
© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

HPC Runtime Software

ET International
Rishi Khan

SC’11

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Current Programming Models

•  Shared Memory Multiprocessing
 OpenMP – fork/join model
 Pthreads – Arbitrary SMP parallelism (but hard to program/

debug)
 Cilk – Work Stealing (only good for recursive parallelism)

•  Distributed Memory Multiprocessing
 MPI – Bulk synchronous Parallelism
 SHMEM, UPC - PGAS

•  Hybrid Models
 MPI + OpenMP (needed to get performance on multi-core,

multi-node systems)
•  Heterogeneous Accelerator Parallelism

 CUDA, OpenCL

2

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Problem Statement

1.  Heterogeneous systems require multiple
languages and programming models

•  e.g. MPI across nodes, OpenMP across cores, OpenCL
across GPUs

2.  Current programming models are based on the
idea of ‘communicating sequential
processes’ (CSP)

•  Difficult to program and debug.
•  Difficult to express dynamic parallelism
•  Does not take advantage of dynamic availability of

resources
•  Extremely hard to exploit programs with irregular and/or global

data accesses

3

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

MPI, OpenMP, OpenCL New Runtime Systems

§  Asynchronous Event-Driven Tasks
§  Dependencies
§  Constraints
§  Resources
§  Active Messages

VS.

§  Communicating Turing Machines
§  Bulk Synchronous
§  Message Passing

T
im

e

T
im

e

Active threads

Waiting

Runtime System Comparisons

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Solution

•  Express program as tasks with runtime dependencies
and constraints
 Data: input arguments
 Control: must run before/after certain tasks
 Resource: locks, CPU or GPU, etc

•  Tasks can run to completion once all runtime
dependencies and constraints are met

•  Runtime system determines which tasks to run based
on runtime resource availability.

•  ETI implements this solution in a technology called
“SWARM”

5

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

•  SWift Adaptive Runtime Machine (SWARM):
 Runtime system for heterogeneous large-scale systems
 Implements an execution model based on specially tagged tasks:

•  Non-preemptible pieces of code.
•  Tagged with dependences, constraints, and resource

demands.
•  Scheduled when all dependencies and constraints are

satisfied.
•  Once scheduled, runs to completion in a non-blocking fashion.
•  These non-blocking tagged tasks are called codelets.

•  Goal:
 Unified runtime system for heterogeneous distributed parallel

systems
 Supplant and synergize the separate abilities of MPI, OpenMP,

and OpenCL.

What is SWARM?

6

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

How does SWARM achieve its goals?

•  Two-level threading system
 First level are heavy-weight and bound to processing resource
 Second level light-weight threads run non-preemptively

•  Object-oriented design which is easily extended to new
architectures and heterogeneous systems
 Working across cores and nodes and heterogeneous devices

•  All runtime resources are accessed through split-phase
non-blocking asynchronous operations
 The result of puts/gets are scheduled later using asynchronous

callbacks

•  Takes a dynamic view of the computation and the
machine
  in contrast to static mapping found in current programming models

7

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Tasks mapped
to resources

CPU CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

GPU

GPU

Enabled Tasks Tasks with Unsatisfied Dependencies

Dependencies
satisfied

Resources in Use

CPU

GPU

SWARM

Resources allocated

Tasks enabled

Available Resources

Resources released

SWARM Execution Overview

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Runtime Resource Access

•  All communication is through asynchronous split-
phase transactions between resources, e.g.:
 Async procedure call: put/get into procedure resources
 Data storage: put/get to storage resource

•  Two basic resource access patterns:
 Producer passes key to consumer

 Producer and consumer know resource key a priori

9

Producer

Consumer

put

key get(key) Callback

Callback data

Producer

Consumer

put(key)

key get(key)
Callback

Callback data

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Motivation - Resource Sharing

•  Allow for access to limited quantities of a resource
 Example: mutex, queue
 Producer “puts”, Consumer “gets”
 Use a put callback to let producer know the operation

completed
 Use a get callback to let consumer know when the resource is

available.

10

P1

P2
queue

put
put

C1

C2

get
get

T1

T2

mutex

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Features

•  Exposing implicit parallelism
•  Manage asynchrony
•  Migration of data structures, work, global control
•  Global namespace
•  Hierarchy of locales for data locality and affinity
•  Runtime Introspection
•  Dynamic Adaptive Runtime System
•  Solution to multicore/multinode problem that is user

transparent to physical parallelism
•  Diversity of scheduling domains & policies of tasks and

resources
•  Readable intermediate representation

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Moving Global Control

while (visited_list)!
{!
 foreach(v in visited_list)!
 foreach(n in neighbors(v))!
 {!
 if (!visited(n)) !
 {!
 new_visited_list[pos++] = n;!
 parent[n] = v;!
 }!
 }!
 }!
 swap_lists(new_visited_list, visited_list);!
}!

Run this at the owner of n.

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM: Key Concepts

•  SWift Adaptive Runtime Machine:
 Unifies across nodes, cores, and accelerators
 Dynamically maps applications needs to available

resources
 Provides expression of asynchronous programs to

maximize performance and hide latency
 Communication and synchronization is implicit in

the task dependencies

13

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Availability Presently

•  Current features
 HAL backends for x86 (32 and 64-bit), POSIX
 Scheduling of codelets
 Create dependencies between codelets
 Basic network support via TCP/IP
 SCALE Codelet IR Language
 API Documentation and Programmers Guide

•  Early Access Release SWARM 0.7.0 available now:
 http://www.etinternational.com/swarm

•  New version by early December
 Full locale support (scheduling and memory)
 Full abstraction of hardware/OS in HAL
 Proper network stack
 Codelet/function symmetry

14

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Future Plans

•  Hardware Support
  Intel MIC, Runnemeade
 GPU, Adapteva

•  Legacy Support
 Work with MPI/OpenMP and other runtimes

•  Via recompilation (e.g. OpenMP)
•  Operate side-by-side (e.g. MPI)
•  Via DLL injection (e.g. OpenCL)

 UPC, SHMEM support
•  Language

 Wrestling with higher level language
•  Detailed language for experts, yet simple for Joe programmer

•  Monitoring and Debugging

15

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Takeaways

•  Contexts Where SWARM helps
  Irregular loads
  Long latency operations
  Resource constraints other than CPU
  Heterogeneous systems

•  Benefits
  Programming Productivity
  Deliver higher throughput and higher performance
  Power efficiency
  Purchase flexibility

•  Key Runtime Concepts
  Asynchronous Split-Phase Resource Access
  Hierarchical Event Driven Scheduling
  Abstraction of resources for unified heterogeneous access

•  Experiences
  SWARM Runtime system
  SWARM SCALE Codelet IR Langauge

16

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Case Studies

•  Mandelbrot

•  Barnes-hut N-body problem

•  Graph500

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Mandelbrot

Mandelbrot

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

du
p

ov
er

 S
er

ia
l

Number of Threads

SWARM

OpenMP Dynamic

OpenMP Static

OpenMP Guided

Ideal

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Barnes-Hut

Barnes-Hut

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Sp
ee

du
p

ov
er

 S
er

ia
l

Number of Threads

Ideal

SWARM

OpenMP

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Graph	
 500	
 Implementation	
 with	
 SWARM	

•  Graph500:	
 New	
 supercomputing	
 benchmark	
 for	
 more	

realistic	
 application	
 workloads	

•  Ported	
 to	
 SWARM	
 and	
 produced	
 results	
 on	
 4	
 different	

supercomputers.	

Supercomputer	

Name	
 Sandia	
 Redsky	
 TACC	
 Lonestar	
 Intel	
 Endeavor	
 ORNL	
 Jaguar	

Processor	
 Type	

Nehalem	

X5570	

Westmere	

5680	

Westmere	

X5670	
 Cray	
 XT5-­‐HE	

Processor	
 Speed	
 2.93	
 GHz	
 3.33	
 GHz	
 2.93	
 GHz	
 2.6	
 GHz	

Processors	
 per	
 Node	
 8	
 12	
 12	
 12	

Main	
 memory	
 size	
 12GB/node	
 24GB/node	
 24GB/node	
 16GB/Node	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM/MPI	
 Performance	
 Comparison	

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%
1100%
1200%
1300%
1400%
1500%

4 8 16 32 64 128 256 512

SW
A

R
M

 S
pe

ed
up

Number of Nodes

Lonestar

Redsky

Endeavor

Jaguar

MPI

Consistent	
 speed	
 up	
 from	
 2-­‐fold	
 to	
 14.5-­‐fold	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Advantages	
 of	
 SWARM	
 on	
 	
 	

•  Lower	
 type	
 overhead	
 	

•  Active	
 messages	
 	
 -­‐	
 fewer	
 copies	
 and	
 round	
 trips	

•  Share	
 address	
 space	
 on	
 same	
 node	

•  Monitor	
 and	
 allocate	
 cache	
 utilization	

•  Idle	
 threads	
 can	
 steal	
 work	
 from	
 other	
 threads	

•  Effective	
 substitute	
 for	
 MPI	
 +	
 OpenMP	
 +	
 Active	
 Messages	
 –	

All	
 in	
 one	
 package	
 with	
 lower	
 overheads	

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM: Key Concepts

•  SWift Adaptive Runtime Machine:
 Unifies across nodes, cores, and accelerators
 Dynamically maps applications needs to available

resources
 Provides expression of asynchronous programs to

maximize performance and hide latency
 Communication and synchronization is implicit in

the task dependencies

23

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Availability Presently

•  Current features
 HAL backends for x86 (32 and 64-bit), POSIX
 Scheduling of codelets
 Create dependencies between codelets
 Basic network support via TCP/IP
 SCALE Codelet IR Language
 API Documentation and Programmers Guide

•  Early Access Release SWARM 0.7.0 available now:
 http://www.etinternational.com/swarm

•  New version by early December
 Full locale support (scheduling and memory)
 Full abstraction of hardware/OS in HAL
 Proper network stack
 Codelet/function symmetry

24

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

SWARM Future Plans

•  Hardware Support
  Intel MIC, Runnemeade
 GPU, Adapteva

•  Legacy Support
 Work with MPI/OpenMP and other runtimes

•  Via recompilation (e.g. OpenMP)
•  Operate side-by-side (e.g. MPI)
•  Via DLL injection (e.g. OpenCL)

 UPC, SHMEM support
•  Language

 Wrestling with higher level language
•  Detailed language for experts, yet simple for Joe programmer

•  Monitoring and Debugging

25

© Copyright 2011 ET International, Inc.

ET
 In

te
rn

at
io

na
l

Key Takeaways

•  Contexts Where SWARM helps
  Irregular loads
  Long latency operations
  Resource constraints other than CPU
  Heterogeneous systems

•  Benefits
  Programming Productivity
  Deliver higher throughput and higher performance
  Power efficiency
  Purchase flexibility

•  Key Runtime Concepts
  Asynchronous Split-Phase Resource Access
  Hierarchical Event Driven Scheduling
  Abstraction of resources for unified heterogeneous access

•  Experiences
  SWARM Runtime system
  SWARM SCALE Codelet IR Langauge

26

