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Abstract

This paper describes MICE, a prototype implementation
of MPI on the Converse interoperable parallel program-
ming environment. It is based on MPICH, a public-domain
implementation of MPI and uses the Abstract Device Inter-
face (ADI) which has been retargeted on top of Converse.
MICE makes use of message-managers and allows use of
thread-objects to let MPI modules co-exist with other types
of computations and communication (such as a library com-
putation in Charm++ or asynchronous computations in mul-
tipol) within a single application. It also makes it possible to
interoperate PVM (in a restricted form) and MPI modules.
Thread-objects make it possible to build multi-threadedMPI
programs. This MPI implementation demonstrates that it is
possible to provide interoperability without any significant
performance degradation.

1. Introduction

Message-Passing parallel programming has become the
method of choice for many parallel programmers. There
have been tremendous advances in this field in the past few
years. One such advance is the emergence of Message Pass-
ing Interface Standard, MPI[5]. Since the detailed specifi-
cation of MPI 1.0, many public-domain and vendor-specific
implementations of MPI became available and many exist-
ing applications were ported using MPI. Many new appli-
cations are also being developed in the MPI environment.
However, there aren’t many tools available for converting
existing applications from other parallel programming en-
vironments to MPI. This may be straightforward for some
programming environments but could be very difficult for
others. Also, there is currently no way to use modules de-
veloped using other languages (or run-time systems) in MPI
programs. In particular, we are interested in ways to use

modules developed using message-driven objects alongwith
MPI modules in a single application.

This paper describes MICE, a prototype implementation
of MPI on the Converse[3] interoperable parallel program-
ming environment. It is based on MPICH[1] implementa-
tion and uses the Abstract Device Interface (ADI)[7] which
has been implemented on top of Converse. Converse makes
it feasible to employ modules written using different paral-
lel programming languages and run-time systems in a sin-
gle application. Currently, in addition to MPI, a number
of parallel programming environments such as threaded-
PVM[6] (without process management facilities), Charm[2]
(an object-based message-driven language), Charm++[4]
(an object-oriented message-driven language), IMPORT (a
parallel simulation language) and threaded SM (a simple
messaging layer) have been ported to Converse. Other
parallel programming languages and libraries such as POL
(Parallel Object Language), multipol library, and CRL (an
explicit distributed shared memory environment) are also
being ported to Converse.

The next section describes Converse. MPICH device
interface is described in section 3. In section 4, we present
our implementation of MICE. Section 5 describes how MPI
could be used with modules written in other languages. We
compare the performance of our MPI implementation with
MPICH in section 6 and conclude in section 7.

2. Converse

Converse[3] is an interoperable parallel programming
framework for implementing parallel languages. Converse
has a dual objective to first, support co-existence of modules
written in different parallel languages/paradigms in a single
application program; and second, to support quick devel-
opment of runtime systems for new languages and parallel
libraries. It was designed to support the three important
classes of parallel languages: SPMD, Message-driven ob-
jects and multi-threaded languages. Data parallel languages



could be implemented in any of these classes and therefore
are not considered as a separate category.

Converse has a component-based architecture that has a
desirable feature of need-based cost. (Languages pay only
for the features they use.) Also, it allows user to override
any of its components. Some of the major components of
Converse are its scheduler, machine interface (CMI), thread-
objects, message-manager and load-balancing strategies.

Converse employs a notion of generalized messages to
utilize a single scheduler component for all the entities in an
application. A generalized message is a contiguous block
of data that contains the handler index in the first few bytes.
This handler is invoked when the message is dequeued from
the network and is processed. The handler can then grab
the ownership of this message from the run-time system and
process the message immediately or may decide to enqueue
it for future processing.

Converse scheduler repeatedly picks up the generalized
messages from its queue and calls their handlers. When
confronted with multiple choices in available messages, the
scheduler has to decide which one to choose for processing.
This decision may have a major impact on the performance
of applications such as branch-and-bound search. Converse
allows the language runtime to associate priorities with gen-
eralized messages and provides different prioritized queuing
strategies.

When initialized, a language runtime registers one or
more handlers with Converse. These language-specific han-
dlers implement the specific actions they must take on re-
ceipt of messages from remote or local entities. The lan-
guage handlers may send messages to remote handlers using
the CMI, or enqueue messages in the scheduler’s queue, to
be delivered to local handlers in accordance with their pri-
orities.

The CMI layer defines a minimal interface between the
machine independent part of the runtime such as the sched-
uler and the machine dependent part which is different for
different parallel computers. MPI also provides such a
portable interface. However, it represents an overkill for the
requirements of Converse. For example, MPI provides a
“receive” call based on context, tag and source processor. It
also guarantees that messages are delivered in the sequence
in which they are sent between a pair of processors. The
overhead of maintaining messages indexed for such retrieval
or for maintaining the delivery sequence is unnecessary for
many applications. Also, as we have shown in section 5,
MPI receive could be easily implemented on top of CMI and
other language modules do not have to pay the overhead for
maintaining order or for a complicated message retrieval.

In addition to the minimal machine interface, Converse
specifies an extended machine interface (EMI) that allows
efficient implementations for operations such as vector send
and get and put operations on global pointers.

In the implementation of MICE, we have made extensive
use of message-managers, which are provided as a library
in Converse. A message manager is simply a container
for storing messages. It stores a subset of messages that
are yet to be processed, serving as an indexed mailbox.
A message manager provides calls to insert and retrieve
messages. Messages may be retrieved based on one or more
“identification marks” on the message. A tag and a source
processor number are examples of such identification marks.
The message manager provided in Converse also allows one
to probe for the existence of a particular message specified
by its tags. A “wildcard” may be specified in any tag field.
The message manager can be used by multi-threaded as well
as single-threaded modules.

Each process belonging to a parallel application could
be single threaded or multi-threaded. Most thread-packages
combine the ability to create, suspend and resume a thread,
scheduling of threads as well as synchronization mecha-
nisms into a single monolithic component. However, lan-
guage implementors need a finer control over each of these
components. Therefore, Converse modularly separates
these three capabilities and exposes them to the language
implementors. Using Converse, one can create thread-
objects[8], schedule them under one’s control without de-
pending on the system’s scheduler. (If one wishes to use
the scheduling provided by the system, one is free to use
it though.) Various synchronization mechanisms such as
locks and condition variables are supplied by Converse, as
a component, which could be overridden by the user.

Converse uses a single scheduler for scheduling compu-
tations specified by messages as well as threads. That is,
generalized messages are enqueued in the scheduler’s queue
for awakening suspended threads. Scheduler treats these
messages the same way as it treats other messages. This
makes it possible to have elaborate prioritization schemes
even for threads.

Converse supports load balancing across modules. Its
design is particularly influenced by situations where a piece
of work created on one processor may be executed on any
processor, preferably with the least load. To achieve this,
the language run-time hands over a “seed” for new work
created in the form of a generalized message to the load
balancing module which then moves the seed around the
network until any processor decides to enqueue it to its
local queue and process it. Converse has many built-in load
balancing strategies which could be selected by the user at
link-time. (Or the language implementor could provide the
user with more choices of load balancing strategies.)

3. MPICH Device Interface

MPICH[1] is a public-domain implementation developed
at Argonne National Laboratory and Mississippi State Uni-



versity. This is a two level implementation of which the
top layer provides device-independent functionality of MPI
and the bottom layer implements the device-specific part.
There are “hooks” from the device-independent part into
the device-specific part. The device-specific part is called
the Abstract Device Interface (ADI)[7]. The ADI itself is a
multi-level interface. It consists of certain core routines that
must be implemented, and a set of extension routines that
are implemented if the underlying machine supports them
and has better performance than the corresponding MPICH
routines. However, these extension routines do not add
any more functionality and the implementation that supplies
only the core ADI functions is a complete implementation
of MPI.

The core of the ADI consists of routines to post and
complete communication requests, testing for availability
of messages, initialization and termination of ADI, getting
rank of calling process, and size of the participating pro-
cesses. The extension routines include routines for col-
lective operations as well as blocking sends and receives.
Most ADI routines are passed the ADI context returned by
the MPID Init subroutine. Based on this context, the ADI
can select routines to call. In our current implementation,
we do not use the ADI context, but plan on using one in
the future to allow heterogeneity. This ADI interface is
constantly evolving, but we do not foresee any incompat-
ible changes that we may not be able to implement using
Converse.

4. Implementation

MICE is implemented by developing the Abstract Device
Interface (ADI) of MPICH using Converse primitives. As
described in the previous section, the ADI is a set of device-
specific routines that the device-independent part of MPICH
uses to post and complete communication requests as well
as to enquire about participating processes.

Our implementation of the ADI uses a separate Converse
handler for MPI messages. This handler is registered in
MPID Init. Whenever the machine layer of Converse
(CMI) receives message (either from the network or from
the local processor), it invokes this handler. This handler
then sees if the message was expected according to the se-
quence number associated with the message. (Converse
does not guarantee in-order delivery of messages. There-
fore, to ensure order among a pair of processors, we need
to associate a sequence number with a message. A message
with the “next” sequence number per source processor is
always “expected” by the ADI.) If the message arrives out
of order, it is buffered until all the previously dispatched
messages arrive, at which point it is moved into the message
manager. The ADI routine for testing for message arrival
simply probes the message manager (using the CmmProbe

function provided in the message manager component of
Converse.)

For explicit control-regime interoperability (discussed in
the next section), or in standalone mode, MPI implemen-
tation is single-threaded. We wait for messages directed
at the ADI message handler whenever we block for any
message in the MPID Blocking recv call by calling
CmiDeliverSpecificMsg with the ADI handler in-
dex as a parameter. This function blocks until a message
intended for the specified handler arrives from the network
and calls the ADI handler function. For implicit control-
regime interoperability, MPI module is run as a thread ob-
ject. Whenever MPI needs to wait for a message to arrive,
we suspend the MPI thread-object and transfer control to the
Converse scheduler, which wakes up the MPI thread when-
ever an MPI message arrives. The choice between these two
implementations of MPI library can be made at the link time.
For implicit control-regime interoperability, we had to write
a variant of Converse scheduler that exits when there are
no more messages to be processed. The component-based
architecture of Converse permits us to rewrite this scheduler
without rewriting any other component.

Since most existing MPI programs depend on ability of
doing standard input and output from any node on the system
(though MPI does not demand it), we have overridden the
system routinesprintf, fprintf, scanf, and fscanf
with our own routines coded as a part of the MICE library,
which make calls to the Converse routinesCmiPrintf and
CmiScanf. One important change that the users of MICE
will have to do to link their MPI programs is to change the
name of the main routine to user main. This should
be done, because Converse supplies the main routine that
could do some internal data structure initializations before
calling user main.

MICE became operational recently and has passed the
entire test suite (about 150 MPI programs) supplied with
the MPICH distribution on network of Solaris 2.4 based
workstations. Since Converse is portable across many ar-
chitectures, we expect MICE to run on those machines as
well. However, we have not performed elaborate testing on
any other machines. (We foresee some minor modifications
to be made in the top layer of MPICH implementation while
porting MICE to the shared memory machines supported
by Converse.) Also, MICE currently works only with C
programs. We plan to provide MICE for FORTRAN in
future.

We carried out several performance tests (included in the
MPICH distribution) and the results are reported in section
6. Most of the ADI routines that directly map onto the
Converse routines are are provided as macros to avoid extra
function call overhead. We also use Converse’s vector send
capabilities to attach header to a message without having
to copy the header and message into a contiguous system



buffer before calling CmiAsyncSend. There are some
more performance optimizations that we plan to do in near
future.

5. Interoperability

Two important issues considered while designing Con-
verse for supporting interoperability were: Degree of con-
currency allowed in a language and the control regime.
While MPI does not restrict the degree of concurrency al-
lowed in an application, neither does it assume that concur-
rent computations are active. Therefore, it is the program-
mer’s responsibility to manage concurrency in an MPI appli-
cation. Some traditional SPMD environments do not allow
multiple threads of control inside an application. At the
other end of the spectrum are the message-driven languages
such as Charm and Charm++, where the run-time system
is free to choose which methods (and in which objects) to
invoke depending on the availability of messages directed at
them. An application could have multiple threads of control
and the run-time system for such languages usually provides
ways to let the application influence the order in which these
threads will be scheduled for execution. The second issue is
that of a control-regime, that is, how control is transferred
between individual modules. If multiple modules within a
single application can execute in an interlaced manner on
multiple processors, it is referred to as an implicit control-
regime. If at any time only one module is active across all
processors, and control is transferred from one module to
another explicitly by the application, it is called an explicit
control-regime. Figure 1 from [3] illustrates control trans-
fers in explicit and implicit control-regimes in a multilingual
program.

PHASE 2

PHASE 3

PHASE 1

PE 1 PE 2 PE 3 PE 1 PE 2 PE 3

Idle

(a) Explicit Control Regime (b) Implicit Control Regime

Module 1 Module 2 Module 3 Message

Figure 1. Control-Regimes for Parallel Pro-
grams

MICE supports both explicit and implicit control-regimes

and also allows MPI modules to co-exist with other lan-
guages with different levels of concurrency.

Let us consider a hypothetical example of an application
which has two functionally separate modules. One module
solves a system of linear equations and the other performs
adaptive quadrature scheme of numerical integration. Sup-
pose that a linear system solver module is already available
in MPI. Adaptive quadrature schemes require dynamic load
balancing and a program that performs numerical integration
using this scheme has already been written using a language
such as Charm that supports dynamic load balancing. (In
adaptive quadrature scheme, the interval is divided until the
number of samples needed to be taken on that interval are
sufficiently small. If in some interval, the variance of the
function to be integrated is small, it is not divided any fur-
ther. Thus the number of intervals created are not known
until run-time. Therefore dynamic load balancing is needed
to implement this scheme efficiently.) If one plans to build a
system combining these two modules where the linear sys-
tem is formed based on the results of the numerical integra-
tion and is solved using the linear system solver; clearly, one
does not need both the modules to execute simultaneously.
This can be programmed using explicit control-regime in-
teroperability. We start this application by initializing the
Converse runtime and sending a message to the starting en-
try point of the Charm module. We then start the scheduler
with (-1) as an argument so that the control will return to the
application after the Charm module has terminated. (Con-
verse provides a call to terminate the scheduler, which could
be used to return control back to the caller.) After the control
is back with the application, it calls the MPI module to form
and solve the linear system. Figure 2 gives example of such
code. The function CallCharmModule() in this code
passes parameters in the form of an initialization message
to the initial entry-point of the Charm module. It then starts
a scheduler, which processes the initialization message by
invoking the initial method of the main object in the Charm
module. After performing the numerical integration, the
Charm module stores the result in some location and makes
a Converse call to exit the scheduler. At this point the con-
trol returns to CallCharmModule which then picks up
the result and returns it to the application. The result of
the computation performed by the first module has to be
shared with the MPI module using shared space on some
processor(s). (Not coincidentally, the processor indices in
MPI COMM WORLD are the same as processor indices in
Charm.) We plan to provide more portable and elaborate
mechanisms for inter-module data transfer in future.

As another hypothetical example, let us consider a sit-
uation where both the Charm and MPI modules described
above are to be executed concurrently. (Let’s say we need to
compute numerical integration using Charm module and we
want to compute the approximate correction factor by solv-



ing a linear system.) In this case, implicit control-regime
interoperabilty is the method of choice. This application ini-
tializes MICE (which in turn initializes Converse) and then
sends a message to trigger the computation in Charm mod-
ule. (Currently, this should be done by providing a special
function written in the Charm module, because the message
accepted by an entry point in Charm is Charm’s internal
object.) Instead of processing the message just sent by call-
ing the scheduler, our application now continues with the
MPI code. However, all the blocking communication calls
in MICE contain calls to the scheduler to process available
messages according to their priorities and return when no
messages are available. Thus when MPI module is blocked
on certain message, the run-time system schedules other
work in Charm module, allowing concurrent computation
in both modules. Since Converse uses messages with han-
dlers specified inside them, and since handlers are private to
a module, the communication spaces of MICE and Charm
are not allowed to overlap. Thus the condition of progress is
satisfied in MICE. Fairness condition is also satisfied within
a module. More work needs to be done to provide fairness
across modules by making MICE messages include priority
fields and scheduling them through the scheduler according
to their priorities.

6. Performance

We conducted several performance tests on our imple-
mentation of MPI. These test programs are part of the
MPICH distribution. In particular, we were interested in
the communication overhead introduced by Converse as
compared to an optimized version based on the P4 runtime
system. We ran these tests on network of solaris worksta-
tions. In order to eliminate the large variance in results due
to varying network load, we created all the processes of an
application on the same standalone workstation. The test
programs we ran measure the round trip time for a message
between two processes for different sizes of messages. We
ran the tests for blocking as well as non-blocking send and
receive routines. Also, we tested both implementations for
short as well as long messages. For measuring the latency
and bandwidth for short messages, the message size is var-
ied from 0 to 1024. For long messages, the message size is
varied between 16KB and 64 KB. The rsults are shown in
Table 3, and figures 4, 5, 6, and 7. The round-trip perfor-
mance of MICE is comparable to that of the ch p4 version
for short messages. For long messages the performance of
MICE is slightly worse than the ch p4 version. However,
we need to mention here that the current version of MICE is
a preliminary implementation and that there are numerous
optimizations that will be done in near future to make it
more efficient.

7. Conclusion and Future Work

We have implemented MPI using the primitives provided
by the Converse interoperable runtime system. The per-
formance of our implementation is comparable, although
slightly lower, than MPICH implemented on a workstation-
network architecture, as expected from a preliminary imple-
mentation. At this performance level, clearly, the converse
implementation of MPI can be used in applications without
degrading their performance significantly. More important,
we have demonstrated multilingual interoperability: MPI
modules can now be used in conjunction with modules writ-
ten in Charm++ or threaded-message-passing libraries. In
addition, our implementation achieves portability due to the
portability of the Converse Machine Interface. Our im-
plementation is thread-safe when used in conjunction with
thread-objects provided by Converse.

More detailed performance studies need to be done in
the presence of multilingual modules. Utility of such in-
teroperable environments needs to be investigated further.
Mechanisms for transfer of data across modules written in
different languages need to be designed and implemented.
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int user_main(argc, argv)
{
MPI_Init(argc, argv);
// Initialize Charm
CharmInit();
// some application-specific initialization
Initialize();
// Deposit start-message for Charm module
// and start the scheduler
result = CallCharmModule();
// Resume MPI Module
FormLinearSystem(result);
SolveLinearSystem();
PrintResults();
MPI_Finalize();
}

Figure 2. Pseudo-code for an interoperable
program

ch p4 Converse
Latency Bandwidth Latency Bandwidth
( � Sec) (MB/s) ( � Sec) (MB/s)

sblck 573.0 9.93 687.37 10.14
snblck 648.9 10.68 657.10 10.04
lblck 867.0 13.91 1034.56 9.29
lnblck 785.32 12.96 809.61 9.06

Figure 3. Performance comparison of ch p4
and MICE. sblck = blocking, short messages;
lblck = blocking, long messages; snblck =
nonblocking, short messages; lnblck = non-
blocking, long messages.
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Figure 4. Point-to-point long blocking Mes-
sages
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Figure 5. Point-to-point long non-blocking
messages
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Figure 6. Point-to-point short blocking mes-
sages
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Figure 7. Point-to-point short nonblocking
messages


