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Charm++ Architecture

User View:
object carrying the job

System implementation:
objects mapped to real processors

Virtual Objects

Real processors

Software engineering
Number of virtual processors can be independently 
controlled
Separate VPs for different modules

Message driven execution
Computation performed upon receipt of a message
Adaptive overlap of communication
Predictability : 

Automatic out-of-core execution
Asynchronous reductions

Dynamic mapping
Heterogeneous clusters

Vacate, adjust to speed, share
Automatic checkpointing/restarting
Automatic dynamic load balancing
Change set of processors used
Communication optimization

Benefits

AMPI: Adaptive MPI
Each virtual process implemented as a user-level thread
embedded in a Charm++ object

Real Processors

MPI 
“processes”

Implemented 
as virtual 
processes 
(user-level 
migratable 
threads)

Load balancing task in Charm++
Given a collection of migratable objects and a set of 
computers connected in a certain topology
Find a mapping of objects to processors

Almost same amount of computation on each 
processor
Communication between processors is minimum

Dynamic mapping of objects to processors
Two major approaches

No predictability of load patterns
Fully dynamic 
Early work on State Space Search, 
Branch&Bound, ...
Seed load balancers

With certain predictability
CSE, molecular dynamics simulation
Measurement-based load balancing strategy
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Motivations

Versatile, automatic load balancers are desired
Application independent
No/little user effort is needed to balance load
Addresses the load balancing needs of many different 
types of applications

Tasks are initially represented 
by object creation messages, 
or ``seeds''.
Seed load balancing involves 
the movement of seeds, to 
balance work across 
processors
Low responsiveness

Load balancing request 
blocked by long entries

Neighborhood averaging with 
work-stealing when Idle 
using immediate messages

Interruption-based 
message
Fast response to the 
request
Work-stealing at idle time

80000 objects, 10% heavy objects

Principle of Persistence

Once an application is expressed in terms of  
interacting objects, object communication patterns 
and  computational loads  tend to persist over time

In spite of dynamic behavior
Abrupt and large,but infrequent changes 
(eg:AMR)
Slow and small changes (eg: particle migration)

Parallel analog of principle of locality
Heuristics, that holds for most CSE applications

How to Migrate Objects
Objects

Packing/unpacking functions
User-level Threads

Global variables:
ELF object format: switch GoT pointer
Alternative: compiler/pre-processor support

Migration of stack
Isomalloc (from PM2 in France):

Reserve virtual space on all processors for 
each thread
Mmap it when you migrate there

Migration of Heap data:
Isomalloc heaps
User-supplied or compiler generated pack 
function

Measurement Based Load Balancing

Based on Principle of persistence
Runtime instrumentation

Measures communication volume and computation 
time

Measurement based load balancers
Use the instrumented data-base periodically to 
make new decisions
Many alternative strategies can use the database

Centralized vs. distributed
Greedy improvements vs. complete 
reassignments
Taking communication into account
Taking dependences into account (More 
complex)
Topology-aware 

Sequential Refinement and Coarsening 
Results

Shock propagation and 
reflection down the 
length of the bar

Adaptive mesh 
modification to 
capture the shock 
propagation

Applications
CSE applications

Crack propagation
Adaptive mesh refinement

Molecular dynamics
NAMD
CPAIMD 

Cosmology simulation
Fault tolerance

● Independent mesh 
adaptivity operations in 
parallel
● Locking individual 
nodes
● No global 
synchronization
● Adjacency data 
structures:

● Node-to-node
● Element-to-element
● Node-to-element

Mesh Adjacency
e2e,e2n,n2e,n2n

Generate, Modify …

Mesh Modification
Lock(),Unlock()

Add/Remove Node()
Add/Remove Element()

Nodes:
Local, Shared, Ghost

Elements:
Local,Ghost

Application (serial or parallel)

Mesh Adaptivity
Edge Flip, Edge Bisect, 
Edge Contract, Longest 

edge bisect, …

ParFUM

Integrated: Geometry as well 
as ghost layer management

Parallel Framework for 
Unstructured Meshes (ParFUM)

Charm++ Load Balancing 
Framework

Seed Load Balancing

Adaptivity code integrated with ParFUM
High-level algorithms for refinement and 
coarsening

n Built on low-
level parallel 
mesh 
modification 
primitives

n Maintain up-to-
date parallel 
mesh state 
including 
adjacencies, 
ghost layers 
and user data

Programmer: [Over] decomposition into virtual processors (VP)

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Processor Virtualization

Parallel machines abound
Capabilities enhanced as machines get more powerful 

PSC Lemieux, ASCI White, Earth Simulator, BG/L
Clusters becoming ubiquitous 
Desktops and Games consoles go parallel:

Cell processor, multi-core chips, 
Applications get more ambitious and complex

Adaptive algorithms
Irregular or dynamic behavior
Multi-component and multi-physics
MPI based code limitations

No adaptive load balancing

Thread 2 stack

Thread 4 stack

Processor A’s Memory

Code
Globals

Heap

0x00000000

0xFFFFFFFF

Thread 1 stack

Code
Globals

Heap

0x00000000

0xFFFFFFFF

Processor B’s Memory

Migrate 
Thread 

3

Thread 3 stack

Thread migration with isomalloc

Load Balancing Strategies
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Apply adaptive load balancing framework for increasingly complex simulations
Adaptive insertion/activation of cohesive elements for dynamic fracture 
simulations
Adaptive mesh adaptation 

Conduct experiments using the load balancing framework on very large parallel 
machines such as Blue Gene/L

Requires mesh to be partitioned into very large number of chunks
Experiment with the hierarchical load balancing strategy

Future work
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1-D elastic-plastic wave 
propagation

Bar is dynamically 
loaded resulting in 
an elastic wave 
propagating down 
bar, upon reflection 
from the fixed end 
the material 
becomes plastic

Written in AMPI

3-D dynamic elastic-plastic 
fracture

3D Plastic Fracture
A single edge notched 
specimen pulled at both 
ends with a ramping 
magnitude of 1 m/s 
over .01 seconds
Isosurface is the extent 

of the plastic zone 

Load imbalance occurs 
at the onset of an 
element turning from 
elastic to plastic, zone of 
plasticity forms over a 
limited number of 
processors as the crack 
propagates
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36 ms per step
76% efficiency

327K atoms
with PME

Lemieux
(PSC)

28 s per step

Linear 
scaling

Processor Utilization against Time on (a) 128 (b) 1024 processors

On 128 processor, a single load balancing step suffices, but

On 1024 processors, we need a “refinement” step.

Load 
Balancing

Aggressive Load 
Balancing

Refinement 
Load 

Balancing

Processor Utilization across processors after (a) greedy load balancing and (b) refining

Note that the underloaded processors are left underloaded (as they don’t impact 
perforamnce); refinement deals only with the overloaded ones

Some overloaded 
processors
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Profile view of a 3000 processor run of NAMD (White shows idle time)  

With LB
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Without LB
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LeanMD, Apoa1, 128 processors

Crack Propagation Simulation

•Dynamic 3D crack  propagation 
simulation
•400,000 linear strain tetrahedral 
elements
•SGi Altix (NCSA)
•32 processors
•160 AMPI threads
•Simulating an elastic bar
•Total run time: 207 seconds

Total execution time: 198 seconds 187 seconds

Load balancing Load balancing

With “stop and go” load balancing scheme With agile load balancing scheme

Molecular Dynamics Simulation Load Balancing on Very Large 
Machines
Scalability limits

Consider an application with 1M objects on 64K 
processors

Metrics for a multi-dimensional optimization
Memory usage on any one processor
Decision-making time
Quality of load balancing decision
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benchmark creates a specified number of 
communicating objects in 2D-mesh.
Run on Lemieux 64 processors, using BigSim
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Simulation Results : using BigSim

Load Balancing in Fault Tolerance

LeanMD application
10 crashes
128 processors
Checkpoint every 10 

time steps
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Load Data (OCG)

Refinement-based Load balancing

Greedy-based Load balancing

Load Data

token
object

Hierarchical Load Balancing

Molecular dynamics and related algorithms
e.g., minimization, steering, locally enhanced 
sampling, alchemical and conformational free 
energy perturbation

Efficient algorithms for full electrostatics
Effective on affordable commodity hardware
Building a complete modeling environment
Written in Charm++

ATP-Synthase

Double in-memory checkpoint/restart
Does not rely on extra processors

Maintain execution efficiency after restart
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