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Crack Propagation Simulation

1-D elastic-plastic wave
propagation

* Bar Is dynamically
loaded resulting in
an elastic wave
propagating down
bar, upon reflection
from the fixed end
the material
becomes plastic

@ Written in AMPI
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*Dynamic 3D crack propagation
simulation

*400,000 linear strain tetrahedral
elements

Ltilization Graph (Sumrmany

CPU Utilization(3)

*SGi Altix (NCSA)

*32 processors

*160 AMPI threads
«Simulating an elastic bar
*Total run time: 207 seconds
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Total execution time: 198 seconds

@ 3-D dynamic elastic-plastic
fracture

* 3D Plastic Fracture

* A single edge notched
specimen pulled at both
ends with aramping
magnitude of 1 m/s
over .01 seconds

* |sosurface is the extent
of the plastic zone

* Load Imbalance occurs
at the onset of an
element turning from
elastic to plastic, zone of

plasticity forms over a

Imited number of

Nrocessors as the crack
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Molecular Dynamics Simulation

Molecular dynamics and related algorithms

* e.g., minimization, steering, locally enhanced
sampling, alchemical and conformational free

energy perturbation

Efficient algorithms for full electrostatics
Effective on affordable commodity hardware
Building a complete modeling environment

Written in Charm++
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Processor Utilization against Time on (a) 128 (b) 1024 processors
On 128 processor, a single load balancing step suffices, but

On 1024 processors, we need a “refinement” step.

Some overloaded
Processors

N

Foosazar

Foosazar

Processor Utilization across processors after (a) greedy load balancing and (b) refining

Note that the underloaded processors are left underloaded (as they don’t impact
perforamnce); refinement deals only with the overloaded ones
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L oad Balancingon Very Large

M achines
Scalability limits

[ ]

* Consider an application with 1M objects on 64K

Processors

@ Metrics for a multi-dimensional optimization

* Memory usage on any one processor

* Decision-making time

* Quality of load balancing decision s
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Simulation Results : using BigSim
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communicating objects in 2D-mesh.

benchmark creates a specified number of

Run on Lemieux 64 processors, using BigSim

Hierarchical Load Balancing

-based Load balancing

@ Double in-memory checkpoint/restart
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* Does not rely on extra processors
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L oad Balancing in Fault Tolerance

* Maintain execution efficiency after restart
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*LeanMD application
*10 crashes
*128 processors

*Checkpoint every 10
time steps

@ Apply adaptive load balancing framework for increasingly complex simulations

* Adaptive insertion/activation of cohesive e ements for dynamic fracture

simulations

* Adaptive mesh adaptation

@ Conduct experiments using the load balancing framework on very large parallel
machines such as Blue Gene/L

* Reguires mesh to be partitioned into very large number of chunks

* Experiment with the hierarchical load balancing strategy
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