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Current Programming Models 

•  Shared Memory Multiprocessing 
 OpenMP – fork/join model 
 Pthreads – Arbitrary SMP parallelism (but hard to program/

debug) 
 Cilk – Work Stealing (only good for recursive parallelism) 

•  Distributed Memory Multiprocessing 
 MPI – Bulk synchronous Parallelism 
 SHMEM, UPC - PGAS 

•  Hybrid Models 
 MPI + OpenMP (needed to get performance on multi-core, 

multi-node systems) 
•  Heterogeneous Accelerator Parallelism 

 CUDA, OpenCL 
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Problem Statement 

1.  Heterogeneous systems require multiple 
languages and programming models 

•  e.g. MPI across nodes, OpenMP across cores, OpenCL 
across GPUs 

2.  Current programming models are based on the 
idea of ‘communicating sequential 
processes’ (CSP) 

•  Difficult to program and debug. 
•  Difficult to express dynamic parallelism 
•  Does not take advantage of dynamic availability of 

resources 
•  Extremely hard to exploit programs with irregular and/or global 

data accesses 
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MPI, OpenMP, OpenCL New Runtime Systems 

§  Asynchronous Event-Driven Tasks 
§  Dependencies  
§  Constraints 
§  Resources 
§  Active Messages 

VS. 

§  Communicating Turing Machines 
§  Bulk Synchronous 
§  Message Passing 
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Active threads 

Waiting 

Runtime System Comparisons 
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Solution 

•  Express program as tasks with runtime dependencies 
and constraints 
 Data: input arguments 
 Control: must run before/after certain tasks 
 Resource: locks, CPU or GPU, etc 

•  Tasks can run to completion once all runtime 
dependencies and constraints are met 

•  Runtime system determines which tasks to run based 
on runtime resource availability. 

•  ETI implements this solution in a technology called 
“SWARM” 
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•  SWift Adaptive Runtime Machine (SWARM): 
 Runtime system for heterogeneous large-scale systems 
 Implements an execution model based on specially tagged tasks: 

•  Non-preemptible pieces of code. 
•  Tagged with dependences, constraints, and resource 

demands. 
•  Scheduled when all dependencies and constraints are 

satisfied. 
•  Once scheduled, runs to completion in a non-blocking fashion. 
•  These non-blocking tagged tasks are called codelets. 

•  Goal: 
 Unified runtime system for heterogeneous distributed parallel 

systems 
 Supplant and synergize the separate abilities of MPI, OpenMP, 

and OpenCL. 

What is SWARM? 
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How does SWARM achieve its goals? 

•  Two-level threading system  
 First level are heavy-weight and bound to processing resource 
 Second level light-weight threads run non-preemptively  

•  Object-oriented design which is easily extended to new 
architectures and heterogeneous systems 
 Working across cores and nodes and heterogeneous devices 

•  All runtime resources are accessed through split-phase 
non-blocking asynchronous operations 
 The result of puts/gets are scheduled later using asynchronous 

callbacks 

•  Takes a dynamic view of the computation and the 
machine 
  in contrast to static mapping found in current programming models 
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Tasks mapped 
to resources 
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SWARM Execution Overview 
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Runtime Resource Access 

•  All communication is through asynchronous split-
phase transactions between resources, e.g.: 
 Async procedure call: put/get into procedure resources 
 Data storage: put/get to storage resource 

•  Two basic resource access patterns: 
 Producer passes key to consumer 

 Producer and consumer know resource key a priori 
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Motivation - Resource Sharing 

•  Allow for access to limited quantities of a resource 
 Example: mutex, queue 
 Producer “puts”, Consumer “gets” 
 Use a put callback to let producer know the operation 

completed 
 Use a get callback to let consumer know when the resource is 

available. 
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Key Features 

•  Exposing implicit parallelism 
•  Manage asynchrony 
•  Migration of data structures, work, global control 
•  Global namespace 
•  Hierarchy of locales for data locality and affinity 
•  Runtime Introspection 
•  Dynamic Adaptive Runtime System 
•  Solution to multicore/multinode problem that is user 

transparent to physical parallelism 
•  Diversity of scheduling domains & policies of tasks and 

resources 
•  Readable intermediate representation 
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Moving Global Control 

while (visited_list)!
{!
  foreach(v in visited_list)!
    foreach(n in neighbors(v))!
    {!
       if (!visited(n)) !
       {!
         new_visited_list[pos++] = n;!
         parent[n] = v;!
       }!
    }!
  }!
  swap_lists(new_visited_list, visited_list);!
}!

Run this at the owner of n. 
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SWARM: Key Concepts 

•  SWift Adaptive Runtime Machine: 
 Unifies across nodes, cores, and accelerators 
 Dynamically maps applications needs to available 

resources 
 Provides expression of asynchronous programs to 

maximize performance and hide latency 
 Communication and synchronization is implicit in 

the task dependencies 
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SWARM Availability Presently 

•  Current features 
 HAL backends for x86 (32 and 64-bit), POSIX 
 Scheduling of codelets 
 Create dependencies between codelets 
 Basic network support via TCP/IP 
 SCALE Codelet IR Language 
 API Documentation and Programmers Guide 

•  Early Access Release SWARM 0.7.0 available now: 
 http://www.etinternational.com/swarm 

•  New version by early December 
 Full locale support (scheduling and memory) 
 Full abstraction of hardware/OS in HAL 
 Proper network stack 
 Codelet/function symmetry 
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SWARM Future Plans 

•  Hardware Support 
  Intel MIC, Runnemeade 
 GPU, Adapteva 

•  Legacy Support 
 Work with MPI/OpenMP and other runtimes 

•  Via recompilation (e.g. OpenMP) 
•  Operate side-by-side (e.g. MPI) 
•  Via DLL injection (e.g. OpenCL) 

 UPC, SHMEM support 
•  Language 

 Wrestling with higher level language 
•  Detailed language for experts, yet simple for Joe programmer 

•  Monitoring and Debugging 
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Key Takeaways 

•  Contexts Where SWARM helps 
  Irregular loads 
  Long latency operations 
  Resource constraints other than CPU 
  Heterogeneous systems 

•  Benefits 
  Programming Productivity 
  Deliver higher throughput and higher performance 
  Power efficiency 
  Purchase flexibility 

•  Key Runtime Concepts 
  Asynchronous Split-Phase Resource Access 
  Hierarchical Event Driven Scheduling 
  Abstraction of resources for unified heterogeneous  access 

•   Experiences 
  SWARM Runtime system  
  SWARM SCALE Codelet IR Langauge 
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Case Studies 

•  Mandelbrot 

•  Barnes-hut N-body problem 

 
•  Graph500 
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Barnes-Hut 

Barnes-Hut 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 2 3 4 5 6 7 8 9 10 11 12 

Sp
ee

du
p 

ov
er

 S
er

ia
l 

Number of Threads 

Ideal 

SWARM 

OpenMP 



© Copyright 2011 ET International, Inc.  

ET
 In

te
rn

at
io

na
l 

Graph	
  500	
  Implementation	
  with	
  SWARM	
  

•  Graph500:	
  New	
  supercomputing	
  benchmark	
  for	
  more	
  
realistic	
  application	
  workloads	
  

•  Ported	
  to	
  SWARM	
  and	
  produced	
  results	
  on	
  4	
  different	
  
supercomputers.	
  

Supercomputer	
  
Name	
   Sandia	
  Redsky	
   TACC	
  Lonestar	
   Intel	
  Endeavor	
   ORNL	
  Jaguar	
  

Processor	
  Type	
  
Nehalem	
  
X5570	
  

Westmere	
  
5680	
  

Westmere	
  
X5670	
   Cray	
  XT5-­‐HE	
  

Processor	
  Speed	
   2.93	
  GHz	
   3.33	
  GHz	
   2.93	
  GHz	
   2.6	
  GHz	
  

Processors	
  per	
  Node	
   8	
   12	
   12	
   12	
  

Main	
  memory	
  size	
   12GB/node	
   24GB/node	
   24GB/node	
   16GB/Node	
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SWARM/MPI	
  Performance	
  Comparison	
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Advantages	
  of	
  SWARM	
  on	
  	
  	
  

•  Lower	
  type	
  overhead	
  	
  
•  Active	
  messages	
  	
  -­‐	
  fewer	
  copies	
  and	
  round	
  trips	
  
•  Share	
  address	
  space	
  on	
  same	
  node	
  
•  Monitor	
  and	
  allocate	
  cache	
  utilization	
  
•  Idle	
  threads	
  can	
  steal	
  work	
  from	
  other	
  threads	
  
•  Effective	
  substitute	
  for	
  MPI	
  +	
  OpenMP	
  +	
  Active	
  Messages	
  –	
  
All	
  in	
  one	
  package	
  with	
  lower	
  overheads	
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SWARM: Key Concepts 

•  SWift Adaptive Runtime Machine: 
 Unifies across nodes, cores, and accelerators 
 Dynamically maps applications needs to available 

resources 
 Provides expression of asynchronous programs to 

maximize performance and hide latency 
 Communication and synchronization is implicit in 

the task dependencies 
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SWARM Availability Presently 

•  Current features 
 HAL backends for x86 (32 and 64-bit), POSIX 
 Scheduling of codelets 
 Create dependencies between codelets 
 Basic network support via TCP/IP 
 SCALE Codelet IR Language 
 API Documentation and Programmers Guide 

•  Early Access Release SWARM 0.7.0 available now: 
 http://www.etinternational.com/swarm 

•  New version by early December 
 Full locale support (scheduling and memory) 
 Full abstraction of hardware/OS in HAL 
 Proper network stack 
 Codelet/function symmetry 
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SWARM Future Plans 

•  Hardware Support 
  Intel MIC, Runnemeade 
 GPU, Adapteva 

•  Legacy Support 
 Work with MPI/OpenMP and other runtimes 

•  Via recompilation (e.g. OpenMP) 
•  Operate side-by-side (e.g. MPI) 
•  Via DLL injection (e.g. OpenCL) 

 UPC, SHMEM support 
•  Language 

 Wrestling with higher level language 
•  Detailed language for experts, yet simple for Joe programmer 

•  Monitoring and Debugging 
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Key Takeaways 

•  Contexts Where SWARM helps 
  Irregular loads 
  Long latency operations 
  Resource constraints other than CPU 
  Heterogeneous systems 

•  Benefits 
  Programming Productivity 
  Deliver higher throughput and higher performance 
  Power efficiency 
  Purchase flexibility 

•  Key Runtime Concepts 
  Asynchronous Split-Phase Resource Access 
  Hierarchical Event Driven Scheduling 
  Abstraction of resources for unified heterogeneous  access 

•   Experiences 
  SWARM Runtime system  
  SWARM SCALE Codelet IR Langauge 
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