Design and Implementation of Parallel Java with
Global Object Space*

L. V. Kalé, Milind Bhandarkar, and Terry Wilmarth
Parallel Programming Laboratory
Department of Computer Science

University of Illinois, Urbana-Champaign

Urbana, IL, U.S.A.

Abstract Java' has emerged as a dominant lan-
guage that could eventually replace C++. It is be-
lieved that using Java would boost programmer pro-
ductivity because of its well-thought design, inde-
pendence from backward-compatibility with C, ab-
sence of arbitrary pointers, etc. We present the
design and tmplementation of a parallel extension
to Java. The parallel extension provides dynamic
creation of remote objects with load balancing, and
object groups. The language constructs are based on
those of Charm++[1]. The parallel Java eztension
is implemented using the Converse[2] interoperabil-
ity framework, which makes it possible to integrate
parallel libraries written in Jave with modules in
other parallel languages in a single application.

Keywords: parallel, message-driven programming,

object-oriented, Java

1 Introduction

Java, as a programming language, has seen
phenomenal growth in the past few years. The
initial appeal of Java was related to its con-
nection to the Web. However, its benefits as a
good programming language are also being rec-
ognized. Its clearly-designed object-oriented
structure uncluttered by the backward compat-
ibility requirements (such as those for C++),
makes it a language that can potentially en-

*This research is supported in part by National Sci-
ence Foundation Grant BIR 93-18159.

!Java is a registered trademark of Sun Microsystems,
Inc.

hance programmer productivity substantially.
As the compiler technology catches up, with
the just-in-time compilers as well as direct
stand-alone compilers, the speed differential
between C++ and Java will narrow down. De-
ployment of java for the purpose of large-scale
application development is therefore a distinct
possibility in the near future.

Clusters of workstations within the intranet,
as well as parallel servers are increasingly be-
ing used as part of the computational infras-
tructure. To utilize the computing power of
such platforms for applications of the future,
it is desirable to extend Java with parallel con-
structs. This paper presents the design and
implementation of such an extension.

The parallel Java project is a part of our
broader effort towards multilingual parallel
programming. This effort is based on the
Converse interoperability framework. It em-
anates from our belief that no single paral-
lel programming language or paradigm is ad-
equate to support all the complex parallel ap-
plications, or even diverse subcomponents of
a large parallel application. Converse allows
individual parallel modules to be written us-
ing different paradigms, and in different lan-
guages. Converse also facilitates implementa-
tion of the runtimes of new parallel languages
by providing portability and support for com-
monly needed runtime facilities. As our paral-
lel Java extension is implemented using Con-
verse, it allows incremental adoption of paral-
lel Java: existing libraries written in C-MPI,

Charm-++, PVM, etc. can be utilized in a new
application, with new modules written in Java.

Our implementation does not require any
modifications to the Java compiler or to the
Java virtual machine. Any standard compiler
and JVM can be used. User code is written
in standard Java, with calls to our runtime li-
brary. The user must also write small interface
files (CORBA-IDL style, but much simpler),
translated by an interface translator provided
with the system.

In the next section, we describe the parallel
extensions from the user’s point of view and
illustrate with a few examples. The Converse
system used in the implementation is described
next in Section 3, along with a description of
Java facilities used in our implementation and
a discussion of the actual implementation and
issues of interoperability. This is a preliminary
implementation of parallel Java, which we plan
to enhance in the future. Potential enhance-
ments are discussed in section 4 followed by
our conclusions.

2 Design of Parallel Java

We have extended Java with two new con-
structs based on the Charm-+4-+4 model. Re-
mote objects, similar to chares in Charm++,
are objects that can be created on remote pro-
cessors, and are accessed through proxy ob-
jects. Object groups, like branch-office chares
in Charm-++, have an instantiation of an ob-
ject, i.e. a branch, on every processor. Be-
fore we describe these extensions, we provide
an overview of the structure of a simple Paral-
lel Java application.

2.1 Application Structure Overview

There are various components to a Parallel
Java application. The programmer must desig-
nate a main class, an instance of which is auto-
matically created on processor 0. Arguments
(String argv[]) are passed to the main ob-
ject’s static method main. After main exits,
the system invokes the scheduler and waits for

[Maind ass. ji | [CassNane.ji |

\ " Mai nCl ass"

[Proxy_Maind ass. java |[proxy_d assNane.] ava |

" Cl assNanme"
" MesgNane"

’ :

Mai nd ass. j ava
MesgNane. | ava

[Proxy_Mai ndl ass. cl ass]

Cl assNane. cl ass \Pr oxy_C assNane. cl ass \

MesgNane. cl ass| [Register AlT.class

conv-host pjava Maind ass +p4 ...

Figure 1: Structure of a simple Parallel Java
application: Programmer codes main and re-
mote classes, provides interface files (*.ji) for
each of them, generates registration and proxy
classes, and then compiles all Java files.

messages in the scheduler loop. Other proces-
sors go into the scheduler loop right from the
beginning.

Remote classes are defined similarly to regu-
lar Java classes, with a few exceptions. All re-
mote objects are created and accessed through
the use of proxies. A proxy class implements a
representation of a remote object providing ac-
cess to the remote object through similar entry
methods. Entry methods are methods that can
be invoked remotely. Proxy classes are gen-
erated with the jitrans utility, as shown in
Figure 1, which uses interface files provided by
the programmer to generate proxy class defini-
tions.

Message classes are programmer-defined
classes that must be defined for every type of
message that a constructor or entry method
can receive. Messages are serializable objects
that use Java’s serializable interface to convert
themselves to and from byte arrays. This se-
rialization and deserialization is taken care of
by the runtime system.

Names of the main, remote and message
classes are passed through a register utility
that creates RegisterAll. java. All the par-
allel classes, messages and entry methods (in-
cluding constructors for parallel objects) have
to be registered with the runtime system, so
that it knows which methods to invoke, how to
unpack a message and which object a method
is intended for.

The complete structure of files making up a
basic parallel application is shown in Figure 1.

2.2 Remote Objects

A class definition file for remote objects should
import the parallel package. A remote class
is a class that can be instantiated remotely.
It has the same structure as a Java class ex-
cept for some syntactic restrictions on methods
that can be invoked remotely. These meth-
ods, called entry methods, are also declared in
the interface files. All entry methods of a re-
mote class are asynchronously invoked, should
take a single parameter of a user-defined mes-
sage class and should not return any value.
Constructors may optionally have a Remote-
ObjectHandle as a first parameter. This han-
dle is a global reference to the object itself.
Thus if a remote object needs to send its own
reference to other objects in messages, it has
to store this handle locally (see Figure 2). Re-
mote objects are accessed through proxies, and
references to remote objects can be transmit-
ted in messages using handles.

Remote objects are declared by creating an
instance of a proxy object. For example, to
create a remote object of class ClassName, de-
clare

Proxy_ClassName myobj;

To actually create an object remotely, we must
send a new object message that calls a con-
structor for that class:

myobj = new Proxy_ClassName(pe, msg);

Here, pe is the processor on which the object
is to be created. If we leave out pe, a processor

will be chosen by the dynamic load balancer.
Finally, to send a method invocation message
to a remote object, we use the proxy as follows:

myobj .MethodName (msg) ;

This call is asynchronous; the caller does not
wait for the call to complete.

To send a reference to a remote object in
a message, we must obtain the object’s han-
dle. A proxy acts as a local representation of
a remote object, while a handle is a global ref-
erence to the object. Consider the following
example:

msg.anobj = myobj.globalRef;
someobj.SomeMethod(msg) ;

Here, a handle on myobj is placed in msg, and
then transmitted to SomeMethod of someobj.
To extract myobj on the receiving side, we
would do the following;:

Proxy_ClassName myobj2 =
new Proxy_ClassName(msg.anobj);

This creates a new proxy that controls access
to a pre-existing remote object.

Interface Files: The programmer defining a
remote class must also provide an interface file
for that class. An interface file for a remote
class consists of a listing of all the entry points
and message types for that class with the fol-
lowing syntax:

class ClassName {
entry Constructori(MessageType0);
entry EntryMethodi(MessageTypel);

entry EntryMethodN(MessageTypeN);
}

Note that non-entry-methods need not be
listed in the interface file.

Figure 2 shows a sample program imple-
menting a remote object to illustrate the cre-
ation and method invocation concepts de-
scribed above.

2.3 Object Groups

Object groups are defined in the same way as
remote objects, and created much the same
way as well. Since an instance of the object
is created on all processors, no processor num-
ber is specified to the proxy constructor.

Proxy_GroupClassName mygroup =
new Proxy_GroupClassName(msg) ;

To send a message to a single branch of the
object, we use the syntax

mygroup.SomeMethod (pe, msg);

where pe is the number of the processor to send
the message to. To send the message to all in-
stances of the object, simply omit the pe pa-
rameter.

The interface file for an object group class
is similar to that of the remote class, with the
exception that the class keyword is replaced
by group.

group ClassName {
entry Constructori(MessageTypeO);
entry EntryMethodl(MessageTypel);

entry EntryMethodN(MessageTypeN) ;
}

Figure 3 shows a sample program imple-
menting an object group. The object group
created is a Ring, and so its creation effectively
creates one ring node on each processor.

2.4 Running Parallel Java programs

Once all the Java files have been compiled us-
ing the Java Compiler, the Parallel Java ap-
plication can be run on a network of worksta-
tions using the conv-host utility supplied with
Converse and a Parallel Java virtual machine
pjava:

conv-host pjava MainClass +p4 -classpath=...

conv-host reads the IP addresses of the
individual workstations from a local file

public class Main{
public static void main(String argv[]){
Proxy_A a = new Proxy_A(1,new InitMsg());
a.DoWork (new WorkMsg());
}
public void ExitApp(ExitMsg emsg){

PRuntime.exit (0);
}
}

public class A{
private RemoteObjectHandle globalRef;
private RemoteObjectHandle mainhandle;

public A(RemoteObjectHandle h,
InitMsg imsg){
// do initializations
globalRef = h;
mainhandle = PRuntime.mainhandle;

}

public void DoWork(WorkMsg wmsg){
// do work
Proxy_Main m;
m = new Proxy_Main(mainhandle);
m.ExitApp(new ExitMsg());

}

}

Figure 2: Example of RemoteObject Creation
and Method Invocation

and spawns the Parallel Java virtual ma-
chines pjava on those workstations, passing
MainClass and other parameters to it. pjava
uses the Java Invocation API to load the Par-
allel Java Runtime class, and registers the re-
mote objects using the RegisterAll class. It
then invokes method main of class MainClass
on processor 0, and invokes the scheduler.

3 Implementation

Our parallel implementation of Java is based
on the Converse interoperability framework
and several facilities provided in Java (JDK
1.1) itself. Before describing our implementa-
tion we first briefly review Converse and the
relevant Java features.

3.1 Converse

Converse [2] is a runtime framework that sup-
ports multilingual parallel programming. It

public class Main {
private static final int NITER = 100;

public static void main(String argv[]) {
Proxy_Ring ring =
new Proxy_ring(new InitMsg(NITER));
ring.StartRing (0, new StartMsg(0));
}
}

public class Ring{
// private instance variables

public Ring(RemoteObjectHandle h,
InitMsg imsg) {
globalRef = h;
niters = imsg.iterations;
mype = PRuntime.MyPe();
numpes = PRuntime.NumPes();
ring = new Proxy_Ring(globalRef);
}
public void StartRing(StartMsg s) {
if (mype==(numpes-1)) {

if(s.iter == niters) {
PRuntime.exit (0);
} else {
s.iter++;
ring.StartRing(0,s);
}
} else {

ring.StartRing((mype+1) Ynumpes, s);
}
}
}

Figure 3: A Ring Program in Parallel Java

provides an infrastructure for building new
parallel programming languages. Languages
implemented on top of Converse can interoper-
ate with parallel modules written using other
languages. Thus a parallel application can con-
sist of multiple modules written using different
languages built on top of Converse.

Converse makes this possible by abstracting
the notion of computation assignment into ob-
jects called generalized messages and using a
common scheduler for all generalized messages
irrespective of the language runtime that gen-
erated them. A generalized message consists
of two parts. The message header specifies the
handler for that message, whereas the message
body corresponds to the language specific in-
formation about the data enclosed in that mes-

sage. The Converse scheduler waits for mes-
sages to arrive for either the local processor or
remote processor, and executes the appropriate
handler based on the message header.

The scheduler is exposed to the language im-
plementor. Indeed, one can even substitute a
different scheduler for the default one. Expos-
ing the scheduler to the language runtime is
necessary because different languages embody
radically different control regimes. Languages
such as MPI have a single thread of control. If
the MPI module blocks for the message, they
hold up the entire processor. Message-driven
languages such as Charm++ invoke methods
on objects upon arrival of messages and never
block. Thus, an application consisting of con-
current modules written in Charm-+-+ and MPI
should not block the ready computations in
Charm++ just because the MPI module is
blocked on a specific tagged message. When
the scheduler is exposed to the MPI developer,
MPI can transfer the control to scheduler for
performing other computations while it waits
for the specific message.

3.2 The Java Language

Much of our implementation makes use of
available Java [3] facilities. We discuss the Java
Remote Method Invocation API and some of
the drawbacks of its use. We also discuss fea-
tures of the Java Native Interface, the Invoca-
tion API and the Reflection API, as they are
used in our implementation of parallel Java.

3.2.1 Java Remote Method Invocation

The Java Remote Method Invocation API
(RMI) was provided to enable writing dis-
tributed applications in Java. RMI architec-
ture is based on a client-server model. Every
remote object acts as a server and can offer
multiple interfaces to clients. Clients of the re-
mote objects invoke methods on the stub for
that remote object. However, the clients never
interact with the implementation of the remote
object but rather with the remote interface
that object offers. Although this provides more

security and flexibility for the remote object
developer, it is inefficient and often not needed
in a parallel application, where the remote ob-
jects are trusted. Use of TCP as the underlying
transport layer in RMI restricts the number of
hosts in a distributed program to a system spe-
cific maximum (such as 64). Though this is not
a very serious shortcoming for distributed ap-
plications, parallel applications will encounter
this limit because they may wish to use hun-
dreds of processors. Java RMI uses dynamic
class loading to create stubs to remote objects
at runtime. This provides enormous flexibil-
ity for dynamic environments such as WWW,
but is often inefficient and unnecessary in par-
allel programs, where the security checks as-
sociated with the classloader are not needed.
Java RMI is synchronous. The calling thread
waits for the result of the remote method ex-
ecution. Implementing asynchronous RMI on
top of synchronous RMI implies providing a
callback method on the client object. There-
fore, one has to implement the client object
also as a remote object and pay the unnec-
essary overhead of the return message. All
the remotely accessible objects in RMI have
to extend UnicastRemoteObject. Since Java
does not permit multiple inheritance, one can-
not use classes derived from any other class as
classes for remote objects.

For these reasons, we chose not to make use
of the Java RMI facility. Instead, we opted to
use the communication facilities of Converse.

3.2.2 Java Native Interface

Java Native Interface(JNI) allows applications
written in Java to interoperate with code writ-
ten in other programming languages such as
C and C++4. JNI is typically used for uti-
lizing certain platform-dependent features, for
reusing legacy code, and for speeding up time-
critical portions of applications. Java classes
are augmented with “native” methods that
are written in C or C++ and linked dynam-
ically through DLL’s on Windows platform or
through shared objects on Unix. The Java
Native Interface provides functions to create,

access and modify Java objects, invoke Java
methods, and to raise and catch exceptions.
We use JNI to interface with the Converse mes-
saging layer, and the scheduler.

3.2.3 Invocation API

Invocation API is a set of library functions that
allow embedding the Java Virtual Machine in
a native application. Such applications create
an instance of Java VM, and attach the cur-
rent thread to it. Once the virtual machine is
initialized, it is instructed to carry out Java-
related tasks such as loading classes, instanti-
ating them and invoking methods on the ob-
jects. Our parallel Java implementation uses
the Invocation API in the application wrap-
per program pjava. This wrapper program
provides a gateway between the Converse Host
program and the parallel Java application on
every processor. Specifically, it loads the par-
allel runtime system on every processor, and
passes control to the Converse scheduler.

3.2.4 Reflection API

The Java Reflection API supports introspec-
tion about loaded classes to applications. In
particular, it allows applications to construct
new classes and arrays, access and modify fields
of classes and elements of arrays, and to in-
voke methods on objects. Object brokers for
Java-based components rely on the Reflection
API to discover information about objects and
to customize objects at runtime. In addition,
Java Reflection enables writing tools such as
debuggers and profilers in Java portably. The
parallel Java runtime system class makes use of
the Reflection API to invoke methods on ob-
jects when corresponding messages arrive.

3.3 Implementation of Parallel Java

We were guided by the following principles in
implementing Parallel Java:

e Use minimum native code in order to
achieve portability. We use only six na-
tive methods in the parallel runtime class.

e Use existing Java facilities whenever pos-
sible. An example of this is the use of the
serializable interface for messages.

e Avoid copying as much as possible. An
important consequence of this decision
was to use handles as a global reference
instead of proxies. Also, if the message is
intended for an object on the local pro-
cessor, a reference is passed to a message
instead of cloning it.

When a new remote object is created by call-
ing the proxy’s constructor method, it calls the
CreateRemoteObject method in the parallel
runtime class. This method allocates a vir-
tual handle, a special handle indicating that
the remote object that the handle refers to is
not yet created. It then sends a message to the
processor on which the remote object is to be
created, specifying the class to be instantiated,
the constructor method to be called and the
message that is to be passed as an argument to
the method. This send is asynchronous, so the
runtime system does not wait for the object to
be actually created before returning to the ap-
plication. When the CREATE message reaches
its destination processor, the remote proces-
sor creates an object, and calls its constructor
method with the message argument. It then
sends a message back to the source processor of
that message indicating that the remote object
has been created. Upon receipt of this CREATED
message, the original proxy reference gets up-
dated to point to the actual object, and no
longer remains virtual. If in the meanwhile,
i.e. after creation of proxy and before creation
of the remote object, some object tries to in-
voke a method on the remote object, the call
is queued inside the runtime system of the pro-
cessor which created the first proxy.

For method invocation, the wrapper method
in the proxy invokes the InvokeMethod method
of the runtime class, passing it the reference to
the remote object, the ID for the method (cre-
ated by RegisterAll to be invoked and the
message argument. If the handle is not virtual,
i.e. the remote object has already been cre-
ated, then the runtime system sends an INVOKE

message to the home processor of the remote
object. If a virtual handle is specified, then the
runtime system forwards this message to the
creator of the first proxy of that object, which
maintains a queue of methods to be invoked on
the remote object once it is created.

A message object is serialized into a byte ar-
ray only if the method is to be invoked on an
object residing in a remote Java virtual ma-
chine. Otherwise, its reference is included in
a machine-level message passed to the destina-
tion object. This means that once the message
has been passed as a parameter to a remote
method, its ownership should be relinquished
by the caller. Modification to the message ob-
ject after it has been sent can result in un-
specified behavior and can result in the most
obscure timing-dependent bugs.

The registration mechanism we use offers
a simple and efficient mechanism for locating
remotely instantiatable classes, methods, and
messages. This is one place where, for the sake
of efficiency, we have deviated from the facili-
ties for dynamic class loading provided in Java
and implemented our own static registration of
all the entities involved in remote method in-
vocation. We use the Java Reflection API to
access information about classes, methods and
messages when they are registered and store
them in the runtime system for efficient access.

In order to exit the parallel application, one
needs to call the exit method provided by the
parallel runtime, and not the method provided
by the System class. PRuntime.exit sends a
message to processor 0 declaring the caller’s
intention to exit. Processor 0 then broadcasts
this message to all the processors and waits for
the replies. When other processors receive this
exit message, they acknowledge to processor 0
and exit the virtual machine. Processor 0 exits
after it receives all the acknowledgements.

Since the remote processors typically do not
have direct access to the standard input and
output of the host (the machine from which
the application is started), we use the facilities
provided by Converse to print to stdout and
stderr of host and to read from stdin of host.
We have embedded this facility inside the out,

err and in objects inside the runtime class, so
that methods such as println are supported.

Currently, the Java threads are not mapped
to the native threads in Sun’s Java implemen-
tation. This has an unpleasant side effect that
thread context switches cannot occur once the
JVM is inside a native method. Since we need
to invoke the native Converse scheduler for pro-
cessing Parallel Java messages, other threads
cannot run even if there are no messages to be
processed. However, this will go away with the
availability of native threaded version of the
Java Implementation. An alternative solution
is to run the scheduler in a polling mode as a
Java thread.

3.3.1 Interoperability

pjava is essentially a C program that uses
Converse libraries and embeds the Java Vir-
tual Machine using the Invocation API. It ini-
tializes Converse using ConverselInit, starts
JVM, loads PRuntime from a well-known class-
path, and starts the Converse scheduler. The
facility to embed a Java virtual machine in-
side any native application also makes it pos-
sible for other parallel languages implemented
on top of Converse to interoperate with mod-
ules written in Parallel Java. For example,
suppose a Charm++ application needs to in-
voke some computation in a Parallel Java mod-
ule, it can invoke the JVM and take the steps
taken by pjava to start computation in Paral-
lel Java. Similarly, classes developed in Paral-
lel Java can include native methods that trig-
ger Charm++ computations. The Converse
scheduler will automatically interleave the exe-
cution of Parallel Java objects, Charm++ ob-
jects, and other entities in a non-preemptive
fashion.

3.4 Current Status

Parallel Java will run on any machine where
there exists both Converse and Java installa-
tions. Since ports for Converse exist to most
platforms (but not yet on Windows), availabil-
ity largely depends on that of Java. We use

several features supported in JDK 1.1. At the
time of this implementation they were avail-
able only on the SUN platforms running Solaris
which is where our implementation was tested.
Preliminary performance results indicate
that remote method invocation in our Paral-
lel Java implementation is substantially faster
than the Java RMI facility. More extensive
performance analysis is planned for the future.

4 Future Work

In the future, our approach to further develop-
ment of the parallel Java system will be along
two lines: first, making parallel Java feature-
rich by including features supported by other
message-driven languages such as Charm++.
These include more extensive load-balancing
support, object arrays, specifically shared vari-
ables, and message prioritization. Second, we
wish to take advantage of the dynamic nature
of Java to enable the construction of customiz-
able parallel components.

Currently our parallel Java implementation
uses a quasi-dynamic random load-balancing
strategy. If the processor number is not spec-
ified for the remote object at creation time,
the runtime system creates it on a randomly
generated processor. One can provide a load-
balancing strategy for object-creation in the
parallel Java runtime. This approach has some
drawbacks in the case of applications using
modules written in multiple languages. Using
this approach, every individual module may be
load-balanced, but the application can still ex-
hibit severe load-imbalance. In order to pro-
vide a common load-balancing strategy across
multiple modules, Converse provides support
for languages that use dynamic load-balancing.
In the future, we would use this Converse fa-
cility to create new objects.

In future versions of Parallel Java, we plan
to implement object arrays, new information
sharing abstractions, and message prioritiza-
tion. Object groups (Branch-Office chares) are
a restricted form of the more general object
array abstraction. This abstraction supports

multidimensional arrays of remote objects.
These arrays are range-addressable, support
static mapping and object migration. Object
arrays have been implemented in Charm++ [4]
and have been found useful in several scientific
applications.

In our current implementation, the only
mode of inter-object communication is through
remote method invocation.
many programming tasks, better mechanisms
of sharing information between objects can
be used to make the structure of the pro-
gram simple to understand and modify. In
Charm++, we have already shown the utility
of such abstractions called specifically shared
variables[5].

Message prioritization provides an elegant
way to optimize a parallel message-driven
program[6]. This optimization is achieved by
associating priorities with computations speci-
fied by messages in order to speed up process-
ing of tasks on the critical path of the program.

One important feature of our design is
that the remotely instantiatable classes need
not be derived from a specific class such as
UnicastRemoteObject as in Java RMI. This
allows the users to create their own hierar-

However for

chies of parallel objects. This also allows them
to remotely instantiate arbitrary classes orig-
inally written in a sequential context. How-
ever, in order to achieve this, we need to re-
move the restriction that the constructors and
entry-methods of these classes can take exactly
one argument, i.e. the message. We plan to re-
move this restriction using automatic parame-
ter marshalling. The interface translator will
be extended to include the automatic packing
and the runtime will be extended to do unpack-
ing of the arguments.

A long-term research goal of our parallel
Java work is to demonstrate the applicabil-
ity of message-driven object-based program-
ming to build customizable parallel compo-
nents that can be reused for rapid parallel ap-
plication development. The JavaBeans compo-
nent architecture developed at Sun Microsys-
tems already employs Java to build customiz-
able sequential components. Recent develop-

ments in JavaBeans include a bridge with Ac-
tiveX technology from Microsoft and integra-
tion with CORBA. The concept of sequential
components in JavaBeans can be extended to
parallel components, thus providing a bridge to
the fast method invocation mechanism of Con-
verse. This capability will be demonstrated in
NAMD, a molecular dynamics simulation pro-
gram we have been developing at University of
Ilinois [7]. We will build customizable parallel
components for various entities in the simula-
tions. It will then be possible to tie these com-
ponents together using a scripting language in
a customized molecular dynamics application.

5 Conclusion

We described the design and implementation
of a parallel Java extension. The parallel con-
structs distinguish between parallel, remotely
invokable objects, and normal sequential ob-
jects. The extension supports the dynamic
creation of remote objects and efficient asyn-
chronous method invocation. Object groups,
which are essential for efficient and modular
programming for parallel applications, are also
supported. The implementation uses several
new features of Java, such as the invocation
API and the reflection API. No change to the
Java compiler or JVM is required. Instead an
interface compiler is used to generate wrapper
code for each parallel class. The user only has
to specify the names of parallel classes, and the
signatures of their remotely invokable methods
to the interface translator.

Our parallel Java extension is implemented
on top of the Converse interoperability frame-
work. This simplified the implementation of
the parallel runtime, and makes it automat-
ically portable to a variety of machines sup-
ported by Converse, as long as Java is avail-
able on them. More importantly, using Con-
verse also means that parallel Java modules
can coexist with parallel modules in other lan-
guages, such as Charm++, MPI, or HPF. As a
result, one can put together an application in
Java relatively quickly, and reimplement indi-

vidual modules in more efficient languages such
as Charm++ or reimplement the critical se-
quential components in C or Fortran. This can
provide a boost in programmer productivity.

A few other approaches to parallel Java have
been made recently. JavaParty [8] supports
synchronous and asynchronous method invoca-
tion of remote objects. It requires modification
to the Java compiler. Some other approaches,
[9], [10] provide CSP like channels for commu-
nicating Java processes. QOur approach differs
from them primarily in our support for interop-
erability with other parallel languages, and in
our parallel object primitives which we believe
are a better match with both parallel program-
ming requirements, and the Java programming
model.

Several issues have been identified for future
work, and significant effort must be devoted to
them. However, we believe that this approach
will eventually lead to a productive new tool
for parallel and distributed programming.

References

[1] L.V. Kale and S. Krishnan. Charm++: A
portable concurrent object oriented sys-
tem based on C++. In Proceedings of
the Conference on Object Oriented Pro-
gramming Systems, Languages and Appli-
cations, September 1993.

[2] L. V. Kale, Milind
Bhandarkar, Narain Jagathesan, Sanjeev
Krishnan, and Joshua Yelon. Converse:
An Interoperable Framework for Parallel
Programming. In Proceedings of the 10th
International Parallel Processing Sympo-

stum, pages 212-217, Honolulu, Hawaii,
April 1996.

[3] James Gosling, Bill Joy, and Guy
Steele. The Java Language Specification.
Addison-Wesley, 1996.

[4] Sanjeev Krishnan and L. V. Kale. A par-
allel array abstraction for data-driven ob-
jects. In Proc. Parallel Object-Oriented

[10]

Methods and Applications Conference,
February 1996.

A. Sinha and L.V. Kalé.
Sharing Mechanisms in Parallel Programs.
In H.J. Siegel, editor, Proceedings of the
8th International Parallel Processing Sym
postum, pages 461-468, April 1994.

Information

L.V. Kale, B. Ramkumar, V. Saletore,
and A. B. Sinha. Prioritization in par-
allel symbolic computing. In T. Ito and
R. Halstead, editors, Lecture Notes in
Computer Science, volume 748, pages 12—
41. Springer-Verlag, 1993.

L. V. Kale, Milind Bhandarkar, Robert
Brunner, Neal Krawetz, James Phillips,
and Aritomo Shinozaki. A case study
in multilingual parallel programming.
Technical report, Theoretical Biophysics
Group, Beckman Institute, University of
Illinois, Urbana, June 1997.

Michael Philippsen and Matthias Zenger.
JavaParty—Transparent Remote Objects
in Java. In ACM 1997 PPoPP Work-
shop on Java for Science and Engineer-
ing Computation (To Appear), Las Vegas,
Nevada, June 1997.

Erik D. Demaine. Higher-Order Concur-
rency in Java. In Proceedings of the Par-
allel Programming and Java Conference

(WoTUG-20), pages 34-47, April 1997.
Gerald Hilderink, Jan Broenink, Wiek

Vervoort, and Andre Bakkers. Commu-
nicating Java Threads. In WoTUG-20:
Parallel Programming and Java Confer-
ence (To Appear), April 1997.

