
Hari Govind, Gengbin Zheng, Laxmikant Kale, Michael Breitenfeld, Philippe Geubelle
University of Illinois at Urbana-Champaign

Charm++ Architecture

User View:
object carrying the job

System implementation:
objects mapped to real processors

Virtual Objects

Real processors

Software engineering
Number of virtual processors can be independently
controlled
Separate VPs for different modules

Message driven execution
Computation performed upon receipt of a message
Adaptive overlap of communication
Predictability :

Automatic out-of-core execution
Asynchronous reductions

Dynamic mapping
Heterogeneous clusters

Vacate, adjust to speed, share
Automatic checkpointing/restarting
Automatic dynamic load balancing
Change set of processors used
Communication optimization

Benefits

AMPI: Adaptive MPI
Each virtual process implemented as a user-level thread
embedded in a Charm++ object

Real Processors

MPI
“processes”

Implemented
as virtual
processes
(user-level
migratable
threads)

Load balancing task in Charm++
Given a collection of migratable objects and a set of
computers connected in a certain topology
Find a mapping of objects to processors

Almost same amount of computation on each
processor
Communication between processors is minimum

Dynamic mapping of objects to processors
Two major approaches

No predictability of load patterns
Fully dynamic
Early work on State Space Search,
Branch&Bound, ...
Seed load balancers

With certain predictability
CSE, molecular dynamics simulation
Measurement-based load balancing strategy

http://charm.cs.uiuc.eduhttp://charm.cs.uiuc.edu

Motivations

Versatile, automatic load balancers are desired
Application independent
No/little user effort is needed to balance load
Addresses the load balancing needs of many different
types of applications

Tasks are initially represented
by object creation messages,
or ``seeds''.
Seed load balancing involves
the movement of seeds, to
balance work across
processors
Low responsiveness

Load balancing request
blocked by long entries

Neighborhood averaging with
work-stealing when Idle
using immediate messages

Interruption-based
message
Fast response to the
request
Work-stealing at idle time

80000 objects, 10% heavy objects

Principle of Persistence

Once an application is expressed in terms of
interacting objects, object communication patterns
and computational loads tend to persist over time

In spite of dynamic behavior
Abrupt and large,but infrequent changes
(eg:AMR)
Slow and small changes (eg: particle migration)

Parallel analog of principle of locality
Heuristics, that holds for most CSE applications

How to Migrate Objects
Objects

Packing/unpacking functions
User-level Threads

Global variables:
ELF object format: switch GoT pointer
Alternative: compiler/pre-processor support

Migration of stack
Isomalloc (from PM2 in France):

Reserve virtual space on all processors for
each thread
Mmap it when you migrate there

Migration of Heap data:
Isomalloc heaps
User-supplied or compiler generated pack
function

Measurement Based Load Balancing

Based on Principle of persistence
Runtime instrumentation

Measures communication volume and computation
time

Measurement based load balancers
Use the instrumented data-base periodically to
make new decisions
Many alternative strategies can use the database

Centralized vs. distributed
Greedy improvements vs. complete
reassignments
Taking communication into account
Taking dependences into account (More
complex)
Topology-aware

Sequential Refinement and Coarsening
Results

Shock propagation and
reflection down the
length of the bar

Adaptive mesh
modification to
capture the shock
propagation

Applications
CSE applications

Crack propagation
Adaptive mesh refinement

Molecular dynamics
NAMD
CPAIMD

Cosmology simulation
Fault tolerance

● Independent mesh
adaptivity operations in
parallel
● Locking individual
nodes
● No global
synchronization
● Adjacency data
structures:

● Node-to-node
● Element-to-element
● Node-to-element

Mesh Adjacency
e2e,e2n,n2e,n2n

Generate, Modify …

Mesh Modification
Lock(),Unlock()

Add/Remove Node()
Add/Remove Element()

Nodes:
Local, Shared, Ghost

Elements:
Local,Ghost

Application (serial or parallel)

Mesh Adaptivity
Edge Flip, Edge Bisect,
Edge Contract, Longest

edge bisect, …

ParFUM

Integrated: Geometry as well
as ghost layer management

Parallel Framework for
Unstructured Meshes (ParFUM)

Charm++ Load Balancing
Framework

Seed Load Balancing

Adaptivity code integrated with ParFUM
High-level algorithms for refinement and
coarsening

n Built on low-
level parallel
mesh
modification
primitives

n Maintain up-to-
date parallel
mesh state
including
adjacencies,
ghost layers
and user data

Programmer: [Over] decomposition into virtual processors (VP)

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Processor Virtualization

Parallel machines abound
Capabilities enhanced as machines get more powerful

PSC Lemieux, ASCI White, Earth Simulator, BG/L
Clusters becoming ubiquitous
Desktops and Games consoles go parallel:

Cell processor, multi-core chips,
Applications get more ambitious and complex

Adaptive algorithms
Irregular or dynamic behavior
Multi-component and multi-physics
MPI based code limitations

No adaptive load balancing

Thread 2 stack

Thread 4 stack

Processor A’s Memory

Code
Globals

Heap

0x00000000

0xFFFFFFFF

Thread 1 stack

Code
Globals

Heap

0x00000000

0xFFFFFFFF

Processor B’s Memory

Migrate
Thread

3

Thread 3 stack

Thread migration with isomalloc

Load Balancing Strategies

http://charm.cs.uiuc.edu
http://charm.cs.uiuc.edu

Apply adaptive load balancing framework for increasingly complex simulations
Adaptive insertion/activation of cohesive elements for dynamic fracture
simulations
Adaptive mesh adaptation

Conduct experiments using the load balancing framework on very large parallel
machines such as Blue Gene/L

Requires mesh to be partitioned into very large number of chunks
Experiment with the hierarchical load balancing strategy

Future work

http://charm.cs.uiuc.eduhttp://charm.cs.uiuc.edu

1-D elastic-plastic wave
propagation

Bar is dynamically
loaded resulting in
an elastic wave
propagating down
bar, upon reflection
from the fixed end
the material
becomes plastic

Written in AMPI

3-D dynamic elastic-plastic
fracture

3D Plastic Fracture
A single edge notched
specimen pulled at both
ends with a ramping
magnitude of 1 m/s
over .01 seconds
Isosurface is the extent

of the plastic zone

Load imbalance occurs
at the onset of an
element turning from
elastic to plastic, zone of
plasticity forms over a
limited number of
processors as the crack
propagates

0.01

0.1

1

10

100

1 2 4 8 16 32 64 128 256 512 1024

tim
e

pe
r

st
ep

 (s
ec

on
ds

)

SC2002 Gordon Bell Award

36 ms per step
76% efficiency

327K atoms
with PME

Lemieux
(PSC)

28 s per step

Linear
scaling

Processor Utilization against Time on (a) 128 (b) 1024 processors

On 128 processor, a single load balancing step suffices, but

On 1024 processors, we need a “refinement” step.

Load
Balancing

Aggressive Load
Balancing

Refinement
Load

Balancing

Processor Utilization across processors after (a) greedy load balancing and (b) refining

Note that the underloaded processors are left underloaded (as they don’t impact
perforamnce); refinement deals only with the overloaded ones

Some overloaded
processors

Hari Govind, Gengbin Zheng, Laxmikant Kale, Michael Breitenfeld, Philippe Geubelle
University of Illinois at Urbana-Champaign

Profile view of a 3000 processor run of NAMD (White shows idle time)

With LB

0

1

2

3

4

1 101 201 301 401 501 601

Timestep

S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

Without LB

0

1

2

3

4

1 101 201 301 401 501 601

Timestep

S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

LeanMD, Apoa1, 128 processors

Crack Propagation Simulation

•Dynamic 3D crack propagation
simulation
•400,000 linear strain tetrahedral
elements
•SGi Altix (NCSA)
•32 processors
•160 AMPI threads
•Simulating an elastic bar
•Total run time: 207 seconds

Total execution time: 198 seconds 187 seconds

Load balancing Load balancing

With “stop and go” load balancing scheme With agile load balancing scheme

Molecular Dynamics Simulation Load Balancing on Very Large
Machines
Scalability limits

Consider an application with 1M objects on 64K
processors

Metrics for a multi-dimensional optimization
Memory usage on any one processor
Decision-making time
Quality of load balancing decision

0

50

100

150

200

250

300

350

400

450

500

LB Memory
usage on the
central node

(MB)

128K 256K 512K 1M

Number of objects

32K processors 64K processors

benchmark creates a specified number of
communicating objects in 2D-mesh.
Run on Lemieux 64 processors, using BigSim

0

50

100

150

200

250

300

350

400

Execution
Time (in
seconds)

128K 256K 512K 1M

Number of Objects

GreedyLB GreedyCommLB RefineLB

Simulation Results : using BigSim

Load Balancing in Fault Tolerance

LeanMD application
10 crashes
128 processors
Checkpoint every 10

time steps

0 … 1023 6553564512 …1024 … 2047 6451163488 ……...

0 1024 63488 64512

1

Load Data (OCG)

Refinement-based Load balancing

Greedy-based Load balancing

Load Data

token
object

Hierarchical Load Balancing

Molecular dynamics and related algorithms
e.g., minimization, steering, locally enhanced
sampling, alchemical and conformational free
energy perturbation

Efficient algorithms for full electrostatics
Effective on affordable commodity hardware
Building a complete modeling environment
Written in Charm++

ATP-Synthase

Double in-memory checkpoint/restart
Does not rely on extra processors

Maintain execution efficiency after restart

http://charm.cs.uiuc.edu
http://charm.cs.uiuc.edu

