
���������	��
��
��� ���������������	������� � !"���$# ��%&����' ()���+*,�����$�-� �.��*/����0����$# # 1-�20�3

46587:9�;=<>5-?A@CB�D:EF5HGJIK)L:M ;NGN;=?PO"QSRP5-?PO:5HTU<V5HT LPW 58TX5H;=?2YZ5\[)5-@]R KH^ 5\? L`_ 5-?8a K8K8b EcTd; ^ R:?P5-? L Y)e ^ RZfP5�g K G=eV?
h K8i 5HTU@]9 K ?Z@�e\jlk�e>9 i f:@ K T _Zm ; K ? mnKoL:p ?A; b)K T ^ ;=@rq�e\jtsuGNGN;=?:e\; ^XLvp Txwy5\?P5 L s]4�zA{8|V}A{VD

~ <V5HG K)L 9$;NGN;=?PO L ?y5HTX58;=? L�^ 5\?8a K8K bvL axq K G=e>?v�)� m8^ D�fA;=f m D K OAf

�����n� �>���>�

���x�-�	�x� �6�r���r�V���H�J���J�N���r�)���J� �x�-�]�X�r���x�>���-�x���X�J���x���� -�J¡U�
¢ ���£�¤�X�r¡x�£��¥��-���J¦§���X¨� ª©P�=�� S�«�N��¥J©P�¤�X�x¡x�x�>�=�]�X�r�d¬S>¥ ¢ �r�-®
�«¯P�:°���¥J�±�x�N�§¥²°S�� \�£��¦��«�6�³ -¥J� ��� ¢ �t�H¥J����� ¢ ���ª�=¥.�´�µ� ¶¤�«¥x®
�n�d�� -�r�S�l¥]�x�8���£��©P�£�=�«�«�£���N���x� �6�£���£�V�·�-�x���x�N���£�:���J� �J�H�]�X�r�
�N�¸�����N� �J�������X�>�´�=¨��n�N�=¥J�o¬º¹-�N�V¨����� \�ª�H�J���X�J���J�����£¥x�S�£®
�µ�N�l�r���J� �6�r���µ�F°��8�V�X�J�l�r�V�«�x��©§�x�x��¦S�� H�N�C�N�	�x� »¼¨r�8�����«¥
�X¨�¨�¥x���V���N�³ V¬") 8�µ���H�u�H�r���n�£�£¨r�£� ¢ �£�C�S°u���x�S�r©§¥x��¶J¦§½v¾X¿HÀ
ÁXÂrÃ³Ä³Â ¦��� -�X�����]�X�-¥x�]�N�¤���-¨� Å���8���µ�N®Æ�´�µ� �x�-�J���N�V�«�r��¥��-�r��� ¢ �N��®
�=�µ� ¬) -�6°����x�S�£©v¥x��¶Ç�N���S���x�V�6�«¥ ¢ ���µ�V¨£���8���µ¡U�r¦��x�V�S \�x�
¢ ���£�	¡x�£�£� ¯P���S�=¥����]�X�-¥x�d�·�� \��¹ ÈP�	É"�>��¥��x���x�����µ� ���u�µ�x���r¦
�S�£���£�d�n�£®³�J�£�N¡x�£���>��¥��x���x�����N�8�x¦v�-�x���J�N���r�6¥ ¢«Ê ��¨d�µ®³¥x�£�«�£�V�«���
�V��¥��J���J�����N� �J¦)�x�V���� 8�����n�x® ¢ �x�£���·�H�J���X�J���J���d¬�) -�)°u���x�S�r®
©§¥J��¶¼�x�N���F�n�S��Ën�N���X¨]�N�µ� �¼�� \���r���u�r�V�µ�=�x���J�=�-��¨d�µ�F¥²°��� \�
�£�8�V�µ�N�S�����]�X�-¥x�]�Z�µ�V�=¥����£�d�:¥²°�¨�¥x���Ì¨�¥J���-¥x�V�r�V�µ��¦��£¥S�� -�n�
���J� �J�H�]�X�r®Æ�«�H��¨r� ¯P¨�¨�¥d�n�¤�X¥]�£�ª�V¥X�6 \�x¡x�F�«¥S�-�x��¥x¡x�r�� -���X�
°£¥J�y°r���n�N�8���£���� -�X�y�=�§�n¥d�r���V¥X�·�V����� ¬

Í ÎAÏ�ÐAÑPÒCÓ.ÔCÕvÐ�Ö£ÒÇÏ

Research on parallel computing has produced a number
of different parallel programming paradigms, architectures
and algorithms. There is a wealth of parallel programming
paradigms such as SPMD [14, 12], data-parallel [9, 8, 3],
object-oriented [1, 3, 4, 5, 11], thread-based [7, 4, 10],
macro-dataflow, functional languages, logic programming
languages, and combinations of these.

However, not all parallel algorithms can be effi-
ciently implemented using a single parallel programming
paradigm. It may be desirable to write different compo-
nents of an application in different languages. It will also
be beneficial to combine pre-written modules from differ-
ent languages into a new application. For this, we need to
support interoperability among multiple paradigms. Such
interoperability is not currently possible, except for a spe-

×²Ø)ÙxÚÜÛ§Ý«Þ³Û«Þ³ß£Ý«àÆÙ�áVß£Û6Û«âxãxãXärÝ=å«Þ³æ�ÚÜçªãxß£Ý«åPèdéSå«ÙxÞ�êAëZìnê�írÝ=ß£ç]åî êZï>ê�ð£ð�ñNò£óuñµï\ñNô£ôJõ³ò:ß£çxæ6ö�÷]øSí£Ý«ß£ç]åVê:÷xï\ñNò£ù�ñÆõ³ðxõ�úuòxû

cific subset of language implementations designed for this
purpose (e.g. HPF [8] and PVM [14]).

This paper describes the design and rationale of ü ¥J�-®¡U�r�£�£�
, an interoperable framework for combining multiple

languages and their runtime libraries into a single paral-
lel program. It is based on a software architecture that
allows programmers to compose multiple separately com-
piled modules written in different languages without losing
performance. Converse also facilitates development of new
languages and notations, and supports new runtime libraries
for these languages. This multi-paradigm framework has
been verified to support traditional message-passing sys-
tems, thread-based languages, and message-driven parallel
object-oriented languages, and is designed to be suitable
for a wide variety of other languages.

ý þ ÿ � Ñ � ÕvÐ��`ÑyÖ��ZÐ:Ö£Õ��"Ò��
	 � Ñ ���� � �
�� Ï��
� Ô ��� ���

Parallel languages and their implementations differ from
each other in many aspects. The next two section discuss
two important aspects.

����� ����� ���6�-��� � �! #"%$Æ�'&($ � �*)`� � ���Z�8�
The first aspect that is critical from the point of view of
interoperability is how the language deals with concurrency
within a single process (i.e. within a single processor, in
most common implementations). Concurrency within a
process arises when the process has a choice between more
than one action at some point(s) in time. There are three
categories of languages in this context:

+ No concurrency/Single Threaded Modules: Some
parallel programming paradigms (such as traditional
message-passing) do not allow concurrency within a
process. Each process has a single thread of control,

hence a process will “block” while it is waiting for a
message that has not yet arrived. During this block-
ing, the semantics require that no other actions should
take place within the same process (i.e. there should
be no side effects, when the “receive” system-call re-
turns, beyond the expected side effect of returning the
message).

+ Concurrent objects: Concurrent object-oriented lan-
guages allow concurrency within a process. There
may be many objects active on a process, any of which
can be scheduled depending on the availability of a
message corresponding to a method invocation. Such
objects are called message-driven objects.

+ Multithreading: Another set of languages allow con-
currency by threads— they permit multiple threads of
control to be active simultaneously within a process,
each with its own stack and program counter. The
threads execute concurrently under the control of a
thread scheduler.

Most languages can be seen to fall within one of these
three categories or combinations of them, as far as internal
concurrency is concerned. Other paradigms such as data
parallel languages and functional languages can be imple-
mented in one of the above categories. For example, HPF
can be implemented using a statically scheduled SPMD
style or using message driven objects.

���,� ����� �8� �.-0/ ��12$�34�
Another related aspect is the

¨�¥x�V�µ��¥J�-���Æ�J�N�S�
for a language,

which specifies how and when control transfers from one
program module to another within a single process. Mod-
ules interact via

��Ë��>�´�=¨r�=�
and

�N���V�´�«¨£�=�
control regimes.

In the
��Ëu�V�´�«¨£�=��¨�¥x�V�µ��¥J����� �J�N�S�

, (as described in Fig-
ure 1(a)), the transfer of control from module to module
is explicitly coded in the application program in the form
of function calls. Moreover, at a given time all processes
are usually executing code in the same module. Thus all
processors execute modules from different languages in a
deterministic, loosely synchronous manner. This explicit
control regime is sufficient for many scientific applications
which can be programmed in a loosely synchronous man-
ner, enabling different non-overlapping phases of a program
to be coded in different languages. It is suitable for lan-
guages which have no concurrency within a process.

The
�N���V���=¨£�«�P¨�¥x�V�µ��¥J�Z���Æ�J�N�S�

(Figure 1(b)) is motivated
by a need to reuse parallel software components in an over-
lapped manner, so that entities in different modules can be
simultaneously active on different processes. The transfer

PHASE 2

PHASE 3

PHASE 1

PE 1 PE 2 PE 3 PE 1 PE 2 PE 3

Idle

(a) Explicit Control Regime (b) Implicit Control Regime

Module 1 Module 2 Module 3 Message

57698;: Ã³Â�<>= ½v¾X¿@? Ã ¾BA Ã³Â 8B6DC Â£Ä2E ¾ Ã�F'GXÃHG ADA Â A F\Ã ¾B8 Ã�G C Ä

of control from module to module is implicit; rather than
being decided only by the application program, it may be
decided dynamically by a scheduling policy in the run-time
system. This model allows an adaptive sequence of execu-
tion of application code with a view to providing maximal
overlap of modules for reducing idle time. Thus, when a
thread in one module blocks, code from another module can
be executed during that otherwise idle time. The implicit
control regime is suitable for languages with concurrent
objects or multi-threaded languages.

I JK�L�:Ö � Ï � ÏCÓ MºÑyÕ ÿÇÖuÐ���ÕvÐ·ÔSÑN� ÒO�
þ ÒSÏ�PO�6Ñ��.�

The design of the Converse framework is based on the
necessity of handling the different models of concurrency
and control regimes in single-threaded modules, message-
driven objects, and thread based modules. The following
guidelines were used :

1. ü ¥x���V���d�«�r�V�£���F¥²°¤¨�¥x¡x�£���d�n�
: the framework should

be able to efficiently support most, if not all, ap-
proaches, languages and libraries for parallel program-
ming. More concretely, any particular language or
library that can be portably implemented on MIMD
computers should be able to run on top of Converse,
using its facilities and interoperating with other lan-
guages.

2. Q »¼¨r�=�£�>¨£�
: There should not be undue overhead for

(a) remote operations such as messages, and (b) local
scheduling such as the scheduling of ready threads, as
compared to the cost of such operations in a native
implementation.

3. R ����� ¢ �x�£���S¨�¥x�£�
: The Converse framework must sup-

port a variety of features. However, each language or
paradigm should incur only the cost for the features it
uses.

To satisfy these requirements, the architecture of Con-
verse is component-based, rather than monolithic. The sys-
tem consists of multiple components, each of which is fully
specified via a detailed interface specification. A language
implementation may use only the components it needs. For
each component, multiple alternative implementations may
exist. Thus, an application that requires sophisticated dy-
namic load balancing might link in a more complex load
balancing strategy with its concomitant overhead, while
another application may link in a very simple and efficient
load balancing strategy.

An important observation that influenced this design is
the fact that threads and message-driven objects need a
scheduler, and a single unified scheduler can be used to
serve the needs of both. The other components of Converse
are a machine interface, message managers, thread objects,
and load balancers, as shown in Figure 2.

Scheduler
LoadThread

BalancerManager Object
Message

Application Code

Language specific runtime
libraries

Converse components

Converse Machine Interface

576D8B: Ã²Â�S@=�T ¾ E ?VU GXÃ²ÂXW�Ã�Y[Z 6D? ÂY ?�: Ã³Â\E ¾ Ã^] ¿@? Â£Ã ¾ F>Â£Ã�G;_ 6DA96D?V`

When initialized, a language runtime registers one or
more handlers with Converse. These language-specific
handlers implement the specific actions they must take on
receipt of messages from remote or local entities. The
language handlers may send messages to remote handlers
using the CMI, or enqueue messages in the scheduler’s
queue, to be delivered to local handlers in accordance with
their priority.

a���� b &L�"� �c&L�ed�� - ���

The Converse scheduler is based on a notion of schedulable
entities, called “generalized messages”.f0g@h.gjilkcmonqpBg'r%stg'uvu�k'w!g'ulx

In order to unify the schedul-
ing of all concurrent entities, including message-driven ob-
jects and threads, we generalize the notion of a message.
A generalized message is an arbitrary block of memory,
with the first few bytes specifying a function that will han-
dle the message. The scheduler dispatches a generalized
message by invoking its handler with the message pointer
as a parameter. The function may be specified by a di-
rect pointer or by an index into a table of functions. The
latter method has the advantage of working even on hetero-
geneous machines, and requires less space than a pointer,
and is therefore used in most of our implementations. Any
function that is used for handling messages must first be
registered with the scheduler. A generalized message may
be used as a message sent from a remote processor or as a
scheduler entry for a ready thread or object.

There are two kinds of messages in the system waiting to
be scheduled — messages that have come from the network,
and those that are locally generated. The scheduler’s job
is to repeatedly deliver these messages to their respective
handlers. Since buffer-management issues demand timely
processing of messages from the network interface, the
scheduler first calls the Converse machine interface func-
tion y>ze{|�}@~!{���};�@�!�l�����l� for delivering network messages,
which extracts as many messages as it can from the net-
work, calling the handler for each of them. These handlers
may enqueue the messages for scheduling (with an optional
priority) if they desire such a functionality. After deliver-
ing messages from the network, the scheduler dequeues one
message from its queue and delivers it to its handler (Figure
3). This process continues until the Converse function for
terminating the scheduler is called by the user program. The
scheduler’s queue is implemented as a separate module so
that user can plug in different queuing strategies. The han-
dler for a particular message may be a user-written function,
or a function in the runtime of a particular language.

Converse supplies two additional variants of the sched-
uler for flexibility. The first allows the programmer to
specify the number of messages to be delivered. The sec-
ond runs the scheduler loop until there are no messages left
in either the network’s queue or the scheduler’s queue.

For modules written in the explicit control regime, con-
trol stays within the user code all the time. However, for
modules in the implicit control regime, control must shift
back and forth between a system scheduler and user code.
For these apparently incompatible regimes to coexist,

�=�:�N�
�V��¨��£���£�x�£�C�«¥S��Ë��-¥x�£���� \���£¨� \���J�8���r���=¥S�� -�t� �£�r�v�V��¥��J���x�

,

�c�l� };�@�'~@}B�.�l���� � {l~@}����'�;���'�;��}��� y>z�{�|�}@~!{v�'};�@�!���!���l�*��'}B�t��z�}c�@�>�;�'}��@���>z�� � }t� �l� }B�@�'~@};���@�'};�'} �� �j~@~�� � }�z�}c�@�>�;�'}.¡�� � �;�@�'~j};�¢�
££y>ze{|�}@~!{���};�@�!�l�����l���� � {l~@}���� � };��}��B�'}�z�}c�@�B�B�'}c��{���� � }��'};� � �;�;¤¥�� �'} � }!{��'}���z�}c�j�B�;�'}��j�'�>z�� � }��'};� � �B�;¤¢�� �j~@~�� � }�z�}c�@�>�;�'}.¡�� � �;�@�'~j};�¢�
££ 576D8B: Ã²Â§¦�=�¨:Ä³Â :'©-¾xÀ Y ¾@© ÂXE ¾ Ã6Ä�Y[Z-Â ©':'A Â£Ã

rather than keeping it buried inside the run-time system.
A single-threaded module can explicitly relinquish con-
trol to the scheduler to allow execution of multi-threaded
and message-driven components. A typical interaction be-
tween the two control regimes may proceed as follows : the
single-threaded module may carry out a possibly parallel
computation with sends and receives, and then invoke a
function ª in a concurrent module (such as one written in
Charm). This module may change its state and deposit some
messages for other entities. When this function ª returns,
the single-threaded module explicitly invokes the sched-
uler, which executes the concurrent computations triggered
by the previously deposited messages. The result of the
concurrent computation is passed by function calls to the
single-threaded module before the scheduler returns.

a��,� �����2« ���V�@�*¬,�:�'&�$ � �* � �����@®d�:���
The Converse machine interface (CMI) contains calls which
must be implemented to port Converse to any machine.

The CMI layer defines a minimal interface between the
machine independent part of the runtime such as the sched-
uler and the machine dependent part which is different
for different parallel computers. Portability layers such
as PVM and MPI also provide such a portable interface.
However, they represent an overkill for the requirements
of Converse. For example, MPI provides a “receive” call
based on context, tag and source processor. It also guaran-
tees that messages are delivered in the sequence in which
they are sent between a pair of processors. The overhead
of maintaining messages indexed for such retrieval or for
maintaining delivery sequence is unnecessary for many ap-
plications. The interface we propose to develop is minimal,
yet it is possible to provide an efficient MPI-style retrieval
on top of this interface.

The CMI module is responsible for process creation,

processcoordination at the initiation and termination points,
communication and other machine-specific utilities. They>z�{;¯l��{�� call must precede any other calls to the machine
interface. The y>ze{�°j±�{�� call must be the last call to the
CMI.² gjh�r7nqh�wK³%g'u�uk'w!g'ulx

The CMI supports both syn-
chronous and asynchronous send calls. y>ze{ �;´ � �B� };�@�
sends a generalized message to the destination processor.
When the call returns, the caller may overwrite data in mes-
sage buffer. The ylze{�µ!� ´ � �B� };�j� call is provided so that the
application program may continue to work while the ma-
chine is trying to send message. The y>ze{�µ!� ´ � �B� }B�@� call
returns a handle that the user can probe to check the status
of the send.¶�il·!k�r.¸lk!u¹�noh.w#³%g'u�ukcw�g'u>x

The CMI provides many
variants of broadcast calls, including synchronous and asyn-
chronous ones. Note that the broadcast is called only by
the processor sending the message. Thus a broadcast does
not result in a barrier.º�g'¸lg@nq»�noh.wO³%g'uvu�k'w!g�u>x

For retrieving messages that have
arrived on the communication network, the CMI provides
the call ylze{�|�}@~�{��'};�@���l�!� (Figure 3), which invokes the
handler for all messages that have been received from the
network. For supporting single-threaded languages which
may require that no other activity takes place while the pro-
gram is blocked waiting for a specific message, the CMI
provides a y>ze{�¼'}B� �;½ } � {���{ � ����� call, which waits for a
message for a particular handler while buffering any mes-
sages meant for other handlers.

Efficient, flexible buffer management for the received
messages is an important issue. The complexity here arises
due to variations in different machine and application con-
texts. On some machines, it may not be possible to give the
user code control of the system buffer in which the mes-
sage was received. Also, some application programs may
be able to consume data in messages as they arrive from
the network, while others may require that the message be
scheduled before it is processed. To avoid buffer copying
to the greatest extent possible, while still keeping the de-
sign portable, we provide the following buffer management
protocol. By default, the CMI owns the message buffer.
If a handler needs to retain the buffer it should explicitly
call y>ze{�¼@���;¾@¿@�@�j�'};�.�[Àj¾@�;�j�'};��� , which transfers the own-
ership of the buffer to the handler. On machines where
message buffers reside in operating-system space, the CMI
will transfer a copy of the buffer.

The CMI provides a number of utility calls including
timers with different resolutions, atomic terminal I/O, and
calls to determine the logical processor number and the total
number of processors.

a��qa ¬Á�A�8� �71��t¬,� � �71����
A message manager is simply a container for storing mes-
sages. It stores a subset of messages that are yet to be
processed, serving as an indexed mailbox. A message man-
ager provides calls to insert and retrieve messages. Mes-
sages may be retrieved based on one or more “identification
marks” on the message. A tag and a source processor num-
ber are examples of such identification marks. Instances of
message managers provided in Converse can be customized
to either one or two tags. The message manager provided
in Converse also allows one to

�V��¥ ¢ �
for the existence of a

particular message specified by its tags. A “wildcard” may
be specified in the tag field. The message manager can be
used by multi-threaded as well as single-threaded modules.

a��qÂ b &6���A�.d��
In many parallel programs each process has a single thread
of control : they have a single stack and a single set of
registers. However many complex programs are difficult
to express in a single threaded manner. This is particu-
larly true for programs that involve asynchronous events,
or when it is necessary to overlap computation and com-
munication. In thread-based programs, there are multiple
threads of control, and each thread may progress indepen-
dent of other threads. Of course if there is only one pro-
cessor, control needs to switch back and forth among these
threads, under the control of some scheduler, and concur-
rency control mechanisms such as locks must be provided
to allow threads to share data in a safe manner in spite of
the interleaving of control among them. A threads package
typically consists of three components: (1) a mechanism to���8�=�-�r�V�

the execution of a running thread and
���r���8�S�

the
execution of a previously suspended thread; (2) a

�£¨� -���x�8���r�
that manages the transfer of control among the threads; and
(3)

¨�¥J�V¨r� �r���r�V¨£�C¨�¥J�V�N��¥x�
mechanisms.

Many thread packages and standards have been devel-
oped in the past few years [10, 6]. However, the

�J�´�8�N�8�
�«¥��n�d�� -�r�

of scheduling, concurrency control and other fea-
tures with the mechanisms to suspend and resume threads
is problematic for the requirements of interoperability. E.g.
the particular scheduling strategy provided by the threads
package may not be appropriate for the problem at hand.
Converse separates the capabilities of thread packages mod-
ularly. In particular, it provides the essential mechanisms
for suspending and resuming threads as a separate com-
ponent, which can be used with different thread sched-
ulers and synchronization mechanisms, depending on the
requirements of the parallel language or application [15].²
Ã h�¸�Ä�il·!h.nop;k'¹�nÅ·�h%³%g'¸�Ä.k'h.nVu³Æu>x

ÇZ¥]¨�¶x�
are implemented by having queues attached to each

lock. If a lock can be obtained, the thread trying to obtain
the lock continues (after setting the lock to its locked state).
If not, the thread is suspended and placed in a queue for the
lock. A thread which releases the lock causes the shifting
of ownership of the lock to the first thread in this queue and
awaken this thread so that it can continue executing when it
is scheduled. ü ¥x�>�x�=�µ�=¥x�ª¡U�J�£�=� ¢ ���£�

allow several threads to
block on a single condition. Calls are provided for threads
to wait on a condition variable, and for threads to either
signal a condition variable, causing the unblocking of one
of the threads, or to broadcast a condition variable, which
causes the unblocking (i.e. awakening) of all the threads
that are waiting on the condition variable.

a��VÈ É � ��3�$³� -�� �.d ��� - � � �!$ � 1

The load on a processor is affected by modules in all lan-
guages, hence Converse supports load balancing across lan-
guage modules. The need for load balancing arises in par-
allel programs in many contexts. A particular situation of
interest is when the program creates a piece of work or a
task that can be executed on any processor Ê . The load bal-
ancer assigns the task to a processor depending on the load
measures on other processors at that point in the program.

A language runtime may hand over a “seed” for a task,
in the form of a generalized message, to the load balancer
on any processor. The load balancing module moves such
seeds from processor to processor until it eventually hands
over the seed to its handler on some destination processor.
This module may interact with a local scheduler and may
send messages to its counterparts on remote processors for
exchanging load status information. It can also make calls
to other entities for ascertaining the load on the local pro-
cessors. Several load balancing modules are supported in
Converse. Each one is often useful in a different situation.
Depending on the application, the user is able to link in a
different load balancing strategy.

ËÌ å«ÙxÞ³Ý�Í]ÚÜçxæxÛPä[Î.ÏÜä£ß£æ�èxßÏÜß£çxà²ÚÜçxí�Û«ÚÜå=âxß£å«ÚÜä£çxÛAÚÜçxà�ÏÜâxæxÞ6æxé]çxßÐ6ÚÜàä£èÑÆÞ²à³åLÐ6ÚÜírÝ=ß£å«ÚÜä£çSß£çxæÓÒdâxß£Û«Ú ñNæxédçxß�Ð§ÚÜà�ÏÜä£ß£æ	èxßÏÜß£çxà²ÚÜçxíxû%Ô=ç¤ärè]ñÑÆÞ²à³å^Ð6ÚÜí£Ý=ßrå=ÚÜä£ç@ÕnÞ³ç]å=ÚÜå«ÚÜÞ³Û:Û«âxàÆÙ�ä£èÑ Þ³à³å«ÛPä£Ý·ÚÜçxæxÚ×ÖdÚÜæxâxßÏ\å=ÙxÝ«Þ³ß£æxÛ:ß£Ý«ÞÐ6ä[Ö£Þ³æ(Î�Ý«äÐ�ä£çxÞPãxÝ«ädà²Þ³Û«Û=ärÝ-å=ä6ßrçxä£å=ÙxÞ²ÝVá)ÙxÚ×ÏÜÞ·å=ÙxÞ:à³ä�Ð6ãxâxå=ß£å«ÚÜä�ç§ÚÜÛÚÜç�ãxÝ«ä£í£Ý«Þ³Û«Û³û!Ô=ç�Ò]âxß£Û«Ú ñNæxédçxß[Ð6ÚÜà�ÏÜä£ß£æ�èxßÏÜßrçxà³ÚÜçxílÕ]ß[Î�å«Þ³Ý)ß�ãxÙxß£Û=Þ·ä£ÝãXÞ²Ý=ÚÜä]æ§äØÎ à³ä�Ð6ãxâxå=ß£å«ÚÜä£ç:Ùxß£Û>à³äÐ6ãlÏÜÞ²å=Þ²æ@ÕÆå=ß£ÛqÍ]ÛVß£Ý«ÞeÐ6ä[Ö£Þ²æ§ènÞ³åNá>Þ³Þ²çãxÝ=ä]à³Þ²Û=Û«ä£Ý«ÛVå«ä6èxßÏÜß£çxà²ÞeÏÜä£ßræ8û�Ù)ä£å«ÙLÐ6ÚÜí£Ý«ß£å«ÚÜä£çvß£çxæLÒ]âxß£Û«Ú ñ æxé]çxßÐ6Ú àÏÜä£ß£æ6èxßÏÜßrçxà³ÚÜçxí:à³ß£ç6ènÞ:Ú×Ð6ãlÏÜÞ�Ð6Þ³ç]åNÞ²æPä£ç�å«ä£ã6ä[ÎVï>ä£ç�Ö£Þ²Ý=Û«ÞZß£ÛZï>ärç]ñÖ£Þ³Ý«Û«Þ�ÏÜÚÜèxÝ=ß£Ý«ÚÜÞ³Û²û�Ø)ÙxÞ³Û«ÞÕ>Ùxä�áVÞHÖ£Þ³ÝHÕ ßrÝ=Þ�èXÞ³érä£çxæ�å«ÙxÞ�Û«à³ä£ãnÞ6ä[Î�å«ÙxÚÜÛãxß£ãXÞ²Ý³û

Ú Û�Ð � ÐPÔ0� � ÏCÓÝÜ��`ÑN�nÒ�Ñ^Þ � ÏCÕ��

The basic Converse framework has been implemented
on networks of Unix workstations connected by Ether-
net/ATM, IBM SP, Intel Paragon, CM-5, Convex Exemplar,
nCUBE/2, and on top of the Fast Messages layer [13] on
the Cray T3D and Sun/Myrinet networks. Prototype imple-
mentations of PVM messaging and SM (a simple messaging
layer) are complete and simple multi-lingual programs are
demonstrated to run on the above machines. The Charm
and Charm++ [11] parallel object-oriented languages have
been retargeted for Converse. The machine interface of
Converse is meant to be implemented at the lowest level
on individual machines. On some machines the lowest and
most efficient layers of the system were available to us. On
other machines, it is necessary to secure the vendor’s coop-
eration to implement the machine interface most efficiently.ß�g@i�à�·�il³%k'h�¸>g�x

The first set of performance experiments
(Figure 4) involves simple message passing performance.
This was measured using a round trip program that sends
a large number of messages back and forth between two
processors. Using this, the average time for one individ-
ual message send, transmission, receipt and handling was
computed for various machines. On the receiving processor
every message was delivered to a user-level handler which
responded by sending a return message.

1

10

100

1000

10000

100000

1e+06

16 64 256 1K 4K 16K 64K 256K 1M

O
ne

-w
ay

 m
es

sa
ge

 ti
m

e
(m

ic
ro

se
co

nd
s)

á

Message size (bytes)

ATM-connected HPs
Cray T3D

Intel Paragon
IBM SP

5e6D8;: Ã³ÂXâ'=�ãcÂ£Ä³ÄHG 8 Â\F'GXÄ²Ä 6�¿'8 F>Â£ÃVE ¾ Ã C G ¿ Y£Â
Overall, the performance is almost as good as that of the

lowest level communication layer available to us on these
machines. For example, the FM library using Myrinet
switches delivers messages up to 128 bytes in 25 microsec-
onds, whereas Converse messages need about 31 microsec-
onds. On the T3D, the performance is very close to the
best possible on the Cray hardware for short messages.
The jump at 16K bytes (Figure 4) for the Cray T3D is due
to copying during packetization, which we believe can be
eliminated.

In the second experiment, we incorporated queueing to
investigate the overhead seen by languages using schedul-
ing. Each handler upon receiving a message enqueues it
in the scheduler’s queue. The scheduler then picks a mes-
sage from its queue and invokes its handler. This cost of
scheduling is paid only by languages which use the queue
for scheduling objects. This experiment was done only
on one machine (Sun workstations connected by Myrinet
switches — Figure 5) to illustrate the magnitude of schedul-
ing overhead. The scheduling is seen to add about 9 to 15
microseconds for short messages. For large messages, the
relative difference becomes negligible.

10

100

1000

10000

16 64 256 1K 4K 16K 64K

O
ne

-w
ay

 m
es

sa
ge

 ti
m

e
(m

ic
ro

se
co

nd
s)

á

Message size (bytes)

No Scheduling
With Scheduling

576D8B: Ã²Â§ä�=�T@Y[Z-Â ©':cA ÂrÃå¨AÂ£ÃVE ¾ Ã C G ¿ YrÂ
Thus, although Converse provides a broad functional-

ity, it achieves its objective of ensuring that languages and
applications pay the overhead only for features that they
use.

æ ÛªÔ
ÞçÞ � Ñ.è � ÏCÓêécÔlÐ·ÔSÑN�ìë Ò�Ñ.í

We have presented the design and rationale for a compre-
hensive framework for supporting interoperability among
a wide range of parallel languages and paradigms. The
design is based on the fact that entities in different parallel
languages can be classified into three basic categories from
the point of view of the scheduling of the processor: (1)
single-process modules which permit no concurrency and
require programmers to transfer control among modules
explicitly; (2) concurrent objects, and (3) threads, which
both allow for concurrency and transfer control among
their modules implicitly under the control of a scheduler.
A unified scheduler which is exposed to language-specific
runtime libraries and a generalized notion of messages al-
lows these three basic paradigms to coexist. The thread
object (which supports the thread abstraction without in-
tertwining scheduling functionality), the generic message

manager (which can be used to store and retrieve messages)
and the load balancer (which balances load across language
modules) further facilitate the design and implementation
of individual language runtimes.

The Converse framework is useful in the following ways:

+ Parallel programmers do not have to convert an en-
tire application to a particular language. For each
part of the application, the most suitable language or
paradigm can be used.

+ Pre-existing libraries written in different languages can
be reused in a single application. For example, in
a parallel molecular dynamics application [2] being
developed using Charm++, we will be able to use an
N-body module (based on the fast multiple algorithm),
which happens to be written in PVM.

+ Development of parallel languages, coordination lan-
guages, or libraries based on new paradigms is sim-
plified because commonly used runtime modules such
as a scheduler, a threads package, a message manager
and a load balancer are provided. As an example,
a small Chant-like [7] multi-threaded language that
supports tagged messages was implemented with very
little effort using Converse, because of the functional-
ity provided by the above components.

Although we are convinced of the breadth and flexibility
of the Converse design, it is clear that additional research
and implementation effort is needed for Converse to fulfill
its promise — that of supporting interoperability between a
wide variety of languages without loss of efficiency. Some
of the features we are currently working on include shared
memory operations (

�V�-�
and

�n�d�
), pre-emptive messages,

parallel file I/O, object-orientation, scatter and gather based
communication, and group communication.î0¸�ï�h.·'ðOmqg�r7w!g@³%gjh7¹vu>x

The authors would like to
thank Terry Allen, Robert Brunner and Attila Gursoy for
their help in preparing this paper. We would also like
to thank the Pittsburgh Supercomputing Center, Argonne
National Laboratory, and Prof. Andrew Chien and Prof.
Klaus Schulten at the University of Illinois for the use of
their computing facilities.

ñ �L�;�6Ñ���ÏCÕ����
[1] G. Agha. ò ¨]�«¥x�£�vó ò �F¥]�X�r�)¥³° ü ¥x�V¨r�8�£���r�V� ü ¥x���V�8®�«�X�µ�=¥x�¤�µ��É��N�£�µ�£� ¢ �-�=����¹-�x�£�«�£���

. MIT Press, 1986.

[2] J. Board, L. V. Kale, K. Schulten, R. Skeel, and
T. Schlick. Modeling biomolecules: Larger scales,

longer durations. ôVQ�Q�Q&ü ¥x���V�-�«�X�µ�=¥x�V�J��¹>¨£�=�r�V¨��
�x�V� Q �8�x�N�>���r�£�N�8� , 1(4), 1994.

[3] F. Bodin, P. Beckman, D. Gannon, and S. Narayana,
S. an d Yang. Distributed pC++: Basic Ideas for an
Object Parallel Langua ge.

¹V¨r�=�r�V�µ� ¯P¨�Èv��¥��J���J�����N� �
,

2(3), 1993.

[4] K.M. Chandy and C. Kesselman. Compositional C++:
Compositional Parallel Programming. In

Èv��¥d¨������x�N�8�x�
¥³°	�� -�0õA¥x�8�d�� �ö�¥J��¶x�³ \¥�� ¥J��È6�J���x�µ���r� ü ¥J���>�H�µ�N� ��x�V� ü ¥J���>�N���r�£� . Springer-Verlag, 1992.

[5] A. Chien. ü ¥x�V¨r�8�£���r�V� ò �]�x���Æ�X�n�=�r� . MIT Press, 1993.

[6] I. Foster, C. Kesselman, R. Olson, and S. Tuecke.
Nexus: An interoperability toolkit for parallel and
distributed computer systems. Technical Report
ANL/MCS-TM-189, Argonne National Laboratory,
1994.

[7] M. Hainer, D. Cronk, and P. Mehrotra. On the design
of Chant: A talking threads package. In

Èv��¥d¨������x�N�8�x�
¥³°�¹\�d�-�r��¨�¥x���V�-�µ�N� ��÷ ø�ù

, November 1994.

[8] High Performance Fortran Forum. ú ���] "È6�£�«°£¥x�£®
�l�J�V¨���õZ¥J�d�µ���x�¥ÇA�x� �J�-�d�n�"¹x�-��¨r� ¯P¨��n�N�=¥J�üû«Ét���³°r�×ý

,
1.0 edition, January 1993.

[9] S. Hiranandani, K. Kennedy, and C. Tseng. ü ¥x��®
�V�N���£�¼���]�X�-¥x�d��°£¥x�¼�S�X¨� 8�N�V� �N�V�n�Æ�-�r�V�X�r�V�ª�-�x���J�N���r�
�V��¥��J���J�����N� �ª�N�þõA¥x�d�µ���J�-®=É

. Elsevier Science Pub-
lishers B.V., 1992.

[10] Draft Standard for Information Technology—Portable
Operat ing Systems Interface (Posix), September
1994.

[11] L.V. Kale and S. Krishnan. Charm++ : A portable
concurrent object oriented system based on C++. InÈv��¥]¨������J�N� �J� ¥²°6�� \� ü ¥x�d°£�r���r�V¨���¥J��ÿ ¢«Ê ��¨d�2ÿ§�r�=�£�>�=���Èv��¥��J���x�����N� �$¹-�x�£�=�r����¦�ÇA�x� �J�-�d�n�£���x�V� ò �n�V���=¨��x®�N�«¥x�-�

, September 1993.

[12] Message Passing Interface Forum.
É�¥d¨r�8�l�r�V��°£¥x�

�S¹V�«�x�>�X�x�������r���£�]�X�r®=È6�x�����N� � ô �V�«�£�=°r�X¨�� , November
1993.

[13] S. Pakin, M. Lauria, and A. Chien. High performance
messaging on workstations: Illinois fast messages
(fm) for myrinet. In

Èv��¥d¨������x�N� �J��¥³°v¹\�d�-�r��¨�¥x���V�-�µ�N� �
�lø;ø��

, dec 1995.

[14] V.S. Sunderam. PVM: A Framework for Parallel Dis-
tributed Computing. ü ¥x�V¨r�8�£���r�V¨r�jó�Èv���n¨d�µ�=¨����x�V�
Q Ëu�H�r�£�=�r�V¨�� , 2(4), December 1990.

[15] J. Yelon and L. V. Kalé. Thread primitives for an
interoperable multiprocessor environment. Technical
Report 95-15, Parallel Programming Laboratory, De-
partment of Computer Science, University of Illinois
at Urbana-Champaign, December 1995. Submitted
for publication.

