Agents: an Undistorted Representation of
Problem Structure

J. Yelon and L. V. Kalé

Dept. of Computer Science, University of Illinois, Urbana Illinois 61801,
jyelon@cs.uiuc.edu, kale@cs.uiuc.edu

Abstract. It has been observed that data-parallel languages are only
suited to problems with “regular® structures. This observation
prompts a question: to what extent are other parallel programming lan-
guages specialized to specific problem structures, and are there any truly
general-purpose parallel programming languages, suited to all problem
structures? In this paper, we define our concept of “problem structure”.
Given this definition, we describe what it means for a language construct
to “directly reflect” a problem structure, and we argue the importance
of using a language construct which reflects the problem structure. We
describe the difficulties that arise when the language construct and the
problem structure do not fit each other. We consider existing language
constructs to identify the structures they fit, and we note that language
constructs are often designed with little regard for such generality. Fi-
nally, we describe a parallel language construct which is designed specif-
ically with the goal of being able to reflect arbitrary problem structures.

1 The Importance of Problem Structure

It has often been noted that problems have “structures”. Problem structure is
made concrete in the dataflow graph, which is defined as follows. When execut-
ing, a program performs many primitive operations. Each operation uses one or
more values as input, and produces one or more values as output. In the dataflow
graph, each primitive operation is represented as a vertex. Wherever a value is
transmitted from one operation to another, an arc exists in the dataflow graph.
Therefore, the dataflow graph is a representation of an execution showing only
the operations performed and how the values computed flowed from operator to
operator.

We observe that the more closely the shape of the language construct fits the
shape of the dataflow graph, the more comprehensible the program turns out to
be, and the more feasible it becomes to perform macroscopic optimizations (sec-
tion 1). We then consider many common notations for problem representation,
and discuss the limitations of those approaches from the point of view of how
well they reflect the shape of the dataflow graph (section 2). We discuss a set of
constructs we have developed to make it possible to write programs whose data
structures directly mirror the shape of the dataflow graph, for arbitrary graph
structures (section 3).

1.1 Optimization: Extracting Knowledge about Problem Structure

Optimizers rely on data-dependency knowledge, which is essentially knowledge
of the relationship between the data structures in the program and the nodes
in the dataflow graph. Optimizations that involve multiple procedures, multiple
objects, or multiple threads will often require knowledge of how the dataflow
graph spans the procedure, object, or thread boundaries. For example: a paral-
lelizer proving that two subroutines are independent is proving that there are
no dataflow arcs connecting the dataflow subgraph of the first subroutine with
the dataflow subgraph of the second. A load balancer which wishes to preserve
locality must move objects around such that distant objects are working on
(relatively) unconnected regions of the dataflow graph. A scheduler that wishes
to prioritize tasks on the critical path must be able to predict the existence of
critical dataflow arcs between tasks. In general, there are a tremendous number
of intelligent large-scale manipulations that could be performed on parallel pro-
grams, if only the data dependency relationships between the elements in the
program could be predicted.

The simpler the relationship between the dataflow graph and the elements
of the program, the more likely an optimizer is going to be able to predict
those relationships. For example, consider a divide-and-conquer implementation
of Factorial. In this formulation, Factorial(N) is defined as the result of multi-
plying all the numbers in the range 1 to N. A parallel version can be achieved by
splitting the range in two, generating the products of each subrange, and multi-
plying them together. The dataflow graph for this algorithm turns out to be an
initially branching, then collapsing, tree (Fig. 1), wherein the top half computes
the subranges over which to multiply, and the bottom half performs the actual
multiplication.

/16\

13 46
NN T
12 33 45 6 6

%\ %\
11 22 44 55
N
1 2 4 5
Il I
\/ \/
6 120
\/
720

Fig. 1. dataflow graph for factorial(6) using recursive formulation

The simplest implementations of this algorithm will utilize constructs that
also have a branching-then-collapsing tree structure. Perhaps the best example
of such a construct is function invocation in a parallel functional language. Each
function invocation can in turn spawn more function invocations. Eventually, a
large tree of invocations form. As the invocations return, the tree collapses. Since
the construct fits the shape of the dataflow graph so well, the implementation is
trivial.

The close fit between the graph shape and the program structures yields
a program that is easy to manipulate. Indeed, compilers for functional lan-
guages usually do such manipulation, effectively parallelizing, load-balancing,
and scheduling tree-structured problems, all without user intervention.

Attempting to implement an algorithm with a construct that does not “fit”
can be a disaster. Consider the familiar example, the data-parallel languages, as
they apply to this factorial algorithm. It might be possible to express this recur-
sive algorithm concurrently using arrays, do-loops, and barrier synchronization.
However, doing so would require transformations which, as other researchers
have noted, tend to leave the actual problem structure completely obscured [5].
The program would run in parallel (perhaps with poor speedups), but only be-
cause humans gritted their teeth and did the necessary convoluted analyses on
behalf of the compiler.

However, the data-parallel languages are by no means the only ones that
tend to distort problem structures. Many languages heavily utilize constructs
which are vector-shaped.! For example, to process a 1000x1000 matrix on a
32-node machine using PVM, the matrix must be decomposed into a vector —
in this case, a 32-element vector of irregularly-sized rectangles. Representing a
1000x1000 square as a vector of irregular rectangles almost totally obscures its
otherwise simple structure. Variable-sized vectors help in rectilinear problems
like this one, but mapping a non-rectilinear problem structure onto a vector
of any size obscures it. Although this isn’t an issue for PVM, which doesn’t
attempt any analysis, it clearly is an issue for the more advanced languages
utilizing vector-shaped constructs. Such languages lose a lot of information if the
programmer uses a vector-like data structure to represent a non-vector-shaped
problem.

The key observation is this: programs whose control and data structures di-
rectly match the shape of the dataflow graph are significantly simpler to analyze
than programs which rely upon complex mappings from graph nodes to program
elements. The inability of current languages to reflect dataflow cleanly will make
it impossible for compilers to perform those large-scale manipulations that de-
mand much macroscopic knowledge. This will become an increasingly onerous
burden as we seek higher levels of performance and ease of use through smarter
compilers. To solve these problems, we advocate the use of language features
that enable direct representation of the structure of the dataflow graph.

! The “aggregates” in Concurrent Aggregates [4] are vectors, the “branch offices” in
Charm [10] are vectors, the “replicated nodes” in TDFL [15] are vectors, etc.

1.2 Programming: Trying to Express Problem Structure

Optimizers benefit from clear expression of the problem structure. But perhaps
more importantly, the programmer benefits as well. If the problem and the lan-
guage constructs do not match, then the programmer must be concerned with
two different structures: the shape of the problem, and the shape of the data
structures used to represent it. While programming, he must continually perform
mental translations between the two representations.

For example, in the case of the 1000x1000 matrix computation, the pro-
grammer thinks of the computation as being performed on a square matrix. He
mentally conceives of operations such as “multiply this row times this column”.
However, to implement these operations, he must translate between his simple
mental representation of the problem and the physical representation: instead
of fetching a row or column of the matrix, he must fetch the Jth row owned by
processor K, where J and K depend on some formula expressing how the rows
of the matrix were distributed among the processors.

It is a great boon to be able to express problem structure directly. The pro-
grammer benefits from such a representation in exactly the same manner that
the optimizer benefits: simply put, the absence of a convoluted transformation
between the problem and its representation makes the program easier to under-
stand.

1.3 Constructs that Simplify the Dataflow Graph

If the relationship between the program constructs and the dataflow graph must
be simple in order for the optimizer to unravel it, then one might be tempted
to search for programming constructs that yield the simplest dataflow graphs.
Such a search proves futile — the dataflow graph is an inherent property of the
algorithm chosen, it cannot be restructured by changing one’s choice of data
structures or control structures.

For example, suppose that a programmer wishes to compute Fibonacci 5.
The dataflow graph will always contain the same six nodes shown in Fig. 2. The
graph may contain other nodes as well, which may vary from implementation to
implementation, but those six nodes will always be present.

Actually, this is only partially true: there are other algorithms for Fibonacci,
and those algorithms have entirely different dataflow graphs. However, for many
problems, only one or two algorithms are known. One is essentially stuck with a
small choice of problem structures. Since one cannot affect these problem struc-
tures by choosing a different language or by making different implementation
decisions, it instead makes sense to choose constructs based on the principle of
clearly expressing the inherent shape of the dataflow graph.

2 Evaluations of Existing Languages

In this section, we consider some existing programming languages, and evaluate
their programming constructs according to how well they reflect the shape of
the dataflow graphs they express.

fib O

fib1
fib 2 ‘

fib 3
fib 4

fib 5

Fig. 2. dataflow graph for Fibonacci(5) using linear-time method.

2.1 Dataflow Languages

It seems intuitive that the dataflow languages would contain constructs that nat-
urally reflect the shape of the dataflow graph. By “dataflow languages” we refer
not to those languages with ordinary functional language semantics but unusual
runtime systems. (Clearly, such languages are no more or less analyzeable than
their non-dataflow counterparts). Instead, we refer to languages that explicitly
reveal their dataflow underpinnings at the language level. Probably the best
examples of such languages are the visual dataflow languages like TDFL [15],
PFG [14], and Poker [13].

These languages are loosely based on the Petri net programming model. If
one were to base a language on a restricted class of Petri nets, with the limi-
tations that the net be finite, contain no cycles, process only scalars, and that
arcs be used only once, then the programs would be perfect representations of
their dataflow graphs. On the other hand, the language would only support finite
problem structures. Therefore, languages like the ones named above necessar-
ily extend the model: for example, TDFL adds “replicated nodes” to support
vector-shaped problem structures, and recursive nets to support branching-and-
collapsing problem structures.

The restricted Petri net model by itself is capable of representing (and ide-
ally reflecting) a small class of dataflow graphs. Each extension adds the ability
to express (and again, very directly reflect) another class of problem structures.
The resulting language is capable of very naturally and directly expressing those
problem structures for which it has constructs. Other problem structures be-
come problematic. As a result, the temptation is present to continue adding
new features for new problem structures. We now discuss the effects of such a
philosophy.

2.2 Agglomerate Languages

Many languages are being created containing a collection of constructs, each
construct appropriate to a different problem structure. We term these languages
the “agglomerate” languages. Such languages seem to be quite popular right

now: consider Charm [10], HPC++ [2] [3], and HPF+Fortran-M [6]. By includ-
ing different constructs for different problem structures, these languages aim to
support a broader class of problems than their predecessors.

Some would say that designers of agglomerate languages are haphazardly
adding constructs, each of which is only useful for one problem structure. Others,
however, might argue that the objective in adding constructs is to create a “basis
set” | eventually covering the entire space of problem structures. The reasoning is
sound. If an agglomerate is built with sufficient constructs, it may indeed achieve
a basis set.

Unfortunately, achieving a basis set requires more than the simple ability to
encode arbitrary problems: it requires the ability to encode problems without
mapping their dataflow graphs onto dissimilarly-shaped data structures or con-
trol structures. Thus, a basis set is unlikely to be achieved very quickly through
haphazard addition of constructs. To our knowledge, no existing agglomerates
contain a basis set; for example, no languages of which we are aware can repre-
sent both a reduction tree (which grows from the leaves up, not the top down)
and a 2D matrix without mapping either onto a vector of data elements. Rather
than randomly adding constructs and hoping they eventually form a basis set, it
makes sense to be more critical, accepting only a set of constructs that offer us
some concrete reassurance that they cover the entire space of possible problem
shapes.

Such concrete reassurance is offered by the linked data structures, which can
obviously be connected into any shape imaginable. Therefore, linked structures
promise to singlehandedly cover the entire space of possible problem shapes.

2.3 Object-Based Languages and Linked Structures

Parallel Object-based languages (Actors [1], ABCL/1 [16], Mentat [8], etc.) rely
on linked data structures to represent problem structure. Linked data structures,
because of their incredibly flexible shape, are the sequential programmer’s tool
of choice for clear representation of complicated shapes such as trees and graphs.
Unfortunately, linked data structures have two flaws which, from our point of
view, make them undesirable constructs for parallelism.

The first flaw of linked structures is that their shapes are hard to predict. For
example, in an object-parallel implementation of Jacobi relaxation, the compiler
can easily see that the code declares objects of type jacobi node, each containing
four fields called left neighbor, right neighbor, and so on; yet the compiler
remains oblivious to the fact that those objects form a two-dimensional rect-
angular grid. The challenge of predicting the shape that linked structures will
form tends to be as great an impediment to optimizers (if not greater) than a
complex relationship between problem structure and program stucture?.

2 Some researchers have attempted to predict the shapes of linked structures which
will form at runtime. Such work has seen some success, although only certain kinds
of information are made available through these techniques. [12]

The second flaw in linked structures is that they are quite difficult to con-
struct concurrently. Consider the problem of adding a single object to an existing
linked structure in such a way that the new object is accessible from (pointed
to by) several old objects. One of the older objects must create the new object,
obtaining a pointer to it. The creator must then deliver the pointer to all loca-
tions where it is needed — and the delivery process is the problem. Potential
difficulties in delivering the pointer include identifying the other objects that
need the pointer, routing the pointer through the older parts of the graph, and
inventing some addressing scheme to get the pointer to the correct destination.
The effort involved ranges from significant to extraordinary, even for problems
as simple as building a 2D grid. The problem of routing a pointer to a destina-
tion in a graph is sufficiently difficult that linked structures are convenient only
when such routing is not necessary. Routing can usually be bypassed by storing
the pointers in a concurrent array or hash-table... but this, of course, maps the
problem structure onto a vector again, obscuring it from the compiler. The only
case where such routing is not necessary is when an object is only connected
to its parent and its children — in other words, in tree-structured problems.
Indeed, the fact that pure objects seem to be best for tree-processing has been
noted by other researchers [9].

Both limitations of linked structures are rooted in a single property: dy-
namic creation. Both can therefore be eliminated by doing away with dynamic
creation. Allowing the programmer to statically declare the entire problem struc-
ture would relieve him of the burden of creating it, while simultaneously making
the structure far more visible to the optimizer. Therefore, our constructs are
based on this fundamental principle: whenever possible, represent problem struc-
ture declaratively.

3 Agents: Undistorted Representation of Structure

We have devised constructs that enable the programmer to declaratively express
arbitrary problem structures. Our constructs define a graph of “agents”. Individ-
ually, these “agents” are very similar to objects: they are small entities that have
state, and have code associated with them. Unlike objects, though, they concep-
tually “exist” in a prespecified pattern from the instant the program begins. In
this static layout, they are much like Petri nets. However, unlike the specific
patterns allowed by Petri net languages, agent networks can be infinitely large,
with arbitrary numbers of connections between agents, in unrestricted patterns.
Agents are declared in groups:

AGENT identifier[indices...] RUNS function(arguments...);

In our model, each agent is a tiny process running a function. On a more
theoretical level, agents could have been expressed using any representation of
behavior and state, for example, agents could have been C++ objects. We em-
phasize that the means of expressing agents and their internal behaviors is or-
thogonal to our ideas on problem structure.

The agent identifier names a set of agents. Indices are similar to array indices,
they can be used to select an individual element in the set. However, unlike array
indices, they are not bounded, so the set of agents may be of unbounded size,
and it may be sparse. To understand the need for unbounded, sparse sets of
agents, one need only recall their purpose: each active agent intends to represent
a single node in the dataflow graph3. The entire set of agents is intended to
represent the space of possible nodes that could be used during the execution.
The indices to the set of agents need not be integers, they may be any other
type that can reasonably be used as an index into a table.

To accommodate unbounded sets of agents, we impose this constraint: each
agent is completely passive until it receives its first message. Passive agents send
nothing, compute nothing, and have uninitialized state. No memory is allocated
to an agent which has not yet received its first message. Likewise, an agent which
has finished executing its code it is returned to its passive state.

Our model does not assume shared memory: it is assumed that agents cannot
access each other’s variables without sending explicit messages to each other.

Every agent can send and receive messages. In our notation, messages are tu-
ples of values with a symbolic tag at the front*. We use the notation tag(valuet,
value2, ...) to denote such a tuple. The tag is a single identifier. The SEND
statement is used to transmit tuples:

SEND tag(valuel, value2, ...) TO agent[index1, index2, ...];

Two special agent identifiers are recognized, SELF and PARENT. Sending a
tuple to one’s parent is defined as follows: if an agent Al is running a function
F1, and function F1 contains a declaration of an agent A2, then agent Al is the
parent of agent A2. An index can be a range of integers low...high, indicating
a multicast. Finally, note that agent identifiers are first-class objects, so the TO
clause can contain an expression.

The HANDLE declaration and WAIT statement are used to receive tuples:

HANDLE <tuple> FROM <source> { code }
WAIT <boolean-expression>;

Once started, agents execute uninterrupted until they reach a WAIT state-
ment. When they reach the WAIT statement, they block, and their handlers
become active. The agent begins receiving tuples, executing the appropriate
handler code when each message is received. After a handler fires, the WAIT
condition is reevaluated, and the agent may unblock and continue execution.

In the HANDLE declaration, the tuple and source fields are both patterns.
The tuple field is matched against the contents of the tuple. The source field is

? One will often want to decrease the “resolution” or grainsize of the data flow graph
by merging small sets of adjacent nodes. This does not affect our constructs.

* The use of the word “tuple” to describe messages should not be construed to imply
that such messages enter a “tuple-space”, as they do in Linda. It simply means that
messages contain a short sequence of values.

matched against the name of the originating agent. Both patterns may contain
variables, which are bound to the contents of the tuple or the indices of the
originating agent. The FROM field can specify SELF, PARENT, or it can be omitted
to accept tuples from anywhere. Note the following subtlety: if a tuple matches
more than one handler, both fire, and if it matches no handlers, nothing fires,
although the tuple still “awakens” the agent that receives it.

Note that every function invocation created by a function call is an unnamed
agent, so functions can declare handlers and send and receive messages regardless
of whether or not they are explicitly declared as agents.

We begin with a simple example, a Fibonacci program. This problem has
the structure shown in Fig. 2. It begins with a function that acts like a binary

adder:

void binadder()
{
int total=0, count=0;
handle value(int v) from parent { total+=v; count++; }
wait (count==2);
send value(total) to parent;

}

Any agent running binadder will receive two value tuples from its parent.
After adding them, it sends the total back to its parent. Note that it is normal
for an agent to receive its inputs from its parent, much like a function receives its
arguments from its caller. The parent of the binadders will link them together:

1:int fib(int n)

2:

3: int result; int done=0;

4 agent calcfib[int i] runs binadder();

5: handle value(int i) from calcfib[j] {

6: send fib_eq(j, i) to self;

7: }

8 handle fib_eq(int i, int j) from self {

9: if (i+1<=n) send value(j) to calcfibl[i+1];
10: if (i+2<=n) send value(j) to calcfibl[i+2];
11: }

12: handle fib_eq(int i, int j) from self {

13: if (i==n) { result=j; done=1; }

14: }

15: send fib_eq(0, 0) to self;
16: send fib_eq(1, 1) to self;
17: wait (done==1);

18: return result;

19: }

The £ib function declares a number of calcfib agents. The calcfib agents
form a chain in which calcfib[i]’s job is to add fib(i-2)+fib(i-1) yielding fib(i).

The process is initiated by the sends on line 15-16, which trigger the handler
on lines 8-11. This causes value tuples containing fib(0) and fib(1) to be sent to
calcfib[1] through calcfib[3]. These in turn produce value tuples, which
are received by the handler on lines 5-7, are forwarded as £ib_eq tuples to the
handler on lines 8-11, which again feeds them back to the calcfib agents as
value tuples. The chain continues until the conditions (i+1<=n) and (i+2<=n)
on lines 9-10 cause it to terminate. Meanwhile, the handler on lines 12-14 is
looking for the final £ib_eq tuple. When it catches this tuple, it stores the result,
and sets the done flag. This causes the wait statement on line 17 to terminate,
and the £ib function returns.

I now show a more interesting example: an SLD refutation engine. SLD the-
orem provers start with a single assertion, and by combining that assertion with
a database, generate more assertions. These new assertions are in turn combined
with the database, and so on recursively, until finally an assertion is derived that
is known to be false. This refutes the original assertion. The problem would be
tree-structured, if not for the fact that assertions frequently get re-derived, but
they must not be re-processed. The prover consists of a refute function, which
uses many tryrefute children. Each tryrefute agent has the task of trying to
refute one assertion. A tryrefute agent either sends refuted immediately, or
it derives a set of assertions, transmitting begin tuples to initiate their recursive
expansion. It then sleeps forever, thereby refusing to try to refute something
twice.

1: typedef string assertion, database;

2: void refute(assertion goal, database dbin)

3: A

4: int refuted=0;

5: agent dbholder runs store_string();

6: agent tryrefutel[assertion A] runs {

7: string DB = fetch(dbholder);

8: if (obviously_false(A)) send refuted(4) to parent;
9: else

10: for all assertions D derived from A and DB do
11: send begin() to tryrefute(D);

12: wait 0;

13: }

14: handle refuted(assertion a) { refuted=1; }

15:

16: store(dbin, dbholder);

17: send begin() to tryrefute(goal);

18: wait (refuted==1);

19: }

A few minor points: 1. Note that agents can send to agents defined in sur-
rounding scopes, this presents no particular new issues. 2. store_string in line
5 is a library function defining a replicated storage agent. The string is stored in

the agent using store, and retrieved using fetch. store_string distributes a
copy of the string to all processors to eliminate copying at read-time. We there-
fore use it as an efficient means to distribute the database. 3. The begin tuples,
since they are not handled, cause no effect other than to wake up the agents to
which they are sent.

Note that the £ib agent is serving as a dispatcher for large numbers of mes-
sages. As pointed out by Chien [4], any individual object acting as a dispatcher
or interface for a large number of other objects can be a bottleneck. We avoid
this bottleneck: when a handler does not access any local variables, it can be
executed on any processor, and is in fact executed by the processor which orig-
inated the tuple. This optimization technique guarantees that tuples always go
straight from their origin processor to the first agent they actually affect — in
the £ib case, straight from calcfib to calcfib. Handlers that do nothing but
forward tuples are particularly relevant to understanding problem structure, so
we give them a special name: “relay handlers”.

3.1 Demonstrations: Analyzing an Agents-Based Program

Our new programming constructs were designed to make it easier for both the
user and the optimizer to understand the problem structure. We now show two
optimizations made possible by these constructs. Keep in mind this caveat: these
demonstrations are not very complex. There are merely intended to show the rel-
ative ease with which optimizations can be performed in a model where problem
structure is declared explicitly and statically.

Static Load Placement By Tiling In this demonstration, the optimizer no-
tices that agents in the program form a 2D matrix. It notices that the commu-
nication is nearest-neighbor, and decides that the best alignment scheme for the
agents in the matrix is to tile it into subsquares. The optimizer then implements
the tiling.

To determine whether tiling a set of agents is desirable, the optimizer first
checks whether the set actually forms a 2D matrix. This is done by examining
the agent declaration: if they it has two integer indices, then it is a (possibly
infinite) 2D matrix. If not, tiling is aborted.

Second, the optimizer checks whether communication is local; if not, tiling is
undesirable and is aborted. Locality can thus be verified by checking the SEND
statements in the matrix agents, plus the SEND statements in any relay handlers
affecting the matrix agents. If the TO clauses all designate agents whose indices
differ by only a small constant from the sending agent, then communication is
local.

Third, the optimizer must determine the ranges of the indices. Identifying
the used subrange is often possible through mathematical induction using the TO
clauses of the send statements, and the FROM clauses of the relay handlers. Agents
can (usually) only be awakened (receive their first message) by their parents. So
we check the send-statements in the parent to identify the range of agents used.

As an example, consider the calcfib agents. There are two send statements that
are not in relay handlers, these send to constant locations: calcfib[1..3] are
accessed. There are also the sends in the relay handlers on lines 5-11. Together
they provide two induction hypotheses, one of which is: if calcfib[i] is used,
and (i+1<=n), then calcfib[i+1] is used. Therefore, the range of agents that is
used is calcfib[1] through calcfib[n]. Similar inductive proofs can be made
for 2D agent matrices, to verify that they are finite, and to determine the ranges
of the indices. If the indices are not finite, tiling is aborted.

Finally, tiling is implemented by choosing a size for each tile. The system
then generates a function that maps agent names to processors. This function is
used by the runtime system to allocate the agents to processors.

Note that it is the compiler’s knowledge of which agents may exist, what
shape they form (a 2D matrix), and what their communication patterns are
(nearest-neighbor) that makes it possible to statically and intelligently distribute
the load in a reasonable fashion. Note that even smarter methods, such as fol-
lowing this initial placement by dynamic balancing, are quite feasible.

Vectorization Across Objects In this demonstration, the optimizer notices
that a multicast to a range of objects triggers each object to perform a few simple
mathematical operations. The optimizer converts the multicast code such that
it can take advantage of the CPU’s vector units.

To deliver a multicast to a range of objects existing on the same processor,
the system uses a loop over the range of agents. Agents’ state variables are stored
in C structs. If the structs for the range of agents are allocated in a contiguous
block of memory, then the delivery loop is a loop over a vector of agent structs.
Each iteration of the multicast-delivery loop executes a handler on behalf of
one agent. The handler generally modifies the agent struct of one agent. So the
delivery loop is actually a loop modifying an array of structs, each struct in the
same manner. If the handler code is sufficiently simple, then the delivery-loop
will probably be vectorizable using traditional methods.?

In addition to vectorizing the handler itself, it is sometimes possible to vec-
torize the code after the wait statement. If it can be proved that all agents
receiving the multicast are blocked at the same wait statement (for example, if
all the agents are running a function that only contains one wait statement),
and if it can be proved that all will unblock upon receiving the message, then
the delivery loop can also include the code after the wait statement.

Again, it is the system’s knowledge that certain ranges of objects form vectors
that makes it possible to perform this optimization. In a linked language, the
system would not know to allocate the objects in vectors, nor would it be able
to express the multicast.

® The actual success of such vectorization depends upon the what code the handler
contains.

4 Comparisons to Other Work

Superficially, Agents bears a close similarity to the languages based on linked
objects, such as Actors, ABCL/1, Mentat, and many others. There is appar-
ent similarity since individual agents are more or less equivalent to objects.
However, in object-based languages, the structures formed by the objects must
be created dynamically. In a sequential program this is no problem, but creat-
ing linked structures with any degree of concurrency is quite clumsy, except in
special cases such as when creating tree-structures (see sec. 2.3). Therefore, dy-
namically created objects are best suited to certain specific problem structures,
notably, those which are tree shaped. Also importantly, the structures formed by
dynamically-created objects is hard to predict, thereby concealing the problem
structure from the optimizer. Agents and the relationships between them are
declared statically, alleviating both problems.

Agents 1s far more closely related to the parallel Petri net languages like
TDFL and Poker, which are also based upon statically-declared dataflow pat-
terns. Most Petri net languages necessarily extend the basic Petri net model.
(The unextended model only supports a finite, unchanging set of nodes, which
is impractical for expressing massive concurrency.) Languages like TDFL ex-
tend the Petri net model by adding several specialized constructs: for example,
replicated nodes are added to support vector-shaped problem structures, and re-
cursive nets are added to support branching-and-collapsing structures. Each of
these extensions is naturally suited for one class of problem structures. Agents
also extends the Petri net model, however, it extends it in a manner specifi-
cally designed to handle arbitrary problem structures: it allows arbitrarily-sized
networks, having arbitrarily large numbers of arcs, with arbitrary connectivity.

One parallel programming system, Concert [4], attempts to predict inter-
object data relationships despite its programming model, in which every struc-
ture must either be built dynamically of linked objects or mapped onto a vector
of objects. As a result, Concert relies on sophisticated techniques to extract
structural knowledge about linked structures [12]. This is a significant accom-
plishment. However, we feel that the Concert programming model is not as
expressive as it could be, given its requirement that all problems be mapped
onto vectors or built from linked structures, and we feel that this limitation hin-
ders both the programmer and the optimizer. Given this consideration, we feel it
would be advantageous both to the Concert programmer and to the Concert op-
timizer to upgrade to a programming model which is more reflective of problem
structure.

Some languages deal with arbitrary problem structures by providing shared
memory, fast sync variables, M-Structures, or some similar abstraction. Although
shared memory doesn’t make it any easier for the compiler to extract knowl-
edge of the problem structure from the program, true hardware-based shared-
memory does make it less important for the compiler to do so. For example, with
hardware-based shared memory, the compiler can more or less ignore questions
of data layout, load-balancing, scheduling, and other difficult questions. (Or at
least, it needs less reliable strategies for these tasks). Since problem structure

is less important to the compiler, it can be dealt with at the user-level, encap-
sulating the implementation details inside ADT’s that neither the programmer
nor the compiler need care about.

Although data-parallel languages are not generally intended for all prob-
lems, they do clearly show off the benefits of matching problem structure to the
language construct when they are applied to the right problems. It is widely ac-
knowledged that coding regular problems is easy in data-parallel languages (quite
an accomplishment, given the widespread feeling that parallel programming is
difficult). Also importantly, compiler technology for data-parallel languages is
advancing by leaps and bounds, since it is possible to extract quite a bit of
knowledge about the problem structure from the language constructs.

Two parallel programming systems, Linda [7] and Distributed Memo [11],
can represent data of arbitrary structure without mapping or distortion. Both
have a globally-accessible storage space for data items wherein items can be
accessed by name. In both languages, the naming scheme is infinite. Therefore,
one can store data of arbitrary shape in the space without having to force it
into a predefined structure. However, though the languages have facilities for
storing data without distorting its shape, neither languages have any facilities for
expressing the computation itself as anything other than a vector of processors.
It is impossible to infer the structure of the computation from the structure of
the storage space, since the structures in storage space are created dynamically.
Even so, both languages gain a significant degree of representational clarity from
their ability to store and access data without distortion.

5 Conclusions

We started with the observation that problem structure is embodied in the shape
of the dataflow graphs produced by that problem. We also pointed out that the
more directly the shape of the dataflow graph is reflected in the data and control
structures of the program, the easier the program is to understand, and the
easier it is to analyze and optimize. We noted that for maximum predictability,
the direct representation of the problem’s structure must be declared statically,
not created dynamically.

We defined the AGENT construct, which makes it possible to express arbitrary
computation graphs without distortion. Individual agents are like C++ objects,
except that they form a static mesh whose structure is declared, not linked
together with pointers. An interconnected set of agents can directly reflect the
shape of the computation graph. We demonstrated through two examples the
ease with which optimizations can be performed in this framework.

We are currently engaged in the work of implementing our compiler, which
is an aggressive implementation with tight control of overhead. This compiler
will be complete in late 1995. After completion of the compiler, efforts will be
shifted towards performance analysis and the implementation of optimizations.

References

10.

11.

12.

13.

14.

15.

16.

. Gul Agha and Carl Hewitt. Concurrent Programming Using Actors: Ezxploiting

Large-Scale Parallelism, volume 206 of Lecture Notes in Computer Science, pages
19-40. Springer-Verlag, Berlin-Heidelberg-New York, October 1985.

. F. Bodin, P. Beckman, D. B. Gannon, S. Narayana, and S. X. Yang. Distributed

pC++: Basic ideas for an object parallel language. In Proceedings of Supercom-
puting '91, pages 273-282, 1991.

. K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object-oriented

programming notation. MIT Press, 1993.

. A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel

Programs. MIT Press, Cambridge, MA, 1993.

. A. A. Chien, M. Straka, J. Dolby, V. Karamcheti, J. Plevyak, and X. Zhang. A

case study in irregular parallel programming. DIMACS Workshop on the Specifi-
cation of Parallel Agorithms, May 1994.

. I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system that inte-

grates high performance fortran and fortran M. In Proceedings 1994 Scalable High
Performance Computing Conference, 1994.

. David Gelernter, Nicholas Carriero, S. Chandran, , and Silva Chang. Parallel pro-

gramming in Linda. In International Conference on Parallel Processing, pages
255-263, Aug 1985.

. A.S. Grimshaw and J. W. Liu. Mentat: An object-oriented data-flow system.

Proceedings of the 1987 Object-Oriented Programming Systems, Languages and
Applications Conference, pages 35-47, October 1987.

. A. Gursoy and L.V. Kale. High-level support for divide-and-conquer parallelism.

In Proceedings of Supercomputing *91, pages 283-292.

L. V. Kale. The Chare Kernel parallel programming language and system. In Pro-
ceedings of the International Conference on Parallel Processing, volume I, pages
17-25, 1990.

W. O’Connell, G. Thiruvathukal, and T. Christopher. Distributed Memo: A het-
erogenously distributed parallel software development environment. In Proceedings
of the 23rd International Conference on Parallel Processing, Aug 1994.

J. Plevyak, V. Karamcheti, and A. Chien. Analysis of dynamic structures for effi-
cient parallel execution. Languages and Compilers for Parallel Machines, 1993.
Lawrence Snyder. Introduction to the Poker programming environment. Proceed-
ings of the 1983 International Conference on Parallel Processing, pages 289-292,
August 1983.

P. David Stotts. The PFG language: Visual programming for concurrent compu-
tation. Proceedings of the 1988 International Conference on Parallel Processing,
11, Software:72-79, August 1988.

Paul A. Suhler, Jit Biswas, and Kim M. Korner. TDFL: A task-level data flow
language. Journal of Parallel and Distributed Computing, 9(2), June 1990.

A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent program-
ming in ABCL/1. ACM SIGPLAN Notices, Proceedings OOPSLA ’86,21(11):258—
268, Nov 1986.

This article was processed using the INTRpX macro package with LLNCS style

