Modularity, Reuse and Efficiency with Message-Driven Libraries

L. V. Kale and A. Gursoy
Parallel Programming Laboratory
Department of Computer Science
University of Illinois, Urbana.
The Lure of Reuse

- Parallel Software is harder to develop
 So, bigger benefits if we can reuse it.

- The Challenges for Reuse of Parallel Libraries:
 Context dependences (e.g. data distribution)
 Coordination and mixing of synchronization needs
 of individual modules.
 Possible loss of efficiency
The Requirements for Reuse

- Modularity and reuse should not entail loss of efficiency.
- Facilitate distributed flow of data across modules.
- Practicality: must permit modules distributed in object format.
Outline

- Message-driven execution
- Branch Office objects
- Static and Dynamic interfaces
- Concurrently reentrant libraries
- Library invocation protocols
- Multilingual interoperability
Message-Driven Execution vs SPMD

- A
 - B
 - C

- A
 - B
 - C

Busy: □
Idle: □
Emulating MDE

- Why SPMD can’t effectively simulate MDE
Branch office objects

- Global objects with representative on each processor.
- In many applications, two modules may want to distribute data differently.
- Data transfer protocols may become complex, and too specific.
 - e.g. FMA module with Molecular Dynamics
 - Representatives provide a universal method for data exchange.
Static and Dynamic Interface

Resolving names/identities

Static: resolved at compile-time
 Address name conflicts via module constructs,
 explicit export/import.

Dynamic: resolved at run-time
 First class object ids,
 methods,
 functions.
Concurrently "Reentrant" libraries

- Where needed:
 - Overlapping multiple identical operations
 - Example: concurrent reductions

- How to build:
 - Attach reference numbers to messages and requests
 - Library maintains a separate environment for each reference number
Library Invocation

Protocols for Transfer of data and control across modules.
Multilingual Interoperability

- Many good languages for parallel programming
- Also, libraries being developed in such specialized languages
- Should be able to reuse them across languages
- **Objective:** compose applications by linking Modules written in different languages.
- **Why is this hard:**
 - Languages may have different scheduling models
 - different ways of dealing with concurrency
 - different control regimes
Concurrency availability of alternative actions on a processor at a single point in time: *Allowed or not, how expressed*

Control regimes who decides when control transfers between prog. components: *explicit and implicit*

Entities in all (well..) languages can be classified as:

1. SPMD modules: no concurrency, Explicit control transfer
2. Threads: concurrency, implicit, limited stack
3. Message-driven Objects: concurrency, implicit
Converse: an interoperability framework

- Is implemented and available by ftp
- Currently allows modules from:
 - PVM, nxlib
 - PVM threads
 - Charm
 - Charm++
 - Charm + threads
 - DP
- Is a good framework for implementing your favorite language
- Feedbacks from language implementers sought