CharmROSS

Empowering PDES with an Adaptive Runtime System

UIUC: Eric Mikida, Nikhil Jain, Laxmikant Kale
RPI: Elsa Gonsiorowski, Chris Carothers
LLNL: Peter Barnes, David Jefferson
DES - Background

- Discrete Event Simulation
- Logical Processes (LPs) execute events
- Events have virtual timestamps
- Sequential, Conservative, and Optimistic
PDES - Optimistic Simulations

- Events executed speculatively
- Rollback when there’s a causality error
- Need to store a history of events
- Need to reclaim event memory
- Synchronize by calculating the GVT
GVT - Global Virtual Time

- Find the smallest timestamp among all PEs
- Must wait for all events to arrive
- It’s impossible to rollback further than GVT
- Commit events and reclaim memory
ROSS - Background

- Developed at RPI
- Written in MPI
- Sequential, Conservative, and Optimistic
- Highly Scalable
- 504B events/s on 120 racks of BG/Q
 - Compared to 5.1B events/s on 1 rack
 - Used the PHOLD benchmark with 10% remote
Motivation and Goals

- Minimal changes to API for model writers
- Achieve similar performance to MPI ROSS
- Add new capabilities
 - Asynchrony (GVT)
 - Load balancing
 - Fault tolerance
 - Checkpoint restart
 - Fine-grain message aggregation
Port Design
• Behavior defined by the model
•Executes events
•Mapped to KPs
• Stores previous events
• Controls rollbacks and fossil collection
Stores pending events
Controls the GVT
CharmROSS

- Identical to LPs in ROSS
- Mapped to migratable chares
CharmROSS

- Combines some KP with some PE
- Holds pending AND past events
CharmROSS

- Now a group chare
- Manages local LP chares
- Controls the scheduler and GVT
Port Status

- Sequential, Conservative, Optimistic all work
- Deterministic and consistent with original
- 3 models (PHOLD, PCS, Dragonfly)
- Charm: 4k SLOC, MPI: 8.8k SLOC
- Some extra features implemented
Performance
Initial Performance

- Runs done with PHOLD benchmark
- 1 rack of Vesta (1024 BG/Q nodes)
- 64 threads per node
- No new features included
Varying Remote Communication

Event Rate (billions/sec) vs Percent Remote

- MPI
- Charm++
Features
New Features

● GVT Asynchrony
 ○ Async broadcasts
 ○ Async reductions
 ○ Fully async GVT

● Migratability
 ○ Load balancing
 ○ Checkpoint/Restart
 ○ Fault tolerance
Asynchronous Start

PE 0
PE 1
PE 2
PE 3

Idle Time

Time

GVT
Asynchronous Start

Start GVT with asynchronous broadcast
Asynchronous Reductions

Events

GVT

QD Red FC

Time
Asynchronous Reductions

Events

GVT

QD Red FC

Time
Fully Asynchronous GVT
Migratibility

- LPs are migratable
- Load balancing
- Checkpoint/Restart
- Fault Tolerance
Conclusion
Future Work

- Tuning/optimization of async features
- PDES specific load balancing
- Topological Routing and Aggregation Module