
Branch and Bound Based Load Balancing for

Parallel Applications

Shobana Radhakrishnan, Robert K. Brunner, and Laxmikant V. Kalé

University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract. Many parallel applications are highly dynamic in nature. In
some, computation and communication patterns change gradually dur-
ing the run; in others those characteristics change abruptly. Such dy-
namic applications require an adaptive load balancing strategy. We are
exploring an adaptive approach based on multi-partition object-based
decomposition, supported by object migration. For many applications,
relatively infrequent load balancing is needed. In these cases it becomes
economical to spend considerable computation time toward arriving at a
nearly optimal mapping of objects to processors. We present an optimal-
seeking branch and bound based strategy that finds nearly optimal so-
lutions to such load balancing problems quickly, and can continuously
improve such solutions as time permits.

1 Introduction

Development of efficient parallel applications becomes difficult when they are ei-
ther irregular or dynamic or both. In an irregular application, the computational
costs of its subcomponents cannot be predicted accurately. Other applications
are dynamic, with the computational costs of their subcomponents changing
over time. In either case, performance problems manifest themselves in the form
of load imbalances. Although such imbalances are typically small and tolerable
while running applications on a small number of processors, they often become
major performance drains on systems with a large number of processors.

We have been exploring a solution to this problem that involves breaking the
problem into a large number of chunks, such that the total number of chunks is
significantly larger than the number of available processors. In fact, the size of
a chunk can be decided independently of the number of processors, by using the
criterion of keeping the communication overhead within a pre-specified bound. A
system that supports data driven objects, (e.g. Charm++ [1]) is used to imple-
ment each chunk as an independent object. Thus, these objects send messages
to other objects, in contrast to an MPI program (for example), which directs
messages to specific processors. As a result, the runtime system is free to move
the objects from one processor to another, without disturbing the application.
Charm++ supports such migration of objects with automatic and optimized
forwarding of messages. With these prerequisites (multi-chunk object-based de-
composition, and support for object migration), all that one needs is a strategy
to decide when and where to move objects.

S. Matsuoka et al. (Eds.): ISCOPE’99, LNCS 1732, pp. 194–199, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Branch and Bound Based Load Balancing for Parallel Applications 195

Even in irregular and dynamic programs, one can find a basis for predicting
future performance. Just as in sequential programs one can rely on the principle
of locality, in a parallel program one can utilize the principle of “temporal persis-
tence of computation and communication patterns”. In irregular computations,
each subcomponent’s computation time may be unpredictable a priori, but once
the program starts executing, each component will persist in its behavior over
the iterations of the program. In dynamic applications, the behavior of a com-
ponent changes, but even here, either the behavior changes slowly over time, or
abruptly but infrequently (as in adaptive refinement strategies). In either case,
it is a reasonable heuristic to assume such a persistence of behavior, over some
horizon in the future. This is not unlike the idea of using caches based on the
principle of locality and working sets. Although the program may jump out of
its working set from time to time, the caching technique, which assumes that
the data referenced in the recent past will continue to be referenced, still pays
large performance dividends.

Based on the above performance prediction principle, we have developed
an adaptive load balancing framework. It provides automatic measurement of
computation times and automatic tracing of communication events of a parallel
object program. A load balancing strategy can obtain the necessary performance
data from this framework, and decide to migrate some objects to new processors.

Within the context of this framework, we are engaged in developing a suite
of load balancing strategies, and applying them in a variety of applications.
Different classes of applications require different load balancing strategies. In
a significant class of applications, focused on in this paper, only periodic, and
infrequent rebalancing is necessary.

Our experience with molecular dynamics [2] for biophysical simulations
shows, for example, that the load balance stays relatively stable over several
hours as the atoms slowly migrate over domain boundaries. In such a situation,
spending as much as a few minutes on deciding a new mapping is not that ex-
pensive. However, the problem of optimum mapping is NP-hard. So, even with
minutes of time on a parallel machine it typically will not be possible to find the
provably optimal solution. One thus appears to be stuck between the bimodal
choice of, a low-cost, low-quality heuristic method, or an unrealistic, optimum-
finding algorithm. This paper presents a branch and bound based strategy that
fills in the middle ground: depending on the available computation time, it can
produce a continuum of solutions from the simple heuristic ones to provably
optimal ones.

2 The Object Model

This section describes how our algorithm approaches the load balancing prob-
lem, by modeling parallel applications as collections of computation objects
which communicate among themselves. Communication costs between objects
are modeled based on the characteristics of the particular machine, and objects
on the same processor are assumed to exchange data for free. Furthermore, the



196 Shobana Radhakrishnan et al.

load balancer has the freedom to reassign these objects to any processors to
optimize program performance.

The objects that are to be balanced are represented as a network of com-
municating entities in the form of a directed graph. Graph-based models have
been used earlier for the task allocation problem (e.g. [3]). Also, Metis [4] pro-
vides a graph based partitioning scheme that is meant for partitioning large,
million-element unstructured meshes. The vertices in the graph represent the
computation cost of the objects to be balanced and each edge represents com-
munication, parameterized by the pair <number of messages, total bytes sent>.
If the sending and receiving objects are assigned to different processors, the
processors are charged:

Tsend = αsend · Nmessages + βsend · Nbytes
Treceive = αreceive · Nmessages + βreceive · Nbytes

In addition to migratable objects and communication patterns, our object
model also includes the following features:

1. Non-migratable Objects: Non-migratable objects are objects which must
remain on particular processors throughout their lifetime. Load balancers
should still consider their computation and communication cost as back-
ground load, but do not have the freedom to move them.

2. Proxy Communication: This refers to multicast communication where
several objects require data from one particular object. Should the receiving
objects all be placed on the same processor, a single message may supply
the data to all of the receivers. We model this by adding an attribute, the
proxy id, for each message arc. While calculating the communication cost
resulting from the assignment of an object to a processor, we ignore the cost
of an incoming multicast communication arc if another recipient of the same
multicast has already been assigned to this processor.

3 Branch and Bound Algorithm

Branch and bound algorithms are a good choice for load balancers, because
they exhibit the property that they can produce an optimal solution if given
enough time, but produce “good” sub-optimal solutions if stopped prematurely.
To provide the flexible tradeoff between decision time and solution-quality, we
limit the load balancing algorithm to a caller-specified time limit. Although
this usually does not let the algorithm pursue all possible states, our optimized
algorithm still gives the solution quite close to optimal as compared to the other
algorithms we have implemented.

Our branch and bound load balancer follows the design of common branch
and bound algorithms, with the addition of a few optimizations particular to the
load-balancing problem.



Branch and Bound Based Load Balancing for Parallel Applications 197

– Sorting objects before assignment: The objects are ordered in decreas-
ing sequence of their computation costs for assignment. Thus, more expensive
objects are assigned at higher levels of the search tree.

– Search ordering: At each level of the search tree, the child that assigns
the new object to the least loaded processor is considered first.

– Greedy Initial Estimate: States are pruned based not on the first state
evaluated. Instead, a quickly-obtained greedy estimate is used as the initial
lower bound which results in more states being pruned early.

– Symmetry: If all the processors have identical communication and compu-
tation capacities, then any processor with no assigned objects is equivalent
to another such processor. This reduces the branching factor of the tree at
the top levels.

– Future-Cost Estimates: Instead of just using the costs of states previously
assigned to obtain the current lower bound, we compute an optimistic esti-
mate of the cost of assigning the remaining states to obtain a more accurate
lower bound, which allows the search to prune more states.

As suggested by Wah and Yu [5], one could narrow the search space by aiming
for a solution guaranteed to be within a small percentage (say two percent) of
the optimal. This is accomplished by comparing the lower bound to 0.98 ×
upper bound in the pruning step. In the context of our strategy, which uses a
fixed time limit, such a narrowing may seem to be even more beneficial, as it
allows the search to “sample” a larger portion of the search space. However, in
almost all the runs we conducted, with using 1, 2 and 4 percent tolerance, we
found no improvement in solution quality within fixed time.

4 Performance Results

In this section, we compare the branch and bound load balancer with four other
algorithms. These algorithms include:

1. Greedy: This algorithm uses a greedy heuristic without performing the
branch and bound search.

2. Random: Objects are randomly distributed among the processors.
3. Greedy-Refine: The greedy algorithm is run to obtain an initial distribu-

tion, and then a refinement procedure is applied. This refinement procedure
looks at each processor with a load above the average by a certain threshold,
and moves objects from them to under-loaded processors, until no further
movement is possible.

4. Random-Refine: The refinement procedure is applied to the solution found
with the random algorithm.

All of these algorithm (except Random) consider the processor overhead of com-
munication in the assignment process, in accordance with the cost model in
Sect. 2.

Table 1 shows the results obtained when runs were made of the sequential
implementation of the branch and bound strategy using a recursive method



198 Shobana Radhakrishnan et al.

Table 1. Efficiency

Case # Procs. Comm. Greedy Greedy- Random Random- Branch &
Cost Refine Refine Bound

1 9 0 99.7 99.7 69.1 69.1 99.8

2 20 0 98.4 98.4 57.5 57.5 99.4

3 9 120 51.4 55.6 58.5 68.6 81.0

4 20 120 28.8 31.7 50.6 67.7 78.4

5 9 250 34.4 37.0 48.4 55.9 64.4

6 20 250 26.3 28.5 41.2 44.7 60.1

7 9 300 37.1 40.9 46.0 50.9 60.3

8 20 300 26.7 30.0 39.1 42.1 56.2

9 9 400 44.2 52.2 41.8 50.5 54.6

10 20 400 21.2 24.0 35.4 36.9 49.6

11 9 500 26.9 28.9 38.4 46.4 49.5

12 20 500 27.4 30.0 32.3 42.3 43.7

13 9 600 29.9 34.7 35.4 41.7 44.3

14 20 600 13.6 14.2 29.6 38.0 39.5

15 9 700 20.9 22.2 32.9 38.4 41.1

for various cases. In all cases, the same object graph is used, with 100 objects
and randomly generated computation cost and communication volumes. The
efficiency is calculated as Tsequential/(P · Tparallel), where P is the number of
processors, and Tparallel is computed by taking communication into account.
We observe that, even when run for limited time (so that the search tree is not
exhaustively searched), the branch and bound strategy gives the most efficient
solution among the algorithms implemented.

From these results, we observe that the efficiency of the solution for each
algorithm decreases as the communication overhead increases. This occurs be-
cause the optimal efficiency itself goes down with increase in the communication
overhead.

We also monitored the quality of solution as a function of time spent by the
load balancer. As expected, the quality increases with more search, but at some
time it converges on an optimum value. It can be verified from small problem
instances, that further search time spent on proving the near-optimality of the
solution quickly exceeds the time savings resulting from the slightly improved
load balance. This result is consistent with observations in the operations re-
search community regarding hard search problems.

We observed that applying the refinement algorithm does not greatly increase
the time spent by any of the load balancing algorithms, but produces a much
better solution in many cases. For example, in most cases the refine applied to
Greedy takes about 1 second more, and results in about 10 percent efficiency
improvement. For Random, refinement requires proportionally more time, but
the resulting efficiency is improved even more dramatically.



Branch and Bound Based Load Balancing for Parallel Applications 199

Often load balancing strategies concentrate on balancing computation costs
alone. To understand the effects of ignoring communication, we evaluated the
performance of the algorithms after modifying them to ignore communication
costs. For instance, we found that the modified Random-Refine strategy led to an
efficiency of 33 percent, compared to 39 percent obtained with original strategy.

5 Summary and Planned Work

In this paper, we presented a branch and bound based strategy that uses this
data to generate a near-optimal mapping of objects to processors. This strategy is
a component of our object based load balancing infrastructure to effectively par-
allelize irregular and dynamic applications. The framework instruments parallel
programs consisting of intercommunicating parallel objects, and collects perfor-
mance and communication data. A useful property of the branch and bound
strategy is that it is tunable: it has the ability to use the available time to pro-
duce increasingly better mappings. Also, the object communication costs are
fully modeled. Intelligent greedy strategies were also developed, and are seen to
be quite effective. The new strategy performs satisfactorily, irrespective of the
communication to computation ratio.

The branch and bound algorithm itself is suitable for execution in parallel;
indeed we have developed such a parallel variant. Using this, we plan to conduct
extensive performance studies. In particular, we plan to perform further studies
using various parallel machines and applications, rather than just the simulation
model described in this paper.

Due to space limitations, this paper does not include a survey and comparison
with the extensive load balancing literature. We only note that many strategies
described in the literature are either not oriented toward an object-graph model
or do not present a tunable strategy.

References

1. L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175–213. MIT Press, 1996. 194

2. Laxmikant Kalé, Robert Skeel, Milind Bhandarkar, Robert Brunner, Attila Gursoy,
Neal Krawetz, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and Klaus
Schulten. NAMD2: Greater scalability for parallel molecular dynamics. Journal of
Computational Physics, 1998. In press. 195

3. P. M. A. Sloot A. Schoneveld, J. F. de Ronde. Preserving locality for optimal
parallelism in task allocation. In HPCN, pages 565–574, 1997. 196

4. George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme
for irregular graphs. In Proc. Supercomputing ’96, Pittsburg, PA, November 1996.
196

5. B. W. Wah and C. F. Yu. Stochastic modeling of branch-and-bound algorithms
with best-first search. IEEE TSE, 11:922–934, 1985. 197

6. Chengzhong Xu and Francis C. M. Lau. Load Balancing In Parallel Computers
Theory and Practice. Kluwer Academic Publishers, 1997.


	Introduction
	The Object Model
	Branch and Bound Algorithm
	Performance Results
	Summary and Planned Work

