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For more information, please visit us at

On the astrophysics side, we are planning to add more rel-
evant physics to the application, in particular SPH 
(Smooth Particles Hydrodynamics) to allow gas simula-
tions.
On the computer science side, we are planning to study in 
detail the limitations that we are facing with thousands of 
processors to allow better scaling on large configurations. 
In particular, we plan to enhance the Charm++ load bal-
ancing framework both to provide a more stable behav-
iour with large configuration, and to enable the load bal-
ancing of multistepping simulations.

FUTURE WORK
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all the particles in the system. This leads to different distribution of 
work in each iteration, and therefore more complexity for load balanc-
ing. Currently we do not use the Charm++ load balancer for multistep-
ping simulations.
The Projections figure below shows that during some of the phases, 
where only few thousand particles are being updated, the load is un-
balanced. Nevertheless, the overall performance of the application is 
remarkable as can be seen by both the time spent in the different 
phases in the table above, and in the scalability graph on the right.
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OCT decomposition, Orb load balancer

OCT decomposition, Greedy load balancer

OCT decomposition, no load balancer

SFC decomposition, Orb load balancer

SFC decomposition, no load balancer

Graphs legend

Domain decomposition

Load balancing

Tree building

Force computation

Time integration

Total

256

0.53

0.20

0.49

98.21

0.57

100.00

512

0.74
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0.75

97.56

0.54

100.00

1024

1.45

1.25
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95.73

0.41

100.00

2048

3.37

4.79

2.54

89.04

0.26

100.00

Number of Processors

Image from Projections performance analysis tool.  
The horizontal axis represents time, while the verti-
cal axis represents processors. Colors represent pro-
cessor utilization, from low in blue to high in white.
Four iterations of a simulation with 64 processors 
on the small dataset. After each iteration the Greedy 
load balancer redistributes the work, and after two 
iterations it reaches excellent load balancing. 5 million dataset

50 million dataset

16 million dataset

700 million dataset

The graphs plot execution time multiplied by number of 
processors against number of processors used in the com-
putation. This implies that horizontal lines show perfect 
scalability, while diagonal lines show no scalability.

CacheManager importance

Control flow inside a single processor

Each TreePiece is responsible for the particles it contains. It computes all 
the forces applied to such particles. The information needed for such 
computation that is not available locally is fetched from the TreePiece 
which has it.

CacheManager:
Since the same information will be needed multiple times both by a 
single TreePiece, and by different TreePieces, it is important for perfor-
mance to fetch it once and use it as much as needed.
The CacheManager is a software cache placed on the data fetch path. Its 
purpose is to buffer the fetched information for later reuse. It is imple-
mented as a Charm++ group collection.

Gravity computation in parallel

Overview of the entire system

Treepiece: contains a portion of the particles of the simula-
tion and performs the computation and update of those 
particles.

CacheManager: performs optimization at the processor 
level allowing a transparent reuse of imported data both 
within a single TreePiece, and across all TreePieces in the 
same processor.

Intraprocessor communication: Communication be-
tween TreePieces and the CacheManager. This is 
mostly performed through function calls.

Interprocessor communication: The CacheManagers 
communicate with each other to fetch the remote in-
formation needed for the computation. This is per-
formed through Charm++ messages.

In the entire system there is one single global tree which is built 
across all chares, and it is distributed among all of them. 
A Treepiece has information regarding the nodes of the tree 
that are ancestors of any particle belonging to that Treepiece. As 
a consequence, the nodes closer to the root will be shared and 
duplicated among multiple Treepieces.

During the top-down construction, each Treepiece builds the 
part of the tree related to the particles that it contains. During 
the bottom-up construction of the tree properties, the informa-
tion related to nodes that are non-local is requested to one of 
the Treepieces co-sharing the missing node.

Building the tree in parallelDecomposing the data into TreePieces

ORB

OCT

SFC

The entire set of particles of the simulation is divided into the desired number of pieces and 
distributed among the computation objects. These objects are called TreePieces and are imple-
mented as a Charm++ array collection.
ChaNGa has three methods to partition the simulation's particles set. These are described 
below, with a simplified example of such decomposition in 2D. The big boxes represent the 
entire simulation’s space, while each small box represents a region of space containing an 
equal number of particles. Smaller boxes represent higher density regions. Colors represent 
the regions of space associated with different TreePiece.

After a total ordering of the particles is im-
posed with a Morton Space-Filling-Curve, 
each chare is assigned a segment of the 
curve. Each segment contains an equal 
number of particles.

All chares will contain the same amount 
of particles.
Many chares will have non-contiguous 
regions of space, therefore spacial local-
ity is not preserved.

The space is recursively divided in halves, 
each of equal volume size. Each TreePiece is 
assigned a cubic (or rectangular) portion of 
space.

Can split dense regions only after higher 
cuts are made. Not a problem with 
enough chares.
Potentially some chares will be under-
loaded. The Charm++ Load Balancer will 
take care of them.
Spatial locality preserved.

buffer

is present?
Local
work

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

End computation

Begin computation

re
qu

es
t d

at
a 

to
 re

m
ote

 pro
cessor

receive the data back, store it.
..

NO

YES return it directly

... and forward it

After the computation is started globally, each TreePiece (green box) 
receives messages to perform its part. The TreePiece splits the total 
work into local work, which includes interaction with its own portion of 
the tree, and global work, which includes interaction with the rest of 
the system. The global work is composed of two stages: prefetching of 
the needed data, and visit of the tree. To pipeline the prefetching with 
the visit of the tree, the global work is splitted into chunks.
During the global work, the TreePiece requests the CacheManager 
(orange box) for data not locally present. If the data is already buffered, 
it is immediately returned, otherwise it is requested to another proces-
sor. When the data comes back, it is buffered and forwarded to the re-
questing TreePiece.

The ORB (Orthogonal Recursive Bisection) 
decomposition is performed by recursively 
dividing the space in halves, each containing 
an equal amount of particles.

Expensive due to the high dependence of 
subdivisions from the global distribution.
Creates elongated shapes. As a conse-
quence, the amount of work required for 
the force computation increases signifi-
cantly.
It preserves spacial locality.

The CacheManager is essential for the efficiency since it dramatically 
reduces the number of messages exchanged. The table shows this re-
duction, as well as its impact on the execution time.

No cache

With cache

Number of Processors

Number messages
(in thousands)

Time
(in seconds)

Speedup

4

48,723

72

730.7

39.0

18.74

8

59,115

115

453.9

20.4

22.25

16

59,116

169

289.1

11.3

25.58

32

68,937

265

67.4

6.0

11.23

64

78,086

397

42.1

3.3

12.76

No cache

With cache

Computing gravitational forces

Building the tree

Walking the tree

Tree built on top of the simulation’s particles.

Root node corresponds to the entire simulation volume
Internal nodes correspond to a subregion of the simulation 
volume
Buckets correspond to internal nodes containing a few particles

Top-down construction (step 1):
Starting from the root, internal nodes are recursively created by 
dividing the space in halves. When a node contains less than ‘b’ 
particles (default 12), it is transformed into a bucket and the re-
cursion terminates

Bottom-up construction (step 2):
The center of mass and multipole expansion are computed for 
each node;  the region of space associated to each node is also 
tightened to the particles contained by the node. These proper-
ties are directly computed from the particles for the buckets, 
and from the children nodes for internal nodes.

Newtonian gravity is a long-range force: each particle is influ-
enced by all others in the system. O(n2) complexity.

Barnes-Hut approximation:

The force contribution due to a group of particles distant from 
the point in which the force is applied can be approximated 
by the particles center of mass and multipole expansion. Such 
particles are said to satisfy the Barnes-Hut opening criteria.

Reduction in algorithmical complexity from O(n2) to O(nlogn)

For each particle, to compute the force it is subject to:
1)  Start at the root node of the tree;
2)  Visit the nodes of the tree recursively until nodes representing 

groups of particles that satisfy the Barnes-Hut opening criteria 
are found;

3)  Compute the interaction between the particle in subject and all 
the nodes where the recursive visit has stopped.

Notice, in some parts of the tree, where particles are close, direct 
computation will be necessary.

Motivation Supported physics

CHANGA: CHARM N-BODY GRAVITY
in serial and in parallel

Newtonian gravitational force. Implemented with Barnes-Hut 
and quadrupole moment expansion (first order accuracy).

Adaptive multiple timestepping. Particles that have high accel-
erations require more precision and therefore they are advanced 
in time more often with smaller steps.

Periodic boundary conditions. Periodic Universe is supported by 
means of Ewald summation.

Current cosmological parallel simulators have difficulties scaling 
beyond a few hundred processors. In particular, the main limitation 
is the increased time spent in decomposing the datasets among the 
processors, and maintaining the load balancing.
Charm++ can handle application decompositions having uneven 
granularity with its automatic load balancing framework. This will 
help in both reducing the decomposition time and enhancing the 
overall load balance.
By using an asynchronous message based system, objects can pro-
ceed in the computation independently, without spending time to 
explicitly wait for data.
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System View:
objects mapped to

real processors

Benefits
CHARM++ RUNTIME SYSTEM

User View:
objects carrying the work

Objects in the system are called chares and can be gathered in collections:
 arrays: each chare has a unique index inside the collection, the number of
 elements in the collection is user defined
 groups: there is one and only one chare from this collection in every processor

Software engineering
Number of virtual processors can be independently con-
trolled
Separate VPs for different modules

Message driven execution
Computation performed upon receipt of a message
Adaptive overlap of communication
Predictability:

Automatic out-of-core execution
Asynchronous reductions

Dynamic mapping
Heterogeneous clusters

Vacate, adjust to speed, share
Automatic checkpointing/restarting
Automatic dynamic load balancing
Communication optimization
Change set of processors used

Filippo Gioachin, Sayantan Chakravorty, Celso Mendes, Laxmikant Kale, Thomas Quinn

Simulation with 16 million particles of a 
volume of the Universe 90 Mpc on a side. 
The initial conditions have been provided by 
Heitmann et al (2005) in order to test the ro-
bustness of cosmological simulations. Statis-
tics of the final state as produced by ChaNGa 
compare well with the results of Heitman et 
al using other simulation codes.

Simulation with 700 million particles of a 
volume of the Universe 70 Mpc on a side. 
This simulation is used to follow the star for-
mation history of the Universe.

Snapshot at z=.3 of a multi-resolution simu-
lation of a dwarf galaxy forming in a 28.5 
Mpc volume of the Universe with 30% dark 
matter and 70% dark energy. Two resolu-
tions are used, with 5 million and 50 million 
particles.  The mass distribution is uniform, 
but the particle distribution is very centrally 
concentrated and therefore highly clustered.

The table shows the percentage of time spent in the vari-
ous parts of the simulation for the 16 million dataset. When 
increasing the number of processors, the overhead 
(marked in purple) due to the parallelization increases, but 
is still extremely small even for a few thousand processors. 
Most of the time, as expected, is spent in the force compu-
tation. 
The values in the table include the idle time occurred 
during the respective phases. In order to understand the 
scalability in terms of parallel efficiency, the four graphs 
below plot the force computation for the different datasets 
as the number of processors is varied. They also show the 
behaviour of the application with the two major decompo-
sitions (ORB is not considered here due to its bad proper-
ties), and with two of the load balancers part of Charm++. 
The execution times are from the BlueGene/L system.
The smaller datasets reach saturation and stop scaling at a 
few thousand processors, but for dataset more relevant to 
modern science, this saturation point is pushed to tens of 
thousands of processors.


