
http://charm.cs.uiuc.edu/
http:://hpcc.astro.wasington.edu/

For more information, please visit us at

On the astrophysics side, we are planning to add more rel-
evant physics to the application, in particular SPH
(Smooth Particles Hydrodynamics) to allow gas simula-
tions.
On the computer science side, we are planning to study in
detail the limitations that we are facing with thousands of
processors to allow better scaling on large configurations.
In particular, we plan to enhance the Charm++ load bal-
ancing framework both to provide a more stable behav-
iour with large configuration, and to enable the load bal-
ancing of multistepping simulations.

FUTURE WORK

R
E
S
U
L
T
S

 256

 512

 1024

 2048

 256 512 1024 2048

N
um

be
r o

f P
ro

ce
ss

or
s

x
Co

m
pu

ta
tio

n
Ti

m
e

(in
 th

ou
sa

nd
s

of
 s

ec
on

ds
)

Number of Processors

OCT decomp.

SFC decomp.

OCT decomp.

SFC decomp.

16 million 50 million
D u r i n g
multistep-
ping, many
i terat ions
c o m p u t e
the forces
for a small
subset of

all the particles in the system. This leads to different distribution of
work in each iteration, and therefore more complexity for load balanc-
ing. Currently we do not use the Charm++ load balancer for multistep-
ping simulations.
The Projections figure below shows that during some of the phases,
where only few thousand particles are being updated, the load is un-
balanced. Nevertheless, the overall performance of the application is
remarkable as can be seen by both the time spent in the different
phases in the table above, and in the scalability graph on the right.

Domain decomposition

Tree building

Force computation

Time integration

Total

256

1.54

0.45

96.78

1.22

100.00

512

2.43

0.80

95.69

1.08

100.00

1024

6.20

1.89

91.03

0.89

100.00

2048

12.49

3.08

83.53

0.90

100.00

Number of Processors

 4096

 8192

 16384

 32768

 65536

 16 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f P
ro

ce
ss

or
s

x
Co

m
pu

ta
tio

n
Ti

m
e

(in
 s

ec
on

ds
)

Number of Processors

 32768

 65536

 131072

 262144

 524288

 128 256 512 1024 2048 4096 8192

N
um

be
r o

f P
ro

ce
ss

or
s

x
Co

m
pu

ta
tio

n
Ti

m
e

(in
 s

ec
on

ds
)

Number of Processors

 4096

 8192

 16384

 32768

 32 64 128 256 512 1024 2048 4096

N
um

be
r o

f P
ro

ce
ss

or
s

x
Co

m
pu

ta
tio

n
Ti

m
e

(in
 s

ec
on

ds
)

Number of Processors

 256

 512

 1024

 2048

 1024 2048 4096 8192 16384

N
um

be
r o

f P
ro

ce
ss

or
s

x
Co

m
pu

ta
tio

n
Ti

m
e

(in
 th

ou
sa

nd
s

of
 s

ec
on

ds
)

Number of Processors

OCT decomposition, Orb load balancer

OCT decomposition, Greedy load balancer

OCT decomposition, no load balancer

SFC decomposition, Orb load balancer

SFC decomposition, no load balancer

Graphs legend

Domain decomposition

Load balancing

Tree building

Force computation

Time integration

Total

256

0.53

0.20

0.49

98.21

0.57

100.00

512

0.74

0.42

0.75

97.56

0.54

100.00

1024

1.45

1.25

1.16

95.73

0.41

100.00

2048

3.37

4.79

2.54

89.04

0.26

100.00

Number of Processors

Image from Projections performance analysis tool.
The horizontal axis represents time, while the verti-
cal axis represents processors. Colors represent pro-
cessor utilization, from low in blue to high in white.
Four iterations of a simulation with 64 processors
on the small dataset. After each iteration the Greedy
load balancer redistributes the work, and after two
iterations it reaches excellent load balancing. 5 million dataset

50 million dataset

16 million dataset

700 million dataset

The graphs plot execution time multiplied by number of
processors against number of processors used in the com-
putation. This implies that horizontal lines show perfect
scalability, while diagonal lines show no scalability.

CacheManager importance

Control flow inside a single processor

Each TreePiece is responsible for the particles it contains. It computes all
the forces applied to such particles. The information needed for such
computation that is not available locally is fetched from the TreePiece
which has it.

CacheManager:
Since the same information will be needed multiple times both by a
single TreePiece, and by different TreePieces, it is important for perfor-
mance to fetch it once and use it as much as needed.
The CacheManager is a software cache placed on the data fetch path. Its
purpose is to buffer the fetched information for later reuse. It is imple-
mented as a Charm++ group collection.

Gravity computation in parallel

Overview of the entire system

Treepiece: contains a portion of the particles of the simula-
tion and performs the computation and update of those
particles.

CacheManager: performs optimization at the processor
level allowing a transparent reuse of imported data both
within a single TreePiece, and across all TreePieces in the
same processor.

Intraprocessor communication: Communication be-
tween TreePieces and the CacheManager. This is
mostly performed through function calls.

Interprocessor communication: The CacheManagers
communicate with each other to fetch the remote in-
formation needed for the computation. This is per-
formed through Charm++ messages.

In the entire system there is one single global tree which is built
across all chares, and it is distributed among all of them.
A Treepiece has information regarding the nodes of the tree
that are ancestors of any particle belonging to that Treepiece. As
a consequence, the nodes closer to the root will be shared and
duplicated among multiple Treepieces.

During the top-down construction, each Treepiece builds the
part of the tree related to the particles that it contains. During
the bottom-up construction of the tree properties, the informa-
tion related to nodes that are non-local is requested to one of
the Treepieces co-sharing the missing node.

Building the tree in parallelDecomposing the data into TreePieces

ORB

OCT

SFC

The entire set of particles of the simulation is divided into the desired number of pieces and
distributed among the computation objects. These objects are called TreePieces and are imple-
mented as a Charm++ array collection.
ChaNGa has three methods to partition the simulation's particles set. These are described
below, with a simplified example of such decomposition in 2D. The big boxes represent the
entire simulation’s space, while each small box represents a region of space containing an
equal number of particles. Smaller boxes represent higher density regions. Colors represent
the regions of space associated with different TreePiece.

After a total ordering of the particles is im-
posed with a Morton Space-Filling-Curve,
each chare is assigned a segment of the
curve. Each segment contains an equal
number of particles.

All chares will contain the same amount
of particles.
Many chares will have non-contiguous
regions of space, therefore spacial local-
ity is not preserved.

The space is recursively divided in halves,
each of equal volume size. Each TreePiece is
assigned a cubic (or rectangular) portion of
space.

Can split dense regions only after higher
cuts are made. Not a problem with
enough chares.
Potentially some chares will be under-
loaded. The Charm++ Load Balancer will
take care of them.
Spatial locality preserved.

buffer

is present?
Local
work

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

Prefetch

Visit of
the treeG

lo
ba

l w
or

k

End computation

Begin computation

re
qu

es
t d

at
a

to
 re

m
ote

 pro
cessor

receive the data back, store it.
..

NO

YES return it directly

... and forward it

After the computation is started globally, each TreePiece (green box)
receives messages to perform its part. The TreePiece splits the total
work into local work, which includes interaction with its own portion of
the tree, and global work, which includes interaction with the rest of
the system. The global work is composed of two stages: prefetching of
the needed data, and visit of the tree. To pipeline the prefetching with
the visit of the tree, the global work is splitted into chunks.
During the global work, the TreePiece requests the CacheManager
(orange box) for data not locally present. If the data is already buffered,
it is immediately returned, otherwise it is requested to another proces-
sor. When the data comes back, it is buffered and forwarded to the re-
questing TreePiece.

The ORB (Orthogonal Recursive Bisection)
decomposition is performed by recursively
dividing the space in halves, each containing
an equal amount of particles.

Expensive due to the high dependence of
subdivisions from the global distribution.
Creates elongated shapes. As a conse-
quence, the amount of work required for
the force computation increases signifi-
cantly.
It preserves spacial locality.

The CacheManager is essential for the efficiency since it dramatically
reduces the number of messages exchanged. The table shows this re-
duction, as well as its impact on the execution time.

No cache

With cache

Number of Processors

Number messages
(in thousands)

Time
(in seconds)

Speedup

4

48,723

72

730.7

39.0

18.74

8

59,115

115

453.9

20.4

22.25

16

59,116

169

289.1

11.3

25.58

32

68,937

265

67.4

6.0

11.23

64

78,086

397

42.1

3.3

12.76

No cache

With cache

Computing gravitational forces

Building the tree

Walking the tree

Tree built on top of the simulation’s particles.

Root node corresponds to the entire simulation volume
Internal nodes correspond to a subregion of the simulation
volume
Buckets correspond to internal nodes containing a few particles

Top-down construction (step 1):
Starting from the root, internal nodes are recursively created by
dividing the space in halves. When a node contains less than ‘b’
particles (default 12), it is transformed into a bucket and the re-
cursion terminates

Bottom-up construction (step 2):
The center of mass and multipole expansion are computed for
each node; the region of space associated to each node is also
tightened to the particles contained by the node. These proper-
ties are directly computed from the particles for the buckets,
and from the children nodes for internal nodes.

Newtonian gravity is a long-range force: each particle is influ-
enced by all others in the system. O(n2) complexity.

Barnes-Hut approximation:

The force contribution due to a group of particles distant from
the point in which the force is applied can be approximated
by the particles center of mass and multipole expansion. Such
particles are said to satisfy the Barnes-Hut opening criteria.

Reduction in algorithmical complexity from O(n2) to O(nlogn)

For each particle, to compute the force it is subject to:
1) Start at the root node of the tree;
2) Visit the nodes of the tree recursively until nodes representing

groups of particles that satisfy the Barnes-Hut opening criteria
are found;

3) Compute the interaction between the particle in subject and all
the nodes where the recursive visit has stopped.

Notice, in some parts of the tree, where particles are close, direct
computation will be necessary.

Motivation Supported physics

CHANGA: CHARM N-BODY GRAVITY
in serial and in parallel

Newtonian gravitational force. Implemented with Barnes-Hut
and quadrupole moment expansion (first order accuracy).

Adaptive multiple timestepping. Particles that have high accel-
erations require more precision and therefore they are advanced
in time more often with smaller steps.

Periodic boundary conditions. Periodic Universe is supported by
means of Ewald summation.

Current cosmological parallel simulators have difficulties scaling
beyond a few hundred processors. In particular, the main limitation
is the increased time spent in decomposing the datasets among the
processors, and maintaining the load balancing.
Charm++ can handle application decompositions having uneven
granularity with its automatic load balancing framework. This will
help in both reducing the decomposition time and enhancing the
overall load balance.
By using an asynchronous message based system, objects can pro-
ceed in the computation independently, without spending time to
explicitly wait for data.

D
A
T
A
S
E
T
S

System View:
objects mapped to

real processors

Benefits
CHARM++ RUNTIME SYSTEM

User View:
objects carrying the work

Objects in the system are called chares and can be gathered in collections:
 arrays: each chare has a unique index inside the collection, the number of
 elements in the collection is user defined
 groups: there is one and only one chare from this collection in every processor

Software engineering
Number of virtual processors can be independently con-
trolled
Separate VPs for different modules

Message driven execution
Computation performed upon receipt of a message
Adaptive overlap of communication
Predictability:

Automatic out-of-core execution
Asynchronous reductions

Dynamic mapping
Heterogeneous clusters

Vacate, adjust to speed, share
Automatic checkpointing/restarting
Automatic dynamic load balancing
Communication optimization
Change set of processors used

Filippo Gioachin, Sayantan Chakravorty, Celso Mendes, Laxmikant Kale, Thomas Quinn

Simulation with 16 million particles of a
volume of the Universe 90 Mpc on a side.
The initial conditions have been provided by
Heitmann et al (2005) in order to test the ro-
bustness of cosmological simulations. Statis-
tics of the final state as produced by ChaNGa
compare well with the results of Heitman et
al using other simulation codes.

Simulation with 700 million particles of a
volume of the Universe 70 Mpc on a side.
This simulation is used to follow the star for-
mation history of the Universe.

Snapshot at z=.3 of a multi-resolution simu-
lation of a dwarf galaxy forming in a 28.5
Mpc volume of the Universe with 30% dark
matter and 70% dark energy. Two resolu-
tions are used, with 5 million and 50 million
particles. The mass distribution is uniform,
but the particle distribution is very centrally
concentrated and therefore highly clustered.

The table shows the percentage of time spent in the vari-
ous parts of the simulation for the 16 million dataset. When
increasing the number of processors, the overhead
(marked in purple) due to the parallelization increases, but
is still extremely small even for a few thousand processors.
Most of the time, as expected, is spent in the force compu-
tation.
The values in the table include the idle time occurred
during the respective phases. In order to understand the
scalability in terms of parallel efficiency, the four graphs
below plot the force computation for the different datasets
as the number of processors is varied. They also show the
behaviour of the application with the two major decompo-
sitions (ORB is not considered here due to its bad proper-
ties), and with two of the load balancers part of Charm++.
The execution times are from the BlueGene/L system.
The smaller datasets reach saturation and stop scaling at a
few thousand processors, but for dataset more relevant to
modern science, this saturation point is pushed to tens of
thousands of processors.

