SPEEDING UP PARALLEL SIMULATION WITH

AUTOMATIC LOAD BALANCING

Harl Govind, Gengbin Zheng, Laxmikant Kale, Michael Breitenfeld, Philippe Geubelle
University of lllinois at Urbana-Champaign

M otivations AMPI: Adaptive M Pl Charm++ L oad Balancing
. @ Each virtual process implemented as a user-level thread Framework L oad Bal anCing Strategies
* Parallel machines abound embedded in a Charm++ object

« Capabilities enhanced as machines get more powerful » | oad balancing task in Charm++

. . . N\ [MPI
% PSC Lemieux, ASCI White, Earth Simulator, BG/L 4 “DrOCEsSes” / \ = Glven a collection of migratable objects and a set of
« Clusters becoming ubiquitous 2 g | h 2 computers connected in a certain topol ogy
| _ Implemented é * Find a mapping of objects to processors . . .
* Desktops and Games consoles go parallel virua PRI T RS B R [comn [Noorsests]
« Cell . It hi 2 processes * Almost same amount of computation on each
Cell processor, multi-core chips, (User-lvel 0rOCEssor

@ Applications get more ambitious and complex (¥) tmhlrga?jtsa)b © _ J » Communication between processors is minimum
. . DummyLB MetisLB OrbLB RecBisectBfLB NeighborlLB
Adaptive algorithms “\ReaI_Proc » Dynamic mapping of objects to processors M M M M M
‘ RefineLB \ “ TopoLB “

piis

* |rregular or dynamic behavior

» Two major approaches l_‘_‘ |_\j
* Multi-component and multi-physics » No predictability of load patterns ‘ Greedyl B \ ‘ RandCentLB \

* MPI| based code limitations

» Fully dynamic
* No adaptive load balancing B - .
enef] tS * Ear |y work on State Space Sear Ch, GreedyCommLB GreedyRefLB RandReflLB RefineCommLB
Branch& Bound, ... @ M
@ Software engineering » Seed load balancers
* Number of virtual processors can be independently « With certain predictability

B E—

controlled
« Separate VV Ps for different modules Parallel Framework for
* Measurement-based |oad balancing strategy

* Message driven execution Unstructured M eshes (ParFUM)

* Computation performed upon receipt of a message

* CSE, molecular dynamics simulation

Integrated: Geometry as well

* Adaptive overlap of communication

. . . : as ghost layer management Application (serial or parallel
s Versatile, automatic |oad balancers are desired » Predictability : Seed L oad Balancing 2 = i (parallel)
* Application independent » Automatic out-of-core execution _ . Independent mesh 1
. . | » Tasksareinitialy represented adaptivity operations in ParFUI\V \\
= Nol/little user effort is needed to balance load * Asynchronous reductions by object creation messages, ||||| parapllel y Op — "
: : _ _ or S . Mesh Adaptivity :
* dresses theoed belancing nesds of many differen * Dynaic mapping - i g individual || R b, | | | M Ademe
ypes Of appllcatlons & Seed |Oad bal ancl ng |nVO| Ves o m omom e @ * LOCkI ng IndIVIduaI Edge Contract, Longest e2e,e2n,n29,n2n
* Heterogeneous clusters — = Generate, Modify ...
the movement of seeds, to nodes edge bisect, ...
» VVacate, adjust to speed, share balance work across i e E o — N |
, : e . No global
= Applications - _ _ _ » Low responsiveness o | — Lock(),Unlock()
A . J * Automatic dynamic load balancing _ . Adjacency data Add/Remove Node()
» CSE applications * L oad balancing request _ Add/Remove Element()
« Crack propagation * Change set of processors used blocked by long entries ;_; structures
P * Communication optimization » Neighborhood averaging with | — — - Node-to-node Nodes Elements
* Adaptive mesn refinement work-stealing when Idle e . Element-to-element \ Local, Shared, Ghost | Local,Ghost /

* Molecular dynamics using immediate messages

. Node-to-element

* NAMD * mteesggjgpetlon-based 80000 objects, 10% heavy objects
CPAIMD - :
) | | How to Migrate Objects * Fast response to the
* Cosmology ssmulation request
* Fault tolerance * Objects » Work-stealing at idle time
* Packing/unpacking functions
* User-level Threads M easur ement Based L oad Balancing
* (Global variables: : : :
+ ELF object format: switch GoT pointer « Based on Principle of persistence SReesuquletr;tl al Refinement and Coar sen ng
i i . * Alternative: compiler/pre-processor support @ Runtime instrumentation
Processor Virtualization Miara - |
igration of stack * Measures communication volume and computation Shock propagation and
L . + |somalloc (from PM2 in France): time reflection down the
[Over] decomposition into virtual processors (VP) length of the bar

» Reserve virtua space on all processors for * Measurement based |oad balancers

AN VP IO prosessare each thread * Use the instrumented data-base periodically to
Enables adaptive runtime strategies * Mmap it when you migrate there LS Bl Te e Rier:
« Migration of Heap data: * Many alternative strategies can use the database
’ i istri Adaptive mesh
+ Isomalloc heaps Centralized vs. distributed mogri)ﬁ'ggﬂfgr;o k
s _ - - + Greedy improvements vs. complete capture the snoc
1E{J:;:]ecrti%unppl|ed or compiler generated pack T oropagation
Charm++ Architecture » Taking communication into account
* Taking dependences into account (More
Virtual Objects complex)
- Systemimplementation: Processor A’'s Memory Processor B’s Memory + Topology-aware
objects mapped to real processors OXFFFFFFFF OXFFFFFFFF
) I I
Thread 1 stack T :
/i)(- Thread 2 stack _ Princi pl e of Persistence » Adaptivity code integrated with ParFUM
e B Migrate | | |
e ad 4 ctack Throad Ihread 3 stack » High-level algorithms for refinement and
ﬁ ‘ : 3 S ane - apphcan()n |S expressed |n terms Of coarseni ng Bl on low.
I g el Interacting obj ects, object communication patterns level parallel
object carrying the job and computational loads tend to persist over time o, ‘ mezhf_ |
modiftication
k nIZE Heap * |n spite of dynamic behavior primitives
Real processors : n Maintain up-to-
Globals Globals » Abrupt and large,but infrequent changes RSN date parallel
Code Code (eg:AMR) g mesh state
00000000 00000000 > Slow and small changes (eg: particle migration) g‘d‘}g’gﬂge&
» Parallel analog of principle of locality - ghost layers
Thread migration with isomalloc o . and user data
* Heuristics, that holds for most CSE applications ?

http://charm.cs.uiuc.edu

http://charm.cs.uiuc.edu
http://charm.cs.uiuc.edu

[

SPEEDING UP PARALLEL SIMULATION WITH

AUTOMATIC LOAD BALANCING

Harl Govind, Gengbin Zheng, Laxmikant Kale, Michael Braitenfeld, Philippe Geubelle
University of Illinois at Urbana-Champaign

Crack Propagation Simulation

1-D elastic-plastic wave
propagation

* Bar Is dynamically
loaded resulting in
an elastic wave
propagating down
bar, upon reflection
from the fixed end
the material
becomes plastic

@ Written in AMPI

Ela ORIV Tal ndex O data
ata

plastic
.00

*Dynamic 3D crack propagation
simulation

*400,000 linear strain tetrahedral
elements

Ltilization Graph (Sumrmany

CPU Utilization(3)

*SGi Altix (NCSA)

*32 processors

*160 AMPI threads
«Simulating an elastic bar
*Total run time: 207 seconds

T T T
0 100
Time Interval {1.000s)

rgraph type

® Line Graph i Bar Graph i) Area Graph

[¥] Stacked

rx-scale

<= X-Axis Scale: |1.0 |

y-scale
i || Reset | e |Y—AxisScaIe: 1.0 == Reset

With “stop and go” load balancing scheme

_____ Projections - fractography3d.sum.sts

PROJECTIONS

Tad T WM Tab Incex O data
ata

AN

Load balancing

T
100 150

Time Interval {1.000s)

1 Area Graph [w] Stacked

ry

-scale
et | L4 |Y—AxisS|:aIe: 1.0 B3 Reset

With agile load balancing scheme

_ Projections - fractography3d.sumsts.

PROJECTIONS

CPU Utilization (%)

Load balancing

T
0 50 100 150

Time Interval {1.000%5)

ine Graj i1 Bar Graph) Area Graph [v Stacked

rx-scale

y-scale
< [X-Axis Scale: (1.0 | S " Reset |“ < |Y—AxisS|:ale: 1.0 B Reset

Total execution time: 198 seconds

@ 3-D dynamic elastic-plastic
fracture

* 3D Plastic Fracture

* A single edge notched
specimen pulled at both
ends with aramping
magnitude of 1 m/s
over .01 seconds

* |sosurface is the extent
of the plastic zone

* Load Imbalance occurs
at the onset of an
element turning from
elastic to plastic, zone of

plasticity forms over a

Imited number of

Nrocessors as the crack

Dropagates

jections - fractography3d.sum

PROJECTIONS

graph type
"@ Line Graph

rx-scale r

<= [X-Axis Scale: [1.0 [

-scale
< |Y—Axis Scale: (1.0 = Reset

187 seconds

_______ ProjectionsGraph

File Tools Help

100
=0
50 o
40
o]
=0

«Line Graph |[“Bar Graph| << | ®-Axis Scale: 11,0 == | Reset Select Display tems

K-Ar 1S Y-A 1S ITERATE IMTERMALS SELECT INTERMALS (D-EE680)

+5 |0-6680 |

- Interyal 4 Msgs = = +1

“SProcessor - Time <4 | < | > | »x | Selact all | ABpply |

(%]

Molecular Dynamics Simulation

Molecular dynamics and related algorithms

* e.g., minimization, steering, locally enhanced
sampling, alchemical and conformational free

energy perturbation

Efficient algorithms for full electrostatics
Effective on affordable commodity hardware
Building a complete modeling environment

Written in Charm++

ATP-Synthase

Loa:_i Refli_r(l)(;rgent
I?alancmg Balancing
\ | 1) Aggressive Load
K M m | |i| U - Balancing ‘ﬂ M
lﬁﬂw | W [t W ! l\"fw : |L
LARIEN '
| . | f\ JV |
' |l
| \ :: (|
| __ |
‘l v i W \
| | ! ”L v f i
60 73630 71000 74570 75000 761 k’ ::: u;\éwn 1%&:9&5-;:-0 e ’nnL 15'000155|50\';15-a':-nn-l\5:p5clc15:;c-:-mLsnn:sulcm!f;ﬁnn-)‘3:00-3159{::-‘:;;000-ﬁolscm-'ﬂJ:J;:‘;;:me;oom:y“;

Processor Utilization against Time on (a) 128 (b) 1024 processors
On 128 processor, a single load balancing step suffices, but

On 1024 processors, we need a “refinement” step.

Some overloaded
Processors

N

Foosazar

Foosazar

Processor Utilization across processors after (a) greedy load balancing and (b) refining

Note that the underloaded processors are left underloaded (as they don’t impact
perforamnce); refinement deals only with the overloaded ones

File Help

2 Y-SCALE:

1.0 =

Profile of Usage for Processors 0-49,1000-1099,2950-2999
{Time 126.879s - 126.987s)

2999

H-SCALE:

1o = Reset

Profile view of a 3000 processor run of NAMD (White showsidletime)

SC2002 Gordon Bdll Award

100

time per step (seconds)

001 I I J I I

36 ms per step
76% efficiency
] /—
scaling

16 32 64

128 256 512 1024

PARALLCL PROGRANAING LABORATORY

http://charm.cs.uiuc.edu

LB Memory 300
usage on the

central node 250
(MB) 200
150
100
50F]

_ _

I [l

I-— _Ii

[~y |

DN || BN

DI || BN

T I

D ||

i_ll _i

[

——
- - - - 9 r 4 - - - -
H = g8 g [N &£ - B &
= = = = SR = = 4
] g g - i = - e
= = = = H = — =
|| | | |] A N wm n n e
= = = = H 2y HoE =
] = g i i - W F B .+ ¥
= = = = H = s £ H R &
=0 e o e g S S h e . S, F
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

L oad Balancingon Very Large

M achines
Scalability limits

[]

* Consider an application with 1M objects on 64K

Processors

@ Metrics for a multi-dimensional optimization

* Memory usage on any one processor

* Decision-making time

* Quality of load balancing decision s

500
450
400
350

128K 256K 512K M

Number of objects

||Z|32K processors M64K processors|

Simulation Results : using BigSim

400

300

250

Execution

Time (in 200

seconds)

150

100

128K 256K 512K M
Number of Objects

|El GreedylLB B GreedyCommLB M RefinelB |

communicating objects in 2D-mesh.

benchmark creates a specified number of

Run on Lemieux 64 processors, using BigSim

Hierarchical Load Balancing

-based Load balancing

@ Double in-memory checkpoint/restart

per
~

step (s)

| —

Simulation time

o

Simulation time per step {(seconds}

* Does not rely on extra processors

—

—_—— =

. token
@ object

L oad Balancing in Fault Tolerance

* Maintain execution efficiency after restart

With LB

w
T

| —

el

Tinestep

Futurework

Without LB
> 4
= 3
=
I\ §§C12
\AW)“‘M ze
i © 1
o 0
101 201 301 401 501 601 1 101
Timestep
LeanMD, Apoal, 128 processors
&
crash
load balancing
g
4
3
2]
RE LITIAPPL DY PP WW\‘WH
o | | | | | |
0 100 200 300 qa0 S0 GO0

201 301 401 501 601
Timestep

*LeanMD application
*10 crashes
*128 processors

*Checkpoint every 10
time steps

@ Apply adaptive load balancing framework for increasingly complex simulations

* Adaptive insertion/activation of cohesive e ements for dynamic fracture

simulations

* Adaptive mesh adaptation

@ Conduct experiments using the load balancing framework on very large parallel
machines such as Blue Gene/L

* Reguires mesh to be partitioned into very large number of chunks

* Experiment with the hierarchical load balancing strategy

http://charm.cs.uiuc.edu
http://charm.cs.uiuc.edu

