nd.edu>

LUN Migration
• Implement about_to_migrate callback

• Record each open file and its LUN data

• Close each open file

• Implement just_migrated callback

• Reopen each file, restore LUN data

• Register callbacks with

• AMPI_REGISTER_ABOUT_TO_MIGRATE
AMPI_REGISTER_JUST_MIGRATED

• These will be triggered automatically when a virtual rank migrates

ADCIRC Status
• Runs in AMPI on SMP and non-SMP

• Initial port ran into a hang bug when virtualization ratio > 1 OR PPN >1

• Symptom was MPI_WAITSOME returns MPI_UNDEFINED (-32768) in the count of
completed receives.

• Further study indicated a bug in the AMPI implementation of MPI_WAITSOME

• Fixed by Sam White

• Virtualization supported, dynamic load balancing demonstrated

• Instability in long runs

• NetCDF input not currently supported

• Virtualization negatively impacts performance

• MPI_All_Reduce performance on sub-communicators has excessive overhead in the
current AMPI implementation

Future Work
• Implement transforms in FLANG - Justin

• Metabalancer integration to trigger balancing when
necessary

• AMPI improvements to sub-communicator collective
performance - Sam

• Adapt application specific balancing hints

• Sort by elevation, etc. - Dylan

• Experiment with graph partitioning based balancers

