Load Balancing in Parallel Molecular Dynamics Laxmikant V. Kalé, Milind Bhandarkar, and Robert Brunner Department of Computer Science University of Illinois kale@cs.uiuc.edu http://charm.cs.uiuc.edu

- Simulate the motions of collections of atoms
- Forces due to bonds and non-bonded (Coulomb and Lennard-Jones) interactions
- Cutoff radius for non-bonded forces
- Sparse, but not very sparse, force matrix
- Configuration changes due to atom movement

Spatial Decomposition

- Fixed size boxes vs. one box per processor
- Scalability of spatial decomposition
 - Computation: O(N/P)
 - Communication: O(N/P)

Hybrid Decomposition

- Combines advantages of spatial and force decomposition
- Retains spatial decomposition in boxes
- One force-object for each pair of neighboring boxes
- Load balancer may map each force object to any processor!
- Flexible tradeoff between communication overhead and load imbalance

Challenges:

- Interoperating is difficult in face of concurrent languages (such as multi-threaded and object-based languages)
- Languages impose a processor scheduling policy
- Implicit vs. Explicit transfer of control
- Solution: exposed common scheduler (across languages)

More info: http://charm.cs.uiuc.edu

Object Groups

- When an object group is created, one object instance is created on each processor.
- You may invoke a method on any member of the group
- *Broadcast* invocation: when processor number is omitted
- Invoking a method in the local branch may be a synchronous function call

NAMD Information

- NAMD is a production-quality program.
 - NAMD 2 contains over 23,000 lines of code
 - DPMTA is an additional 8,000 lines
 - SM is used in modules containing 4,900 lines
- Supports features required by application scientists

Performance

Simulation		Processors								
# of atoms	1	2	4	8	16	32	64	128	160	
\mathbf{bR}	1.138	0.578	0.315	0.158	0.086	0.048				
(3,762)	1.0	1.97	3.61	7.20	13.2	23.7				
ER-ERE		6.115	3.099	1.598	0.810	0.397	0.212	0.123	0.098	
(36, 573)		(1.97)	3.89	7.54	14.9	30.3	56.8	97.9	123	
ApoA-I			10.760	5.464	2.850	1.470	0.729	0.382	0.321	
(92, 224)			(3.88)	7.64	14.7	28.4	57.3	109	130	

Table 1: Execution time (seconds) per timestep and speedups for several simulations on the CRAY T3E. All the simulations were run using a 12Å cutoff. Some simulations could not run on small numbers of processors due to lack of memory, so speed-up numbers in parantheses are estimates.

Periormance
I OI IOI manee

	Processors									
	1	2	8	16	32	64	128	160	192	
T3E		6.12	1.60	0.810	0.397	0.212	0.123	0.098		
		(1.97)	7.54	14.9	3 0. 3	56.8	97.9	123		
Origin2000	10.7	5.43	1.37	0.723	0.514	0.987				
	1.0	1.96	7.75	14.7	20.7	10.8				
ASCI-RED	28.0	13.9	3.76	1.91	1.01	0.500	0.279	0.227	0.196	
	1.0	2.01	7.45	14.7	27.9	56.0	100	123	143	
NOWs	24.1	12.4	3.69							
HP735/125	1.0	1.94	6.54							

Table 2: Execution time (seconds) per timestep and speedups for ER-ERE (36,573 atoms, 12Å cutoff) on several parallel machines.