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The signi	cant gap between peak and realized performance of parallel machines motivates
the need for performance analysis� Most existing performance analysis tools provide generic
measurement and displays� It is the responsibility of the users to analyze the performance of
their programs using the displayed information� This is a non�trivial task� because not only
does one need to identify the information that is needed for such analysis� sometimes that
information may not even be displayed by the tool� The task of analysis is even more di
cult
for massively parallel machines� where voluminous amounts of information can be generated�
Therefore� a good performance analysis tool should be able to provide intelligent analysis about
the performance of a parallel program� Such automatic performance analysis is feasible for
programming paradigms that provide the system su
cient information about the behavior of
its programs� We have built a framework for automatic analysis for one such paradigm called
Charm� a portable� object�based� and message�driven parallel programming language� In this
thesis� we describe the process of design and implementation of this framework� and show its
utility with sample case studies�
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Chapter �

Introduction

Even though there exist parallel machines today with peak performances in the range of tens to

even hundreds of giga�ops� the actual performance obtained on realistic application programs on

such machines varies dramatically� and is often much smaller than the peak performance� It is

not uncommon to see variations of two orders of magnitude in performance for the same machine

on di�erent application programs� Even when we restrict attention to di�erent implementations

of the same algorithm� substantial variations in performance may exist on the same parallel

computer� These variations arise due to a variety of factors� Some of the common factors� at

least on distributed memory computers� are� presence and extent of sequential bottlenecks� load

imbalance across processors� communication costs� I�O costs� and synchronization requirements�

These factors are in addition to the usual uni�processor concerns� such as the cache performance

of sequential segments of code� In order to improve the performance of a particular parallel

program� one must identify the critical factor that is a�ecting the performance of the program

negatively in the most signi	cant way and the component of the algorithm that is responsible for

this factor� Performance feedback and analysis tools which provide such feedback are therefore

crucial to improving the performance of parallel programs�

The focus of this thesis is on techniques for analyzing the e
ciency of parallel programs�

More speci	cally� we aim at developing such techniques for message�driven and object�based pro�

gramming languages� Our approach involves both language speci	c feedback� which attempts

to show the user what happened during a run of their program� and automated performance
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analysis� which attempts to 	nd potential causes of performance loss and suggest improvements

automatically to the user� These concepts are elaborated in the sections below�

��� Language speci�c performance feedback

In order to understand the e
ciency issues for a program� one needs to understand the behavior

of the program itself� The most widely used technique for understanding program behavior is

visualization� In program visualization� a number of attributes of the program�s execution� such

as processor utilization and network bandwidth� are displayed� The user can use the information

conveyed through the displays� in conjunction with the knowledge of the application program�

to determine possible performance problems�

A signi	cant number of performance visualization tools� such as Paragraph ��� and Up�

shot ���� exist for the SPMD �Single Program Multiple Data� model of parallel computation�

In the SPMD model� a single program executes on each processor� and programs on di�erent

processors communicate with each other using shared memory �lock�unlock� or message pass�

ing �send�receive� primitives� Message passing primitives can be loosely synchronous�� tightly

synchronous�� or asynchronous�� For convenience� we refer to all the message passing variations

of the single process model as SPMD�

Active research is being conducted on other execution models for parallel programs� such

as on the message driven and object based execution models ��� �� ��� In a message�driven

execution model� a message is addressed to a method of an object� the execution of the method

is scheduled by the runtime after the message arrives at the destination processor� A message�

driven execution model provides many advantages over the SPMD model of computation ����

It permits the user to obtain a �possibly� greater degree of parallelism and e
ciency through�

�A loosely synchronized send means that the program executing the send waits until the send is complete�
This waiting is referred to as blocking� Completing the send� however� does not guarantee that the message
has been received� A loosely synchronized receive means that the program executing the receive waits until the
message arrives in the speci�ed bu�er�

�A send event in a process is synchronized with the corresponding receive event in another process� e�g�� in
CSP ��� a send blocks till the corresponding receive is executed� and vice versa�

�Unlike loosely synchronized sends and receives� asynchronous sends and receives do not block� Rather they
return a unique message ID� which can be used to check for completion of the requested action� The ID is not
reused until it has been released�
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� Adaptive scheduling of the execution of a di�erent method in the same object� when one
method is waiting for a message�

� Adaptive scheduling of the execution of a di�erent object� when an object is waiting for
a message�

Since the native execution model of most distributed memory parallel machines is SPMD�

messages and single processes on processors can be viewed as the lowest level of abstraction�

The runtime support for more sophisticated and high�level execution models� such as the mes�

sage driven execution model� is generally built on top of the SPMD layer on a distributed

memory machine� Thus� even though visualizing the performance of program written for a

high�level execution model in terms of processes and messages conveys an accurate picture of

what happened on the machine� the level of abstraction is too low and not speci	c enough

to the language� For example� existing performance tools for SPMD models do not provide

any information on the creation of new objects� or the inter�leaving of the execution of many

di�erent objects on the same processor� Such information is critical to execution models which

are message�driven and object based� Therefore� the 	rst step towards a better understanding

of the performance of high�level programs needs to be the development and identi	cation of

techniques to visualize information speci	c to an object�based and message�driven language� so

that the displayed information can then easily be related to the program itself�

��� Automatic performance analysis

Program visualization tools often present volumes of visual feedback covering many di�erent

facets of program behavior� Performance analysis becomes non�trivial� because one needs to

sift through large amounts of visual data to determine performance problems� Performance

analysis becomes even more di
cult on massively parallel machines� because the amount of

information presented is much larger� Therefore it becomes necessary that performance tools

provide some form of automatic support for performance analysis� For example� a performance

analysis tool should be able to detect that the cause of poor turn�around time is the delay

in scheduling of speci	c tasks on the critical path� Or� the performance tool should be able

to detect that two objects �which could be located on the same processor� but are not� are

communicating extensively� and suggest that they be mapped to the same processor�
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Automatic performance analysis at 	rst seems to be an intractable problem� one expects

that there are thousands of possible performance problems and analysis techniques� This is

probably true� however the analysis of many real applications has identi	ed the reason for poor

performance to be well recognized problems such as imbalance in load ���� the time taken for

synchronization ���� or the small granularity with respect to communication latencies ���� In

fact� Fowler et al ���� have suggested a systematic decision tree based approach that a user can

use to navigate through performance data and home onto typical performance problems� At

intermediate points in the decision tree� one of the many views provided by their performance

tool can be used to determine the course of action that needs to be taken next� The approach

proposed by Fowler et al and other performance analysis examples suggest that a small core of

techniques� which require information about speci	c behavioral characteristics of the program�

can be used to analyze the performance of parallel programs�

Automatic analysis� therefore� seems tractable� How do we go about realizing automatic

performance analysis� In building a road map towards automatic analysis� the 	rst step is to

identify the set of techniques that will be used for analysis based on experience and expertise

attained by tuning many parallel programs� Such techniques embody our knowledge of the

dominant and common reasons for performance loss� the set of tricks that can be used to

improve performance� and an understanding of the circumstances �the 
symptoms�� in which

such tricks can be used� The second step is to identify the behavioral characteristics of the

program needed to use the identi	ed techniques� Some aspects of program behavior which we

have found essential for automatic analysis are a knowledge of the sub�tasks in the program� the

modes in which information is shared� the nature of global synchronization� and the mapping

of tasks� The third and 	nal step is to acquire information about the characteristics� Once

all this can be accomplished� automatic analysis can be performed by automatically acquiring

information and applying the analysis techniques�

One of the most di
cult steps in the path towards automatic analysis is the acquisition of

information about program behavior� How can the performance analysis tool acquire informa�

tion about a program�s behavioral characteristics� The user who writes a parallel program is

often keenly aware of the behavioral characteristics of the program� This understanding can be

lost in an attempt to code the program using the mechanisms available in the language� This

happens because the language may not provide mechanisms which capture exactly the behav�
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iors desired by the user� So� if there existed a parallel programming language which provided

users with mechanisms to represent widely occurring program behaviors� the system could then

readily acquire such information� There are three broad ways in which a parallel programming

performance analysis system can know more about a user�s program�

�� Language constructs� The easiest way of acquiring information about a program�s be�

havioral characteristics is to provide language constructs� which in themselves embody

information about a behavior� For example� the language can provide a construct which

allows a user to specify a variable to be read�only� and permits only read operations on

the variable� Such a construct is a simple way of letting the user convey to the system

the information that the variable is read�only�

�� System libraries� The system can also acquire information about a program�s behavior if

known system libraries are used� For example� the use of the barrier construct provided by

most message passing SPMD languages indicates a global synchronization in the program�

�� Statis analysis or compiler support� Compiler support is needed to acquire information not

provided by language constructs and system libraries� A number of systems use compiler

techniques to understand and optimize user code� both at the sequential and at the paral�

lel programming levels� Such compiler e�ort often manifests itself in the form of high�level

support in parallel programming� For example� in addition to providing common capa�

bilities to the user� such as sending and receiving messages� parallel programming models

often provide high�level features� such as automatic decomposition and load balancing�

In the work on parallelizing compilers ���� ��� ���� the system attempts to automatically

decompose a computation into tasks� map the tasks onto processors� and schedule them�

In other models� such as PVM ���� ��� ���� Express ����� and Linda ���� ��� all three

tasks� decomposition� mapping� and scheduling� are the user�s responsibility� Implicit in

the ability of a system to provide high�level programming support is the fact that the

system knows more about the program�s behavior� either through compile time analysis

or through run time analysis� So� for example� if a system provides support for load

balancing� it knows more about the computational nature of the tasks and the placement

of the tasks�
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The advantage of acquiring information through language constructs and system libraries

is obvious� minimal compiler e�ort is required� However there is one drawback of acquiring

information through language constructs� if too many language constructs are needed� the

language can become cumbersome and di
cult to use� The advantage of acquiring information

through compiler support is that the user need not be concerned about numerous or complicated

language constructs� However� it may not always be possible to acquire information through

compile time analysis� In general� it is easier and more feasible to acquire information directly

through language constructs or system libraries�

We de	ne the degree of speci�city of a parallel programming language to be the extent to

which one can automatically determine information about an identi	ed set of behavioral char�

acteristics for programs written in that language� In a language with high degree of speci	city�

information about program behavior is easily available� and hence automatic analysis is feasible�

What are the implications of a low degree of speci	city on automatic performance analysis�

Some amount of automatic analysis is still possible for language with a low degree of speci	city�

In this thesis� we acquire information about a Charm program using the 	rst two mechanisms�

namely language constructs and system libraries�

��� Performance analysis of Charm programs

In this thesis� we are concerned with techniques for the analysis of the performance of Charm

programs� Charm ��� ��� ��� ���� is an object�based� message�driven� and portable parallel

language� We have examined two complimentary approaches to performance analysis� program

visualization and automatic analysis� In the eventuality that automatic analysis is unable to

determine the cause of poor performance� program visualization can be used for analysis�

In terms of program visualization� we have identi	ed attributes of the message driven and

object based execution model of Charm and its high�level support for load balancing� We have

also identi	ed techniques to appropriately display such information�

Charm programs provide a wealth of information for automatic analysis through�

�� Language constructs� which provide more information about sub�task decomposition and

nature of information sharing�

�The discussion in this thesis is applicable to the C		 extension of Charm called Charm		
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�� Libraries and high�level support� such as quiescence detection and dynamic load balancing�

which provide more information about phases of program execution and the nature of task

mapping�

Given such information� performance analysis can be very speci	c� For example� instead of

being told that a particular processor is overloaded during a certain phase of the computation�

and constitutes a bottleneck� a tool can give more speci	c information� It may inform that the

overloaded processor is busy because of the large number of new �small grained� processes being

created on it� which suggests using a better dynamic load balancing strategy� Alternatively� it

may state that the overloading is due to the large number of requests for a particular data�item

stored on this processor� thus suggesting replicating that data item as a solution�

��� Contributions of thesis

In this thesis� we examine two complimentary approaches for better understanding the perfor�

mance of Charm programs�

�� Language speci�c visual information� We have identi	ed information speci	c to Charm�s

message�driven and object�based execution model� and provided visual access to such

information� This allows the user to easily relate performance metrics� such as granularity

of tasks� to speci	c portions in their Charm programs�

�� Automatic performance analysis� Visual information can provide the user with signi	cant

amount of information about a program�s performance� However� such information can

get di
cult to understand as the number of processors increase� or as the complexity of

the programs increase� We have designed a framework for automatic analysis� where the

performance data is examined automatically for common performance problems�

A primary contribution of this thesis has been to provide a methodology for automatic

analysis� In particular� we have examined the validity of the hypothesis that automatic analysis

is feasible for a language with a high degree of speci�city� such as Charm� We have achieved

the goal of automatic analysis as follows�
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�� Identi�cation of performance analysis techniques� We have compiled a list of previously

known techniques and a list of new techniques for performance analysis� Many new

techniques become necessary and possible because of our choice of the base language�

�� Identi�cation of behavioral characteristics� Based on set of the techniques for performance

analysis that we identi	ed� we proceeded to identify the types of information about pro�

gram behavior that was needed for such techniques�

�� Development of a language with high degree of speci�city� Charm� the language chosen

as the base language for research in this thesis� has a high degree of speci	city due to its

object�based and message�driven execution model� We have increased the speci	city of

Charm by adding multiple speci	c modes of information sharing and system libraries for

quiescence detection and load balancing� As a result� a considerable amount of information

about the characteristics of Charm programs is available automatically�

The techniques for language�speci	c display and automatic analysis are embodied in a Motif

based performance analysis tool for Charm called Projections� A preliminary version of the tool�

with only limited visual capabilities and no capabilities for automatic analysis� was described

in ����� Projections also includes algorithms to automatically reconstruct approximate real time

order from available orderings� Since the hypothesis is not a quantitative one� we have used

Projections to determine the e
cacy of these techniques on a test�suite of Charm programs�

��� Outline of dissertation

Figure ��� shows an outline of the various topics discussed in this thesis and their inter�

relationships� In Chapter �� we provide a brief introduction to the Charm parallel programming

language and its model of execution� In Chapter �� we describe the language features� system

libraries� and the high�level support provided in Charm� which allows us to extract information

about program behavior� In Chapter �� we describe the manner in which events in Charm pro�

grams are traced� and our solutions to the problems of asynchronous clocks and perturbation

encountered during tracing� In Chapter �� we describe a few key attributes of the execution

graph which are useful for automatic analysis� In Chapter �� we discuss various techniques

needed for the performance analysis� and their integration into a framework for automatic
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performance analysis of Charm programs� For the sake of completeness� we also describe in

Appendix B how visual feedback of Charm�speci	c program parameters is provided� In Chap�

ter �� we present di�erent case studies with which we have evaluated the techniques developed

in this thesis� Finally� in Chapter �� we summarize the thesis and present directions for future

work�
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Chapter �

The Charm language substrate

In this chapter� we brie�y describe the Charm programming language and its execution model�

��� The Charm programming language

The basic unit of computation in a Charm program is an entity called chare� The syntax of a

chare is shown in Figure ���� A chare has its own data area� which is accessible to its entry

points� and private or public functions� Entry points are blocks of C�code� which are sequentially

executed when a message addressed to that entry point is delivered� Private functions are blocks

of C�code� which are accessible only from within the chare� They provide a way for multiple

entry points to share the same functionality without having to duplicate code� Public functions

are also blocks of C�code which are accessible from outside the chare� A chare is similar to an

object in that it provides data encapsulation� It is di�erent from an object because it does not

provide inheritance and polymorphism�

The basic mode of information sharing in Charm is a message� The syntax of a message

declaration is the same as that of a struct declaration in C� Messages can be non�contiguous

data� in which case the user needs to de	ne pack and unpack functions �which are invoked

automatically by the runtime system� to pack the message into a contiguous data format� and

unpack from contiguous data into the old structure� respectively�

CreateChare 
charename� entry� msg� �virtualID �� destPE���

MyChareID
�chareID�
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SendMsg
entry� msg� �chareid�

Chares are medium grained processes� and can be dynamically created using the CreateChare

system call� A chare can determine its own address using the MyChareID system call� The

chare can� after determining its address� send it to other chares in messages� Chares can send

messages to other chares at known addresses using the SendMsg system call� There are other

calls to allocate and free memory� and to destroy chares�

message Msg� f
Type� field��

���

g

chare Example� f
Local variable declarations

�� Entry Point Definitions ��

entry EP�� �message MESSAGE TYPE� �msgPtr	

C
code
block

��

entry EPn� �message MESSAGE TYPEn �msgPtr	

C
code
block

�� Local Function Definitions ��

privatejpublic Function����	

C
code
block

��

privatejpublic Functionm���	

C
code
block

g

Figure ���� Syntax of a chare�

Charm also provides another kind of process called a branch o
ce chare �BOC�� The syntax

of a BOC is the same as that of a chare� A BOC is a replicated chare� there exists a branch

or copy of the chare on each processor� All the branches of a BOC are referred to by a unique

identi	er� This identi	er is assigned when a BOC instance is created� and may be passed in

messages to other chares� Branch o
ce chares can be created using the CreateBoc call� The

de	nition of a BOC is similar to that of a chare� The public function of a BOC can be called
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by other chares running on the same processor� and provides a clean and easy�to�use interface

for any process to access the local branch of a BOC� Branches of BOCs can interact with each

other using the SendMsgBranch system call� A message can be sent to all the branches in a

BOC using the BroadcastMsgBranch system call�

All Charm calls are asynchronous� For example� the CreateChare call takes a user�de	ned

message to be delivered at an entry point of a chare that is to be created� The chare is not

created immediately after the execution of the CreateChare call� Rather a creation message is

generated� which consists of the user�de	ned message and some system information as header�

The creation message is picked up for execution by the system at some later stage at which

time the chare is created�

chare C

Processor 1

BOC X

chare A

chare B

Processor 0

BOC X

SendMsg

BranchCall

SendMsgBranch

BroadcastMsgBranch

Figure ���� Execution model of a Charm program�

Figure ��� shows a picture of the basic programming model� as de	ned so far� Note that all

communication across processors can occur only through messages�

��� The execution model of Charm

The execution model can be understood in terms of messages� message queues� and a message

processing loop� Creation and response messages� generated as a result of the CreateChare and

SendMsg calls� respectively� are queued up in message queues to be picked up at some later stage

by the message processing loop� Message queues enables Charm to enforce various strategies

in which creation and response messages are handled � 	fo� lifo� or prioritized�
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The message processing loop is essentially the same for shared and nonshared memory

models� Inside the message processing loop� messages are picked up from the message queues

and executed according to the message type � creation or response� For a creation message the

system allocates space for the data area of the chare� and then makes a call to the speci	ed

entry point with the addresses of the data area and the user message as parameters� A response

message contains the address of the chare� which is used to determine the chare�s data area� and

then the speci	ed entry point is called with the addresses of the data area and the user message

as parameters� In both shared and nonshared memory machines� a higher priority is given to

response messages� under the assumption that these need to be processed faster because some

chare is waiting for a response�

Processor 0 Processor 1 Processor n

response 
queue

response 
queue

response 
queue

Single shared creation queue

...

Figure ���� Charm runtime system for a small shared memory machine�

Current implementations of Charm do not support the migration of chares� This has two

implications� First� since the chare does not migrate its address� after creation� remains 	xed�

Hence all response messages have a 	xed destination� Second� the creation messages must be

distributed amongst the available nodes to have a load balanced system� Response messages

have a 	xed destination� therefore they do not need to be balanced� The di�erent natures of the

creation and response queues necessitate di�erent queues for the two types of messages� The

implementation details of the message queues are di�erent for shared and nonshared memory

machines�

On shared memory machines �Figure ����� all processors share a common queue for creation

messages� so that the work of creation can be balanced among the processors� However� each

processor has its own local queue for response messages� since the response queues have a 	xed
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Processor 0 Processor 1 Processor n

responsecreation responsecreation responsecreation 

...

...

Figure ���� Charm runtime system for a nonshared memory machine�

destination processor� which is known at the time the SendMsg call was made� Saletore ���� has

performed experiments with multiple queues and other scheduling strategies for shared memory

implementations of Charm�

ep1

ep1

ep1 ep2

ep2

Message being sent, either
to another processor or to

A buffered message being picked

self to be enqueued
in the creation/response queue execution.

up from the creation/response queue
by the run-time system for

SendMsg
OBJECT 1 OBJECT3 OBJECT 1

OBJECT2OBJECT2

CreateChare SendMsg SendMsg

CreateChare

Figure ���� Events in the execution of a Charm program�

On nonshared memory machines �Figure ����� each processor has one local queue each for

creation and response messages� Messages sent from other processors are enqueued in one of

these queues according to the type of the message� The load balancing strategy then uses some

scheme to balance the lengths of the creation message queues on the available processors�
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Figure ��� shows the events in the execution of a Charm program� A message� created using

the SendMsg system call for example� is 	rst delivered to the destination processor� where it

is enqueued in a response queue� At some later point in time� the runtime system� following a

speci	ed scheduling strategy dequeues the message� and executes the corresponding entry point�

The scheduling strategy can be selected by the user� In addition priorities may be assigned to

messages  the system executes the highest priority messages 	rst�
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Chapter �

Speci�city of Charm

A crucial step in automatic performance analysis is the automatic acquisition of information

about a program�s behavior� The 	rst question that needs to be answered is� what sort of in�

formation about program behavior is needed� In performance analysis� the goal is to maximize

the utilization of each processor �� This is achieved by maximizing the time a processor exe�

cutes user code �user time�� and minimizing the time a processor idles �idle time� or executes

system related code �overhead�� Idle time can be a�ected by the scheme with which tasks are

placed on the processors �placement�� the order of execution of messages� the extent to which

tasks are balanced over the system �load balance�� the number of tasks that can be scheduled

independently at any given moment �the degree of parallelism�� the amount of time spent in

waiting for global synchronization� and the grainsize of tasks� The contribution of system over�

heads are a�ected by the grainsize of tasks and the time to access shared variables� Thus the

characteristics of a parallel program that can a�ect its performance are� nature of sub�task

decomposition� global synchronization� order of execution of messages� placement� grainsize of

tasks� shared variable access time� and the degree of parallelism�

In Chapter �� we had pointed out three methods to acquire information about a program�s

behavior� namely language constructs� system libraries� and high�level support� The basic

language substrate of Charm� described in Chapter �� has a high degree of speci	city� Its

�In speculative computations� the amount of work that a processor does depends on the order in which it
schedules their execution� Thus� a speculative computation can choose a poor schedule in which processors do
a large amount of wasteful work� which keeps the the utilization of the processors high� Our primary goal is to
maximize the utilization of the processors
 however we attempt to do this by keeping the amount of speculative
work low�
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object�based and message�driven execution model is instrumental in providing us information

about sub�task decomposition� placement� and granularity of tasks in Charm programs� We

describe how this is possible in Section ����

The execution model of Charm� described in Chapter �� allows chares to share information

with other chares only through messages� One can implement other modes of information

sharing using messages� However� given the nature of message passing in a program� advanced

compiler support� if at all possible� is needed to infer the speci	c information sharing mechanism

being implemented� In order to increase the speci	city of Charm� we augmented the existing

language with multiple and speci	c information sharing mechanisms ����� which easily provide

information about the nature of shared variables in a program� Note that information sharing

abstractions also provide expressiveness for the programmer� in addition to their utility in

performance analysis� In Section ���� we discuss how the speci	city of Charm is enhanced with

the addition of information sharing abstractions� which provide us with information about the

nature of shared variables�

In Section ���� we discuss how the quiescence detection system library provides information

about global synchronization� In Section ��� and ���� we discuss how the high�level support for

load balancing and queuing in Charm provides more information about placement of tasks and

their scheduling�

The basic Charmmodel� including chares and branch o
ce chares� as well as various queuing

and load balancing strategies� was developed independently of this thesis work and is used as

a substrate� The information sharing abstractions� the quiescence detection algorithm� and the

prioritized load balancing strategies ��� were developed speci	cally as part of this thesis�

��� Basic information

Charm programs can have two types of processes  chares and branch o
ce chares� A branch

o
ce chare has a representative chare �branch� on each processor� Thus the placement of each

branch of a branch o
ce chare is known statically� A chare can be created in two modes  with

or without speci	ed placement� The nature of placement of a chare can be determined from the

CreateChare call used� when no placement is speci	ed� the exact processor on which the chare

will be created is determined by the dynamic load balancing strategy� A chare that is created
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without any speci	ed placement is automatically placed under the control of the dynamic load

balancing strategy which speci	es its placement�

The execution model of Charm is message�driven� every message is addressed to a particular

method �also called the entry point� of some object� when the message is picked up for execution

at its destination processor� it results in the invocation of the speci	ed method� Further the

execution model of Charm ensures that the code�block associated with a message is executed

atomically� i�e�� it cannot be pre�empted� In this programming model� the system can easily

decompose the program into sub�tasks  the code�block associated with a message constitutes

a sub�task�

We have instrumented the Charm run�time system to monitor various attributes of a mes�

sage� such as sender and receiver objects� intermediate locations while being load balanced�

and the times at which the message was created� enqueued� dequeued �� and then processed�

This information allows us to determine the granularity of tasks� the number of messages in a

processor�s message pool� and the utilization of each individual processor�

��� Information sharing abstractions

A parallel computation can be characterized as a collection of processes running on multiple

processors� Depending on the programming model and language� it may have just one or many

processes on each processor� As the processes are part of a single computation� they often have

to exchange information with each other�

One of the most popular information sharing mechanisms is a shared variable� Two or more

processes may exchange information by setting and reading the same shared variable� This

model o�ers great simplicity as it appears to extend the sequential programming model in a

natural manner� However information exchange through shared variables su�ers from one major

drawback� the di
culty of e
cient implementation on large parallel machines� Shared variables

can be implemented e
ciently on small parallel machines� which physically share memory across

a bus and can provide hardware support for a single global address space� However� many large

scale machines available today� such as Intel iPSC���� and Paragon� NCUBE��� and CM���

�Note that in a dynamically load balanced system� such as the one provided by Charm� a message can
potentially be enqueued and dequeued more than once�
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include hundreds of processors� Implementing shared variables on such machines is di
cult and

ine
cient�

Messages provide another important means of exchanging information between processes

in systems such as PVM ���� ���� Express ����� and Actors ����� Messages containing neces�

sary information can be sent from a !sender" process to a known !receiver" process�� Most

commercial distributed memory machines provide hardware support for message passing� so

this mechanism to exchange information can be easily implemented� However message passing

as the sole means of exchanging information may not be adequate� or may not be expressive

enough to easily represent many di�erent modes of information exchange� For example� in

order to send a message� the sending process must know the identity of the receiving process�

In many applications� such information may not be easily available� Message passing can also

prove to be a cumbersome� if not an ine
cient� mechanism to express information sharing be�

tween multiple processes� For example� read�only information� can be exchanged via messages

in a language with message passing as the universal information sharing mechanism� But the

cost of accessing the information is substantial� Access to the information can be optimized by

replicating the read�only information on each processor� However the user needs to go into con�

siderable e�ort in order to implement �with messages� a replicated variable� which is accessed

through a unique identi	er�

There exist other mechanisms to exchange information amongst parallel processes� The

information sharing mechanisms provided by Linda ���� and Strand ���� su�er from the same

problem� Each provides only a single information exchange mechanism� Compilers for languages

with a universal information sharing mechanism often attempt to detect various modes of

information sharing in order to produce more e
cient object code� However the detection of a

particular mode of information sharing can be imperfect and conservative at best� It would be

more intuitive and convenient for the programmer to specify a mode of information exchange�

rather than trying to 	t all information sharing modes into the single mode of information

exchange�

�In most current message�passing models� information can be exchanged only on a point�to�point basis�
However� collective communication primitives are being designed by the message passing interface �MPI
 stan�
dardization committee ���� ����

�Read�only information is data that is initialized once and not altered thereafter�
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In general� there are two problems with a single generic means of information exchange

�whether it is a shared variable� a message� or some other mechanism��

�� Lack of expressiveness� A single generic means of information exchange may prove to

be inadequate or cumbersome to express all possible information exchange modes in a

program� The lack of speci	city of a single mechanism also has negative impact on the

understanding of program behavior�

�� Ine
ciency� For any universal mechanism of information sharing� there will always exist

modes of information sharing which cannot be e
ciently implemented with the universal

mechanism� E
ciency may be obtained for a limited set of modes by using sophisticated

compilers to detect particular modes of information sharing� However there are limita�

tions to what even a sophisticated compiler can do� In addition� universal information

sharing mechanisms are usually not e�ciently portable� Even though� a universal informa�

tion sharing mechanism may be su
cient to express a wide variety of information sharing

modes� it is unlikely that a particular method expressing an information sharing mode

would be e
cient across all parallel machine models� For example� an e
cient implemen�

tation of a read�only variable on a shared memory machine would create a single shared

variable� while an e
cient implementation on a non�shared memory machine� would repli�

cate the variable on all processors and refer to it by a single name� The single�shared

variable method wouldn�t be e
cient on a large non�shared memory machine because each

access would require messages� Similarly� it would be ine
cient to install the replicated

variable mechanism on a shared memory machine� where caches handle this automatically�

The problems with a single universal sharing mechanism suggest that a parallel language

must provide multiple mechanisms to share information� Also� for portability� there must be

a separation between the implementation of a particular mode of information sharing and its

abstraction available to the user� Empirical observation of parallel programs suggests that pro�

cesses share data in a few distinct and speci�c modes� We believe that such modes should be

identi	ed and explicitly supported in parallel languages and their associated models� We have

identi	ed and implemented 	ve speci	c modes of information exchange in the parallel program�

ming language Charm� read only� write once� accumulator� monotonic� and distributed tables�

Read�only variables are the only true global variables in a Charm program  all other infor�
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mation sharing mechanisms are referred to by their unique identi	ers� These abstractions have

been implemented e
ciently� and often di�erently� on di�erent parallel machines in the context

of Charm� However the abstraction is uniform to the user� it does not change from one machine

to another� In this chapter we describe the syntax� semantics� usage� and implementation of

these 	ve speci	c information sharing mechanisms�

����� Read�only variables and messages

In many computations� many processes need read access to data that is initialized at the begin�

ning of the computation� and is not updated thereafter� This mode of information sharing can

be speci	ed using the read�only mechanism� Charm provides two kinds of read�only information

sharing� read�only variables and read�only messages� Read�only variables and messages

can be declared in a Charm program as follows�

readonly Type readname�

readonly MsgType #readmsgname�

The essential di�erence between a read�only variable and a read�only message is that the

latter is treated like any ordinary message� it can contain pointers to dynamically allocated

memory� or variable sized arrays �which are automatically packed and unpacked to replicate

the message on di�erent processors��

Read�only variables and messages are initialized in the CharmInit entry point using the

ReadInit and ReadMsgInit calls� Chares and branch�o
ce chares can access read�only variables

and messages via the ReadValue call� This call simply returns the �	xed� value of the read�only

variable or message�

����� Write�once variable

In some computations� read�only information is available only after the parallel computation

has proceeded for some time� the value is not available during the initialization phase of the pro�

gram� In Charm� write�once variables support this mode of information sharing� Write�once

variables are the dynamic counterpart of read�only variables� A write�once variable is created

and initialized any time �and from any chare� during the parallel computation� Once created�

its value cannot be changed� The creation is done via a non�blocking call CreateWriteOnce
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which returns immediately without any value� Eventually� the variable is !installed"� and a

message containing a unique global name assigned to the new variable is sent to the designated

address� This unique name can be passed to other chares and branch o
ce chares� They can

access the variable by calling DerefWriteOnce�name�� which returns the value of the write�once

variable� The DerefWriteOnce call is non�blocking� i�e�� it returns a pointer to the write�once

variable immediately� The cost of a DerefWriteOnce call is the cost of a local function call�

����� Accumulator variable

In many computations� a variable is needed to count the number of occurrences of an event� the

number of processes of a certain type� etc� Such a variable is updated by a commutative and as�

sociative function� Charm provides this mode of information sharing through the accumulator

data abstraction� Figure ��� shows the syntax of an accumulator de	nition� The accumulator

abstract data type has associated with it a message containing the data area of the accumu�

lator data type� an initialization function �init� and two user de	ned commutative�associative

operators �add and combine��

accumulator acc type f
Message Type #acc�
Message Type #init ��
C�code�block

add ��
C�code�block

combine ��
C�code�block

g ACC TYPE�

Figure ���� Syntax of an accumulator de	nition�

An instance of an accumulator can be created using the CreateAcc call� This call can be

made statically �inside CharmInit� or dynamically  if it is created statically the identity of

the variable is available immediately� but if it is created dynamically the identity is returned to

a speci	ed address� The identity of an accumulator can be passed in messages to other chares

and branch�o
ce chares� The identity of a statically created accumulator is available in the

CharmInit entry point� and it can be more conveniently accessed if it is made into a read�only

variable�
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The system is free to maintain multiple copies of an accumulator variable� in some cases

there may be one copy per processor� while in other cases a few processors might share a copy�

The initialization function init is called� possibly on multiple processors� upon invocation of

the CreateAcc call�

In the user program� an accumulator variable can be modi	ed only via the Accumulate call�

This call results in the 	rst operator� add� being called� which adds to the accumulator variable

in some user de	ned fashion� while maintaining commutativity and associativity�

A destructive read on an accumulator variable can be performed with the CollectValue

call� This call is also non�blocking� and results in the eventual transmission of the value of the

accumulator to a speci	ed address� The second operator combine is called by the CollectValue

call only if the system has maintained more than one copy of the accumulator variable� The

operator takes two accumulator variables as operands and combines those variables element by

element� again in a commutative�associative manner�

����� Monotonic variable

In some computations� processes need frequent access to a variable which changes monotonically�

Such a variable is typically used in branch�bound computations� Charm provides this mode

of speci	c information sharing with the monotonic abstract data type� Figure ��� shows the

syntax of a monotonic de	nition� The monotonic data type has associated with it a message

containing the data area of the accumulator data type� an initialization function �init� and a

user de	ned monotonic operator �update��

monotonic mono type f
Message Type #msg�
Message Type #init ��
C�code�block

update ��
C�code�block

g MONO TYPE�

Figure ���� Syntax of a monotonic variable declaration�

An instance of a monotonic variable can be created using the CreateMono call� This call

results in the function init being called� init initializes and returns the initial value of the
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monotonic variable� Like accumulator variables� monotonic variables can be created either

statically or dynamically�

Subsequent updates to the monotonic variable can be carried out through the NewValue call�

This call results in the corresponding update function being called� The function update must

be a monotonic and idempotent �multiple application of the function with the same parameters

has the same result� function for the domain over which the monotonic variable is de	ned�

The �approximate� current value of a monotonic variable can be read by any chare at any

time using the MonoValue call� The value returned by the MonoValue call will satisfy the

following properties�

�� The value will be true� i�e�� it will be either the value assigned during initialization� or

provided thereafter by some NewValue call�

�� The value returned will be at least the best value provided by a NewValue call by the

same process�

�� The system will do its best to provide the best value of the monotonic variable supplied

by any NewValue call until that point in time�

����� Distributed table

In many applications� data can be split into many portions� and each portion can be accessed

by a subset of processes in the system� Further� the subset of processes that access a portion of

the table may not be pre�determinable� In other applications� processes that do not know each

other�s identity may need to exchange information� Charm provides distributed tables as a

means of sharing information in these modes�

table table type f
Message Type #msg�
hash��
C�code�block

g TABLE TYPE�

Figure ���� Structure of a distributed table abstract data type�
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The syntax of the de	nition of a distributed table appears in Figure ���� A distributed

table consists of a set of entries� Each entry consists of some data and a key �an integer�

that uniquely identi	es each distinct piece of data� The data in an entry in the table is a

message� Like all other messages� data items in a table can have dynamically allocated areas

either declared explicitly by the user or through Charm constructs� The function hash is used

to de	ne a mapping from an integer key to a speci	c processor to which each data must go� If

these functions are not speci	ed by the user� the system provides default hash functions�

There are various asynchronous access and update operations on entries in distributed tables�

An entry can be added to the set using the Insert call� The user can search for a particular

entry �using its key� using the Find call� and remove an entry from the set using the Delete

call� The current implementation of distributed tables in Charm is a restricted version of this

more general formulation� the hash function is speci	ed by the system and the data is a string

of characters�

A distributed table also provides a good distributed interface between two components of

a parallel program� In sequential programming� data exchange between two phases of compu�

tation in an application is achieved through a sequential point of transfer� e�g�� via parameters

in a function call� Such a mechanism of exchanging data between two phases of a parallel

program can create a bottleneck� Distributed tables are a suitable mechanism to exchange data

in a distributed manner� The matrix multiplication example in Section � illustrates distributed

data exchange  the result of a matrix multiplication is stored in a distributed table to be

exchanged with the computation in a later phase of the application�

����� Choice of a speci	c sharing mechanism

Di�erent application programs may need di�erent modes of information sharing� The user

must decide which speci	c mechanisms of information sharing to use in order to best represent

a particular mode� Some of the guidelines that one follows in deciding which speci	cally shared

variable to use in a program are�

� If the information needs to be passed to a process whose identity is known� then a message
should be used�
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� If the information needs to be passed to one or more processes whose identity is not
known� then a distributed table should be used�

� If the information needs to be shared among most of the processes in the system� and it
does not change after being initialized� then a read�only or a write�once variable should

be used�

����
 Implementation

On shared memory machines with a small number of processors� each information sharing

abstraction is implemented as a shared variable� Read�only variables have no locks to control

access� since they are accessed only in the read�only mode� Accumulators and monotonic

variables have an associated lock� and operations on them are performed in a mutually exclusive

manner using locks� Write�once variables have no lock to control access� however in order to

establish a unique name for a write�once variable� processors need a lock for synchronization�

A distributed table is managed as an array of chains of entries� A hashed chaining scheme is

used� The key of an entry is used to map into an index in the array� which is a chain of entries

whose keys map to the same index� A lock is associated with each index in the array to provide

mutually exclusive access to chains� The same scheme is used for both small and large shared

memory machines�

Since write�access to an accumulator might happen very often in some applications� a more

e
cient implementation is possible� In such an implementation� each processor would have a

local copy of the variable� When the variable is 	nally read the processors use locks to add all

the local copies� This scheme might be more suitable for larger shared memory machines also�

On a nonshared memory machine� a read�only variable or message is implemented as a

replicated variable� each processor has its own local copy of the variable�message�

The remaining modes of information sharing are implemented as branch�o
ce chares� Each

branch maintains a local copy of the variable in the case of write�once� monotonic� and accumu�

lator variables� In the case of distributed tables� the entries are divided amongst the branches

of the BOC�

Write Once variables are initialized by the CreateWriteOnce call� A copy of the variable

is 	rst sent to the branch on processor � of the corresponding BOC� This branch assigns the

��



variable a unique index� which serves as the identi	er for the write�once variable� and then

broadcasts the value and identi	er of the variable to each of the branch nodes� Each node� after

creating a local copy of the write once variable� sends a message to the branch on processor �

�along a spanning tree in order to reduce bottlenecks� that it has created the variable� When it

has received an acknowledgement message from all the nodes� the branch on processor � sends

the identi	er of the write once variable to the speci	ed address� A write once variable can be

read by the DerefWriteOnce call� This call returns the pointer to the local copy of the variable�

The pointers to all the WriteOnce variables are stored in an array indexed by the identi	er of

the write�once variable�

The Accumulate call results in the application of the add function on the local value on the

branch chare� The CollectValue call is used to �destructively� read the value of an accumulator

variable� This call results in a broadcast to all branches� The branch chares then combine the

values of the accumulator on their local processors� This is accomplished by each branch chare

combining its value with the values of the accumulator on its children in the spanning tree�

before sending the accumulated value up to its parent� At interior nodes of the spanning tree�

the values are combined using combine� The branch on processor � communicates the 	nal

value to the supplied chare�

An update on a monotonic variable is performed by the NewValue call� The NewValue

call can be implemented in two di�erent ways� combining via a spanning tree or 	ooding� In

the spanning tree implementation� the call results in the branch chare updating its local value

�with the corresponding update�� and sending a copy of the new value up to its parent branch

chare in the spanning tree on the processors� Every branch combines values it receives from its

children with its own by waiting for some 	xed interval of time before sending its local value

up to its parent branch chare� The root of the tree broadcasts the value to all branch chares�

In the 	ooding implementation� the call results in the branch chare updating its local value�

and sending a copy to its immediate neighbors �a dense graph on the processors is chosen��

A processor which receives a new value from a neighbor� 	rst checks if the value provided is

better than what it currently owns� If the value is better� it propagates a copy of the value to

its own neighbors� In both of the above implementations� the value of every update may not be

simultaneously available to every branch� but shall be eventually available� Users may choose

the monotonic implementation best suited to their application� A monotonic variable can be
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accessed using the MonoValue system call� this call returns the value of the local copy of the

variable on that node�

Updates on entries in a distributed table can be carried out by calling the system calls Insert

and Delete� Again� as in the case of shared memory systems a hashed chaining scheme is used�

The key of an entry is hashed to obtain the processor number of the branch which stores the

portion of the table to which this entry belongs� and the index in the table on that branch�

An update message is sent to the required branch� which carries out the update operation and

back�communication of update� if speci	ed in the call options� The Find call is used to read

entries in distributed tables� The key provided is used �as described above� to determine the

branch and index� A message is sent to the corresponding branch chare to 	nd the entry and

reply back to the supplied address�

The implementation of many speci	cally shared variables using branch o
ce chares and

messages suggests that these two could be used to provide other necessary information sharing

mechanisms in Charm�

����� Related work

A considerable amount of work has been done in achieving shared memory on distributed sys�

tems� In general� one di�erence in our approach from other approaches in distributed shared

memory is that we do not provide all forms of sharing� Instead we have identi	ed and im�

plemented speci	c modes of information sharing� which are often used in parallel programs�

and which have e
cient and portable implementations� Note that the general�purpose shared

variable can be implemented by the user with the branch o
ce chare construct� However we

have made no attempt to make such general�purpose implementations e
cient through compiler

optimizations�

The 	rst work in distributed shared memory was done by Li ���� who showed that dis�

tributed shared memory provided the convenience of shared memory� while simultaneously be�

ing e
cient� The 	rst distributed shared memory system� called Ivy ����� provides for a strictly

coherent shared memory on distributed systems� Our philosophy towards shared memory on

distributed systems is substantially di�erent� since we believe that the general purpose shared

variable cannot be e
ciently and scalably implemented on large distributed memory machines�

��



Therefore� we identify and provide only those limited forms of information sharing which can

be e
ciently and scalably implemented�

Emerald ���� ��� ��� provides a uniform object model� The user is responsible for both

the distribution of data and objects� and the migration of objects� if necessary� An access to a

remote object is done through an RPC� while local objects can interact through shared memory�

Object migration is e
cient� and can be performed often to ensure e
ciency of access to objects�

The work done in Amber ���� is derived from Emerald� Amber also provides strictly coherent

shared memory across multiprocessors� This is done by migrating threads to the place where

the accessed data exists� this resolves some problems with Emerald� However� this approach

has one major drawback� if threads access non�local data very often threads could potentially

migrate for every data access�

Clouds ���� provides sharing at an object level� The owner of an object can be changed

dynamically causing it to move to the new owner� However� as an e
ciency consideration� an

object can be locked for owner� Thus if the user knows the access patterns of an object� he can

lock it into the processor which accesses it the most� the remaining processors can then access

it remotely without causing needless migration�

Orca ���� ��� supports shared objects� In Orca there are no global variables or pointers� and

accesses to objects are made through well�de	ned functions� Only one operation can occur on

an object at any given point in time� Orca utilizes advanced compiler optimization techniques

to make object accesses e
cient� One design consideration for Orca programs needs to be the

de	nition of an object� if it is too coarse grained� then the execution is serialized� and if it is

it too 	ne grained� considerable costs must be incurred in providing access to the object from

everywhere�

The work done for Munin ���� is similar� They have identi	ed di�erent forms of coherence�

as opposed to the single form of strict coherence provided by shared memory programming

models� This allows programmers to specify less restricted versions of coherence in programs

written for shared memory machines� Such programs can then be executed e
ciently even

on distributed memory machines� A di�erence in our approaches is that we provide speci	c

modes of information sharing� while they provide looser �and less expressive� since each form of

coherence can provide many modes of information sharing� forms of coherence� This increased
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speci	city of the information sharing modes in Charm has been used in automatic performance

analysis�

The work done for PoliSim ���� is also similar� In Polisim� data in the form of multidi�

mensional arrays can be distributed on processsors in one of six possible ways� Row� Column�

RowSkew� ColSkew� Diag� and AntiDiag� Further access policies to the data can be chosen

from one of six possible policies� StaticSeq� Seq� Opt� Remote� Migrate� Invalidate� and Update

The user has the freedom to mix and match to arrive at the optimal distribution and policy

combination� As in the case of Munin� a di�erent in the approach in PoliSim and ours is that

our information sharing mechanisms are more speci	c�

��� Quiescence

One characteristic of program behavior that is important in performance analysis is global

synchronization� In SPMD programs� a barrier operation results in a global synchronization�

This follows because there is only one process on each processor� and so if it participates

in a barrier operation� all processes participate� which implies that the system has a global

synchronization�

Charm allows multiple processes on each processor� Further� in Charm� reductions are asyn�

chronous� i�e�� they block only the processes involved leaving the rest to proceed on with their

computation� Therefore a reduction operation does not by itself signify a global synchroniza�

tion among all objects� One method of achieving global synchronization is through quiescence

detection� Loosely de	ned� quiescence is the state of execution in a system� when there are no

messages left in the system� The absence of messages in the system signals that there is no

activity� Further� if spontaneous activity is not permitted� then the absence of messages also

indicates that no activity can occur in the future�

The user can request that the system detect a quiescent state with the system call StartQui�

escence�ep� chareid�� As a result of this call� the system initiates the quiescence detection al�

gorithm� which sends a message to the speci	ed entry point� ep� of the chare which is speci	ed

by chareid� when quiescence is detected� At this point� the user has the �exibility of either ter�

minating computation� or beginning a new phase of computation by generating fresh messages�

e�g�� in IDA# �Iterative Deepening Algorithm� �����

��



����� Implementation

Quiescence detection is implemented as a branch o
ce chare which runs a two�phase distributed

algorithm� All communication between the branches occur along a spanning tree covering the

processors� In the description below all references to the parent� the children� the root� or the

sub�tree of a processor are with respect to the corresponding entities in the spanning tree� We

denote the 	rst and second phases of the algorithm as Phase � and Phase �� respectively� The

algorithm use three kinds of control messages�

�� Initialization messages� which are broadcast to every processor� and result in the initial�

ization of Phase � or Phase � on all the branches�

�� Idle messages� which are sent up to the parent during Phase �� An idle message signi	es

that each processor in the sub�tree below has been idle at least once since the last idle

message� It does not mean that all the processors were idle simultaneously�

�� Activitymessages are sent up to the parent during Phase � and contain a report of activity

�creation and processing� in the sub�tree rooted at the sending processor�

We use the construct  wait until 
condn�  in the description of our algorithm� The

process executing the wait until is suspended till such time as the condn becomes true� In

the algorithm� each component maintains the following counts�

�� nc� this is the sum of the number of activation messages created on this processor�

�� np� this is the sum of the number of activation messages processed on this processor�

�� Nc� the number of messages created in the sub�tree rooted at this component�

�� Np� the number of messages processed in the sub�tree rooted at this component�

These are initialized to zero at the beginning of Phase � and Phase �� and are sent up with idle

and activity messages�

The algorithm appears in Figure ���� Phase � is called on each processor immediately

before the user computation begins� Only one phase of the quiescence detection algorithm

will be active at any time� In Phase �� each leaf component waits until its processor is idle

and then sends an idle message to its parent with the counts Nc and Np initialized to nc and
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Phase ��� f
Nc $ �� Np $ ��
wait until �RecdMsgsFromChildren���� �# wait until messages have #�

�# been received from all children #�
add to local Nc and Np the values recd� from children�
wait until �Idle���� �# wait until this processor has no activation messages #�
Nc $ Nc % nc� Np $ Np % np�
if �RootSpanTree��� �# check if this processor is the root of the spanning tree #�
if �Nc �$ Np� Broadcast message to begin Phase �
else f

Nold $ Nc �# Nc $$ Np #�
Broadcast message to begin Phase � g

else Send message with Nc and Np to parent
g

Phase ��� f
Nc $ �� Np $ ��
wait until �RecdMsgsFromChildren���� �# wait until messages have #�

�# been received from all children #�
add to local Nc and Np the values recd� from children�
wait until �Idle����
Nc $ Nc % nc� Np $ Np % np�
if �RootSpanTree��� �# check if this processor is the root of the spanning tree #�
if �Nold $$ Nc� Report Quiescence
else Broadcast message to begin Phase �

else Send message with Nc and Np to parent
g
CreateMessage�� f nc %% g
ProcessMessage�� f np %% g

Figure ���� Quiescence detection algorithm�

np� respectively� All other branches wait until they receive one idle message from each child�

adding the values of Nc and Np in these idle messages to their local values� Having received idle

messages from all its children� the component waits until its processor is idle� and then it sends

an idle message to its parent� The idle message contains the values of the counts Nc and Np�

which have been incremented with the values of nc and np� respectively� on that component�

When the root has received idle messages from all its children branches� it decides whether the

system can be idle by comparing the values of Nc and Np� If they are equal then there�s a

high probability �but not a certainty� see explanation of Figure ��� below� that all activation
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messages have been processed in the system� If the two counts are not equal then the root

initiates Phase � again� otherwise the root initiates Phase � on all the branches�

In Phase �� the branches send up their activity report messages containing the new values of

Nc and Np� Activity messages from branches are combined in the same way as in the 	rst phase

of the algorithm� When the root component has received one activity message from each of its

children� it compares the old and the new values of Nc and Np� If these values are the same

it implies that there has been no new activity in the system� and the root reports quiescence�

otherwise the root initiates Phase � again�

root

processors below wave

wave of idle msgs

m1 m2

Figure ���� Wave of idle messages in Phase � of quiescence detection�

Note that a single phase is not su
cient to guarantee that the system was quiescent� because

the counts Nc and Np might match at the end of Phase � even though all messages were not

processed� Figure ��� shows the 
wave� of idle messages being passed up the spanning tree

in Phase �  the processors below the wave have already sent out their idle messages� while

the processors above the wave haven�t yet sent out their idle messages� Consider the following

scenario in Figure ���� messagem� is created on a processor above the wave of Phase � messages

and sent to a processor below it� while message m� is created on a processor below the wave

of Phase � messages and sent to a processor above it� Further� assume that the processing of

m� did not create new activation messages� In this case� when the wave reaches the root� the

following is true�

� Creation of m� is counted�

� Processing of m� is not counted�

� Creation of m� is not counted�
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� Processing of m� is counted�

At the end of Phase �� the counts may� match even though m� was processed after the idle

message was sent� The processing of message m� could have generated more new activity� and

therefore it is incorrect to infer from the counts matching at the end of Phase � that the system

is quiescent�

A proof of the correctness of the algorithm and the performance of its implementation

appears in Appendix A�

����� Related work

Much work has been done before on quiescence detection ���� ��� ��� ��� ��� ��� ��� ���� both

for synchronous and asynchronous systems� We shall brie�y discuss some previous work on

quiescence detection in asynchronous computational models�

Lai ���� and Huang ���� present schemes which use distributed snapshots to detect quiescence

in asynchronous distributed systems� In Lai�s approach� a prede	ned process combines local

snapshots �taken spontaneously by processes� into a global snapshot� which it then uses to

determine if quiescence has occurred� Huang�s method is essentially similar� the only di�erence

being that any processor can initiate the collection of the global snapshot� Lai and Huang

use di�erent techniques to ensure that the global snapshot is feasible� i�e�� it does not contain

processing of messages if the corresponding creation is not also part of the snapshot� One

drawback of both their schemes is that they do not extend to systems where processes can be

created dynamically� In addition� Huang�s scheme can become very expensive because each

processor can initiate a global snapshot if it is idle� In the worst case� when all processes go idle

everyone will initiate a broadcast� Lai�s scheme does not su�er from this drawback� however

the lack of coordination between the collection of local snapshots means that a considerable

global snapshots may be collected�

Mattern���� presents an elegant credit based scheme to detect quiescence in dynamic� asyn�

chronous� distributed systems� In the worst case� the number of control messages needed by

Mattern�s algorithm is the number of activation messages� The scheme works by distributing

�If we assume that no other activity is occurring in the system then the counts will match
 however if there
is other activity in the system the counts may still match because there are more than one pair such as m� and
m��
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one unit of credit amongst active processes and activation messages� When a process creates

an activation message� it divides its credits equally between itself and the message� A pro�

cess returns its credits to the monitoring process �the quiescence detection algorithm� when

it becomes passive� An activation messages� credit is passed on to its receiving process if the

receiving process is passive� otherwise �if the receiving process is active� the credit is returned

to the monitoring process� When the monitoring process has received the original one unit of

credit� it reports quiescence�

Whenever processes split up their credits between themselves and activation messages they

create� fractions are generated� Fractions cannot be accurately computed with the current

representation of �oating point numbers� Mattern presents an approach wherein fractions need

not be explicitly computed� Notice that all fractions are of the form ��n� and hence can be

represented by the negative of the logarithm �called credits�� i�e�� n� The scheme that Mattern

outlines to solve the problem of having to compute fractions exactly involves computing the

set of missing credits �credits possessed by activation messages� active processes and control

messages at that time�� The set is updated whenever credits are returned to the monitoring

process� The set of missing credits is maintained by the monitoring process� which is a single

process running on one processor� The cardinality of this set is bounded by the sum of the

number of activation messages� active processes and control messages over the entire system�

Assuming that the memory requirements of each activation message is constant� it would mean

that the memory requirements of the monitoring process to maintain the set of missing credits

is of the same order as the number of messages in the entire system� In addition� the monitoring

process becomes a bottleneck in bigger distributed systems� since all credits are being returned

to the one processor on which the monitoring process is located�

��� Dynamic load balancing

One key goal in a parallel program is to keep the amount of user work on di�erent processors

balanced� In a system� which does not provide dynamic load balancing� the user needs to

explicitly implement the load balancing scheme� Often the only mechanism available to the

user is a message� and the resulting implementation may obscure the strategy used to balance

load� Further� the system is unaware of the speci	c purpose of a task and cannot determine
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whether or not the task can be moved around and performed at a di�erent processor� An

automatic and dynamic load balancing strategy provides us the following�

�� Information that the tasks being load balanced have no speci	c destination and can be

moved around�

�� Information about the mapping of tasks and their computational requirements�

In the Charm execution model� all messages are deposited in a message�pool from where

messages are picked up by processors whenever they become free� In the shared memory

implementation of Charm� the pool of messages is shared by all processors� in the nonshared

memory implementation� the message�pool is implemented in a distributed fashion with each

processor having its own local message�pool� New�chare messages �message to create a new

chare� are the only messages that may not have a 	xed destination� and are therefore the only

messages which can be load balanced� In nonshared memory implementations� load balancing

strategies attempt to balance the sizes of the local message�pools on each processor� New

chare messages may move among the available processors under the control of a load balancing

strategy till they are scheduled for execution� Once picked up� a new chare message results in the

creation of a new chare� which is subsequently anchored to that processor� Charm provides the

user with the facility of multiple dynamic load balancing strategies� such as random� ACWN �����

and token ����� Depending on the nature of the application� the user may choose to link in the

one which is most ideal for their application�

Figure ��� shows the basic interface between the Charm runtime system and the load bal�

ancing strategies� Dynamic load balancing strategies are implemented as branch o
ce chares

in Charm� There are basic interface functions to initialize the BOC �LdbInit�� and add informa�

tion to �AddStatus� and extract �ExtractStatus� load and balance information from a message�

Each strategy also has a interface function called NewChare From Local� which is called by the

runtime to give to the load balancing strategy a new chare when it is created� It�s the respon�

sibility of the strategy to determine where the new chare is sent� The load balancing BOC also

has an entry point called NewChare From Net at which it receives user messages from other

branches of the load balancing BOC� and decides what happens to them� enqueue them locally

or send them somewhere else�
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BranchO�ce LoadBalance f

entry LdbInit� �message InitMsg #msg�
f �# initialize the branch of the strategy #� g

public NewChare From Local�msg�
f �# do something with a locally created new chare #� g

entry NewChare From Net� �message void #msg�
f �# do something with a new chare sent from elsewhere #� g

public ExtractStatus�msg�
f �# receive status information of sending processor #� g

public AddStatus�msg�
f �# piggyback status information for destination processor #� g

g

Figure ��	� Shell of a dynamic load balancing strategy in Charm�

��� Queuing strategies

In Chapter �� we described the runtime execution model for Charm� Messages arriving at a

processor are enqueued in either the creation or response queues� and are scheduled for execution

under the control of a queuing strategy� Charm allows the user to select the scheduling strategy

from a number of available strategies� such as lifo� 	fo� 	folifo� etc� The user can exercise greater

control over the scheduling of messages by attaching priorities to them� The system has various

prioritized scheduling strategies� again user�selectable� that schedule messages according to

their priorities ����� The choice of a particular scheduling strategy is made at link�time� so the

runtime system has information about the strategy chosen�

From the perspective of performance analysis� queuing strategies provide information about

the nature of scheduling in the program� such as when messages were queued and dequeued�

and the order in which messages were executed by the runtime system�
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��� Summary

In this chapter� we have shown how information about the behavioral characteristics of Charm

program can be acquired� We have shown how language constructs� such as chares� and messages

provide useful information about program behavior� We have also shown how the speci	city of

Charm can be increased with the addition of 	ve speci	c means of information sharing� These

mechanisms add to the expressive power of any language� The abstraction presented to the

user for any of these 	ve mechanisms is identical on all machines� However� for e
ciency� the

implementation of each mechanism has been speci	cally tuned for di�erent architectures� For

example� a monotonic variable is implemented as a shared variable on shared memory machines

and a branch o
ce chare on nonshared memory machines� We have also shown how high�level

support� such as quiescence detection� dynamic load balancing� and queuing strategies provide

greater information about Charm programs�

��



Chapter �

Issues in tracing� asynchronous

clocks and perturbation

In Chapter �� we have broadly discussed the type of information available about the behavior

of Charm programs� In Section ���� we describe the speci	c information acquired for Charm

programs and the methodology for acquiring such information�

Analysis is carried out by comparing actions on di�erent processors at the !same time"�

This would make sense only if the meaning of !same time" across processors was clear� Often�

in parallel systems� the values of the local clocks are not synchronized� so that !same time"

is not a well de	ned concept� In such cases� it becomes di
cult and error�prone� to reason

about events across processors� In Section ���� we discuss the problem of asynchronous clocks

and our solution� In this thesis� all performance analysis is done with the assumption that

clocks are synchronized� Traces with synchronized clocks can be obtained either directly if the

parallel machine provides them� or through runtime clock synchronization schemes� or using

the schemes we discuss in this chapter� The performance analysis techniques discussed in this

thesis do not depend on the clock synchronization schemes we outline in this chapter� rather

they will work with any trace which uses synchronous clocks�

Tracing perturbs the execution of the program� and consequently alters the timing patterns

and information in the program� Since� accurate timings are necessary to make any correct

inferences in performance analysis� the perturbation due to tracing must be reduced as much

as possible� In Section ���� we describe our methodology to reduce perturbation due to tracing�
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��� The nature of raw performance data

A Charm program can be executed in two di�erent modes� In the 	rst� the normal mode� exe�

cution proceeds without any events or activities being recorded� In the second� the projections

mode� the system records information about de	ned activity types� A program can be executed

in any one of the two modes by linking with the appropriate libraries  there is no need to add

instrumentation� or to recompile the user program in order to generate the trace information�

Trace is collected through a combination of two mechanisms� static program information and

runtime program information� Each processor has its own local bu�er to record trace data�

When a bu�er over�ows during an execution run� it is written out to a log�	le corresponding

to that processor� At the end of the execution of the program� the bu�ers are written out

onto each processor�s log�	le� We shall now brie�y describe the nature of information collected

statically and at runtime�

����� Static information

The static information in a Charm program consists of the structure of the program itself� This

includes the following�

�� Chares and branch o�ce chares� At the highest level� the information consists of the

names of the chares and branch o
ce chares that constitute the program�

�� Message types� For each message type� information about its size�

�� Entry points� For each chare �BOC�� static information exists for the entry points that

make up the chare �BOC� and the type of message received by each entry point�

�� Speci�cally shared variables� Other information recorded statically includes names and

types �accumulator� etc�� of various speci	cally shared variables in the program�

Note that some other static information follows implicitly from the information recorded

above� For example� if an object is a branch o
ce chare� then there is static information about

the placement of that object� there is one copy of the object on each processor�
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����� Runtime information

Various parameters of a message are recorded when it is created� enqueued� and dequeued�

and when the system starts and 	nishes processing it� In most cases� the information recorded

includes the following�

�� event�type� the type of the event� i�e�� one of create� enqueue� dequeue� begin processing�

and �nish processing�

�� message�id� a number that uniquely identi	es the message on the processor on which it

was created

�� processor�id� the processor on which the message was created�

�� entry name� the name of the entry point to which the message is addressed�

�� message�type� the type of the message� i�e�� one of NewChareMsg� ForChareMsg� BocMsg�

or BroadcastBocMsg�

�� chare�id� the unique number identifying the chare that created the message�

�� time� the time at which the event occurred�

�� priority� the priority of the message� if any�

Even though� speci	cally shared variables are implemented using messages at the lowest level�

additional information is needed� For example� for an Insert request on a distributed table

other useful information needed includes the value of the key provided�

����� Event graph

An event� as used in this thesis� is the execution of an entry point� Since an entry point

can be activated multiple times by di�erent messages during the execution of a program �not

simultaneously� however�� there can be many events in the trace corresponding to the execution

of the same entry point� Notice that since entry points execute over a period of time� events

do not represent point�objects� Let� V denote the set of all user events in the execution of the

program� and let Vp denote the set of user events on processor p� An event v � V has�

�� a time vc at which the call to create it was made�
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�� a time vs at which the system picked up the message in order to create the event� and

�� a time vf at which the system 	nished creating it�

De�nition � An event y � V is said to be created by an event x � V � if the message for the

entry point corresponding to y was created in the entry point corresponding to x


Let x � y denote the fact that x created y� Further� since each message can be created only

while one entry point is executing� we have the following observation�

Observation � An event can have only one creator� i
e
� for an event y� there can exist only

one event x� such that x� y


Let E $ f�x� y� j x � yg be the set of edges on the vertices de	ned by the set V � Now
�V�E� de	nes a graph of the events in the execution of a Charm program� We denote �V�E�

as the event graph� The following notations for an event e are used in describing algorithms

throughout this thesis�

�� CreationTime� the time at which the user requested for e to be created� i�e�� ec�

�� BeginProcessingTime� the time at which the system started to create e� i�e�� es�

�� TransmissionTime� the time taken by the system system to transmit the message corre�

sponding to e�

�� EndProcessingTime� the time at which the system 	nished creating e� i�e�� ef �

��� Asynchronous clocks

A predicate for correct analysis is the availability of synchronized clocks on all processors�

In the absence of such synchronization� analysis can be potentially erroneous� because two

events that did not occur simultaneously in real time may appear as if they did and vice versa�

Consider the example in Figure ���� It is a plot over time of the creation of StartComputation

and of the processing of NextComputation events that occurred in the execution of a parallel

molecular dynamics program EGO on a network of 	ve workstations� The basic computational

structure of EGO is iterative� In each iteration� the same number of NextComputation events
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occur� followed by a global synchronization on all processors� which is followed by the creation

of StartComputation events to start the next iteration� The StartComputation events are all

created on processor �� and broadcast to all processors to start the next iteration�

The plots in the 	gure seem to indicate that the last iteration was very long� and a much

larger number of NextComputation events happened� However� we know from the program that

these statements cannot be true� as only an identical number of NextComputation events occur

in each iteration� The reason for this anomalous behavior is the asynchrony in clocks� which

makes it appear as if the StartComputation events were created earlier than what actually

happened�

Figure ���� Performance data for EGO without any real�time reconstruction�
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A more severe aspect of asynchronous clocks can be the presence of messages which violate

causality� their processing time on one processor precedes their creation time on another�

Following Heath� we call such messages tachyons �� Figure ��� shows an example of a tachyon�

There are two popular approaches to obtain synchronous clocks in asynchronous systems�

�� Software mechanisms treat local time as a data value� Processors exchange local values

periodically� and achieve synchronization by updating local clock values depending on

the corresponding values on the neighbors� However� software synchronization methods

are at best expensive and inaccurate� In order to achieve tight synchronization between

processors� time values must be exchanged su
ciently often� But since the overheads

of frequently exchanging information can be substantial� there is a limit to how often

clock information can be exchanged� Since one cannot incur excessive overheads for clock

synchronization� this necessarily means one must compromise the accuracy of synchro�

nization�

In special cases� such as on hypercubes with known clock shifts and in the absence of

faulty clocks� inexpensive and reasonably accurate software synchronization methods can

be implemented� such as the one implemented for PICL by Dunigan ����� The clock�skew

approach is not general purpose enough� however� since it does not work on distributed

machines with unknown clock skews� or on a distributed system where individual machines

might have di�erent clock speeds� Mills ���� ��� has reported that software synchronization

methods can take many tens of milliseconds on a network�

�� Hardware mechanisms for clock synchronization are inexpensive and accurate� The basic

mechanism is through phase�locked clocks� the clock signal generated by each processor�s

clock is a vector combination of the signals generated by all the other clocks in the

system� One potential problem for hardware mechanisms is the time lag in transmitting

clock signals to other processors� Shin ���� proposed a mechanism which can tolerate both

faulty clocks and time lags for clock signal transmission� However� his mechanism requires

O�n� inputs for each clocks� where n is the number of clocks to be synchronized� Some

reduction in the requirement of the number of inputs to each clock can be achieved by

synchronizing small groups of clocks� however the synchronization is not accurate then�

�The term tachyon originates in the physical sciences� A tachyon is a particle that travels faster than light�
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A second hardware mechanism is to have a single clock drive all other clocks� This has

been implemented for the NCUBE�II�

A third hardware mechanism is to have a single hardware monitor which receives all

tracing events and provides a timestamp for them� There is no potential for asynchrony

because the monitor can concurrently accept inputs from all processors� and it uses a single

clock to determine a timestamp for an event� Such a mechanism� called HYPERMON�

was implemented for the Intel parallel machines by Malony et� al� ���� ����

As we mentioned above� software methods tend to be expensive and inaccurate� Further�

it is expected that most vendors of parallel machines would provide synchronous clocks at the

hardware level in the near future� For these reasons� we have chosen not to implement runtime

software schemes for clock synchronization�

Some synchronization mechanism is still necessary because hardware synchronization mech�

anisms are not feasible for an increasingly popular !parallel" computer� a network or a cluster

of workstations� Most often� each workstation in the cluster is used in a time�sliced mode

between multiple users� Di�erent processes in a user�s parallel program running on di�erent

workstations can therefore be scheduled at di�erent times� Traditional software synchronization

mechanisms need an estimate for the time it would take for a message to travel from one pro�

cessor to another� In the case of a network� it is determined by the network load and the type

of network� ethernet� FDDI� ATM� etc� One additional complication is the non�deterministic

nature of time�slicing� the process to which the message is addressed may be time�sliced out

when it reaches the destination node� Under these circumstances� software synchronization

methods are not very e�ective�

Typically networks of workstations are spread across a wider area� The time lag to trans�

mit clocks signals under such conditions can be large and unpredictable� This increases the

complexity of traditional hardware synchronization methods� such as phase locked clocks� sub�

stantially� and thereby make them unfeasible� Even if some inexpensive hardware mechanism

could be designed for clock synchronization� it would only synchronize the absolute value of

the local clocks� In a time�sliced workstation environment� the absolute value of the local clock

does not provide a fair indication of the user�time� because� in addition to the process time� it

also includes the time for which the process was time sliced out� There is an additional problem
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with using wall clock time� In a workstation environment� many processes of the program can

be executed on the same processor� In such a case� the workstation is time sliced between two

processes of the same program� Therefore� a wall clock time measurement for each process will

include the times for which both processes were time�sliced out and the time for which only

the other process was time�sliced out� The actual time for a process is again an indeterminate

fraction of the wall clock time� Networks therefore provide a unique environment where no

traditional clock synchronization schemes work well�
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Figure ���� Various orderings of actions in a parallel program� the numbers indicate the local
and real times for each event�

It seems that we need some method to reconstruct real�time order� What ordering of events

is available from which real time ordering can be reconstructed� Consider the actions A� B� and

C in Figure ���� The 	rst ordering diagram shows the real�time ordering of actions �the two

numbers indicate the local and the real times for each event�� Real�time is the time determined

using a wall�clock or some global external timing device� The real time ordering is not available

to us in a system without synchronous clocks� The orderings shown in the second and third

diagrams� however� are available to us� The second ordering diagram shows the causal ordering

of actions� which consists of the partial order on the actions due to the creation relationship�
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The third ordering diagram in the same 	gure shows the local�time ordering of actions A� B� and

C� Local time is the time recorded by a processor�s clock� Notice that the local�time ordering

can introduce inconsistencies� e�g�� C seems to happen before A� even though A created event

C� If the clocks of all processors were synchronized� one would be able to obtain the real�time

ordering� which maintains the partial orders dictated by local�time and causal ordering� In the

absence of a synchronous clock� one only has the local�time and the causal orderings� Note

that neither of them are by themselves su
cient and there is no way to get back the actual

real�time ordering� However� we can achieve some degree of synchronicity by using the causal

and local�time orderings available to us to reconstruct an approximate real�time ordering� In

this section� we shall brie�y describe two post�mortem real�time reconstruction algorithms that

we have implemented�

����� First real�time reconstruction algorithm

Our 	rst algorithm derives from Lamport�s ���� work on logical clocks in distributed systems�

Lamport�s original scheme was meant for logical synchronization of clocks in a distributed

system� In Lamport�s scheme� each member of the distributed system has a local clock� which

is incremented by one for every local event� Every message before being sent to a remote

processor is timestamped with the current value of the local clock� When the message is

received at the other end� that local clock�s value is 	rst set to the greater of the timestamp of

the message and the value of the clock� and is subsequently incremented by one�

One fundamental di�erence in our approach arises because we attempt to recreate real time�

and not just logically synchronous time as in Lamport�s work� Further� our algorithm is post�

mortem� real�time is reconstructed from �possibly� asynchronous traces� The basic idea behind

our algorithm is to identify events that violate causality� and delay the processing time of each

such event so that their new processing time is greater than the time at which they were created�

thereby satisfying causality� Further to better simulate the parallel machine on which we are

running the program� the processing time is delayed �with respect to the time of creation� by

the time necessary to communicate the event to a remote processor� This is another di�erence

with Lamport�s scheme� where the logical clock ticks were incremented by one for any event�

Figure ��� shows the 	rst algorithm� A list �being processed� of the earliest processing event

on each processor and the earliest task �min task� among these are maintained� The algorithm
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TASK #task� #min task�
&de	ne IsTachyon�task� �CreationTime�task� � ProcessingTime���

SkipToProcessing�task� f while ��IsProcessing�task�� task$task��next�g

RightShift�TASK #min task� f
shift $ ProcessingTime�min task� � CreationTime�min task�

% TransmissionTime�min task��
for �task$min task� task�$NULL� task$task��next�
EventTime�task� %$ shift�

g

DetermineTachyons�� f
for �i$�� i�maxpe� i%%� f
task $ transaction list�i��head�
AddList�being processed� SkipToProcessing�task���

g
min task $ LeastList�being processed��
while �min task� f
if �IsTachyon�min task�� RightShift�min task��
SkipToProcessing�min task��next��
DeleteList�being processed� min task��
min task $ LeastList�being processed��

g
g

Figure ���� First algorithm for real�time reconstruction�

proceeds by checking if the current minimum� min task� is a tachyon� If it is not� then the least

processing task on that processor is updated� If it is a tachyon� then its processing time is set

to a time after its creation� which takes into account the transmission delay for the event� In

order to maintain relative local ordering� the timestamp of events after the current minimum

on the same processor are also increased by the same amount� The minimum� min task� is

then removed from the being processed list� and a new minimum is computed� and the process

repeats until min task is NULL� We will refer to the process of increasing an event�s timestamp

as right�shifting�

Figure ��� shows an example of the various stages in the working of the algorithm for a

sample trace� Initially events A and C are in the list being processed� and C is min task� C

is also a tachyon� so all the events on processor � are shifted to the right� so that C does not
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Figure ���� Stages in the execution of the 	rst real�time reconstruction algorithm�

violate causality� Once that is done� C is removed from the being processed list� Now� event B

becomes a tachyon� so it is right�shifted� and all three events satisfy causality�

However this algorithm does not eliminate all tachyons� Figure ��� shows a counter example�

In the 	rst step� task B is a tachyon� so the algorithm right�shifts tasks on processor � to rectify

that� Note that after this 	rst right�shift� task B is no longer considered by the algorithm� Next

the algorithm consider event C� which is also a tachyon� so it is also right�shifted� However�

right�shifting C increases the creation time of task B causing it to become a tachyon again�

Since B will no longer be considered it will be left behind as a tachyon by the algorithm�

A tachyon can be left behind by this algorithm only if the timestamp of its creator �on

another processor� is greater than the event in the being processed list for that processor� For

in such a case� the creator event could be moved to the right at some later time thereby possibly

causing all events it creates to become a tachyon� One simple solution to this problem is to

retain the min task in the being processed list if its creator event has still not been examined�

The complexity of this algorithm is O�n��� where n is the number of tasks� In the worst

case� one could have to right�shift all following events for every event� which is
Pn��

i�� i $ O�n��
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Figure ���� A tachyon can remain even after a pass by the 	rst real�time reconstruction
algorithm�

operations� Figure ��� shows the e�ects of the algorithm on the traces in Figure ���� A total of

��� tachyons were detected before the application of the algorithm�

����� Second real�time reconstruction algorithm

One problem with the 	rst algorithm is the !unreal" jumps in real�time with the arrival of a

message� If a message arriving at a processor is a tachyon� then the algorithm increases the

local value of the clock on that processor in order to preserve causality for the arriving message�

In general� the increase in the clock�s value can be substantial enough to give the perception

of a rough clock� The second algorithm attempts to resolve this problem by !simulating" the

execution of the program� under the following constraints�

�� The local ordering of events on a processor is maintained�

�� Causality is preserved�
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Figure ��	� Performance data for EGO after the 	rst real�time reconstruction algorithm�

�� The time taken by a message is determined by its size and the latency parameters of the

network�

The second algorithm appears in Figure ���� The basic idea is to maintain a list of !ready"

events and schedule the earliest event from amongst them� An event is created in one of two

modes� waiting or ready� An event is waiting if the preceding events on the same processor have

not yet been processed� The event becomes ready once the preceding events on that processor

have been processed� Ready events are inserted into the ready list� while waiting events are

inserted into the creation list� The algorithm schedules the execution of the earliest event �in

time� from the ready list� and updates its timestamp if the event is a tachyon� Notice that
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unsigned int #shifts�
TASK #task� #min task�
&de	ne IsTachyon�task� �CreationTime�task� � ProcessingTime���

ReadyList�TASK LIST #task list� f
TASK LIST #ready list $ NULL�
for ��task list� task list$task list�next�
if �CreationTime�task list�task� � CurrentTime�task list�task�pe��
AddList�ready list� task list�task��

return ready list�
g

SkipToProcessing�TASK #task� f
for ���IsProcessing�task��task$task�next� f
if �IsCreationTask�task�� AddList�creation list� task��
EventTime�task� %$ shifts�task�pe��

g
if �task� EventTime�task� %$ shifts�task�pe��

g

RightShift�TASK #t� f
shift $ ProcessingTime�t� � CreationTime�t� % TransmissionTime�t��
shifts�t�pe� %$ shift�
EventTime�t� %$ shift�

g

DetermineTachyons�� f
shifts $ �unsigned int #� malloc�sizeof�unsigned int�#number pe��
for �i$�� i�number pe� i%%� shifts�i� $ ��
for �i$�� i�number pe� i%%� SkipToProcessing�transaction list�i��head��
min task $ LeastList�ReadyList�creation list���
while �min task� f
if �IsTachyon�min task�� RightShift�min task��
DeleteList�creation list� min task��
SkipToProcessing�min task��next��
min task $ LeastList�ReadyList�creation list���

g
g

Figure ��
� Second real�time reconstruction algorithm�

only the timestamp of the o�ending event is updated� the timestamps of the remaining events

on that processor are appropriately altered when the algorithm examines those events� After
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the earliest event has been scheduled� the next event on that processor is inserted into the

ready list� and all events created in between are inserted into the creation list� Figure ���

shows the e�ect of the second algorithm on the events in Figure ���� Note that approximate

real�time orderings generated by the two algorithms is qualitatively similar�

Figure ���� Performance data for EGO after second real�time reconstruction algorithm�

The complexity of this algorithm is O�n � log�p��� where p is the number of processors�
Each event is examined only once to determine whether it is a tachyon� and is shifted only once

as a result �the single shift takes into account all previous shifts on that processor�� However

to update the minimum event from the p events in the list of ready events takes O�log�p��
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operations� and this happens after each event is examined� therefore the overall complexity of

the algorithm is O�n � log�p���

����� Related work

Our approach has similarities with the schemes proposed by Neiger ���� and Welch ���� for logical

synchronization of clocks in distributed systems� In their approach� each processor�s clock ticked

naturally� and events were processed when their scheduled execution time �one greater than the

creation time of the event� matched the local clock value on the destination processor� Again�

as with the Lamport�s scheme� our approach is di�erent because it reconstructs approximate

real�time� and not just logical synchronous clocks� Further� unlike these schemes� our approach

is post�mortem�

Malony ���� has developed a method for explicit reassignment of timings measured in tracing

to account for perturbation due to tracing� He de	nes an approximation due to trace manipula�

tion to be a feasible execution if the total ordering of events in the measured time is preserved�

He notes that what is really desired is not just a feasible execution� but a likely execution� A

likely execution is a subset of all feasible executions that are most probable� He points out that

determining likely executions is a di
cult problem because complete information about loop

scheduling algorithms and data dependence information is needed� He describes methods for

conservative approximations which take into account known data dependence information and

attempt to account for hidden dependences �dependences which have not been monitored�� In

re�ordering traces� Malony achieves the goal of maintaining total ordering by accounting for

known dependences and making only pessimistic assumptions about hidden dependences�

A similarity in his work on perturbation analysis and our work in approximate real time

reconstruction is the maintenance of all known dependences in the program� His work is di�erent

because it assumes that the measured traces are generated using a synchronous clock� so that

total ordering imposed by time is consistent with the partial ordering imposed by dependences�

Further� his method attempts to maintain this initial total ordering� In our work� we do not

have the initial consistent total ordering� and attempt to reconstruct it from avaialable partial

orderings� The di�erences in our approaches stem from this basic di�erence in the nature of

available information�
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��� Perturbation of program execution

In tracing a parallel program� one will always introduce additional operations which will perturb

its execution� Trace gathering� therefore� has two con�icting goals� one to gather as much

information about the program as possible� and the other to perturb the execution of the

program as little as possible� The amount of perturbation for each trace event depends largely

on the amount of data being traced� but is generally small� The execution of the program is

perturbed to a much larger extent when the traces are output to disk� This becomes necessary

eventually� because arbitrarily large traces cannot be stored on a processor� One way to address

both problems simultaneously is to keep the size of the information stored for each trace event

small� Since lesser data is being stored� the perturbation per call is lesser� In addition� since

lesser data is being stored per call� more trace calls can be made before disk i�o becomes

necessary� Thus the perturbation due to disk i�o is postponed�

Charm is a medium grained programming language� The recommended granularity of entry

points� which receive small messages� is about ��� milliseconds� We trace 	ve events for each

message on the average� creation� queuing and dequeuing� and start and 	nish of processing�

The perturbation due to tracing 	ve events is substantially less than the recommended least

granularity for most entry points� therefore the overall perturbation is not substantial� In most

programs� the overhead of tracing is less than �' of the execution time� Thus� the size of

the traces� and hence the consequent perturbation� is a lesser problem in Charm programs�

Nevertheless tracing is still a problem� and we have mitigated its e�ects by using the replay

mechanism�

Instant replay was introduced by Blanc and Mellor�Crummey ���� as a mechanism to debug

the asynchronous behavior of a parallel program� In a parallel program�s execution� a bug

can manifest itself because of an unusual ordering of events� The bug may not recur if the

experiment is repeated under the control of a debugger� because the debugger may alter the

original ordering of events� In such cases� it would be helpful to be able to deterministically

reproduce the bug� The instant replay mechanism allows a user to reproduce a program�s

execution�

The key idea in a replay is to identify atomic events and record their order of occurrence

in the execution� The execution can be replayed by re�executing the atomic events in their
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recorded order of occurrence� A replay cannot take into account spontaneous events� e�g��

events which occur periodically with no other causal events�

In our strategy� the 	rst execution run is used to collect minimal trace data about entry

points� Since entry points are atomic events in a Charm program� this information is su
cient

for replay� Subsequently� the program is re�played� at which time extensive trace data is gath�

ered� This trace is used to replay the program execution by re�executing each entry�point on

each processor as recorded on the trace�

How much does tracing save� In order to be able to replay a Charm program� one needs

to replay the order of execution of messages� The only information needed to replay a Charm

program is the order of processing of events on each processor �no information is needed about

creation� enqueue� and dequeue events�� an event can be uniquely identi	ed by the following

pair�

�� message�id� the number which uniquely identi	es a message on the processor on which it

was created�

�� processor�id� the number of the processor on which the message was created�

The trace data necessary for replay is an ordered set of such pairs� where the ordering is imposed

by the order in which the events occurred on that processor� Since the time at which events�

such as creation� occur in the replay can be di�erent from the original run� it becomes necessary

to also record information about the creation� enqueue� and dequeue of the message� For each

message� the following additional information is recorded�

�� time� one needs to record the times for various events because they would change in the

replayed version�

�� event�type� the type of the event� namely� creation� enqueue� dequeue� or processing�

As we have mentioned before in Section ���� other information that is needed for performance

analysis includes the name of the entry point� the unique id of the chare� the priority of the

message� and the the type of message� Without any compression� the size of the trace recorded

has thus been reduced by half� Table ��� shows the time for three di�erent runs of a Jacobi

program on � Sun workstations� The 	rst run was done without any tracing� the second with

minimal tracing for replay� and the third with extensive tracing for Projections� Note that the
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tracing for replay adds about �' to the execution time of the case when there is no tracing�

while extensive tracing adds about ��'� The time for disk i�o is also about ��' less in the

case of minimal replay tracing as compared to extensive tracing�

Execution time�Disk io 
milliseconds�
No tracing Minimal tracing Extensive tracing

������� ��������� ���������

Table ���� Execution and disk i�o times for three versions of a Jacobi program�

There are some unique issues for replay in the context of Charm� because it provides high�

level support for dynamic load balancing� quiescence detection� and information sharing� In

the remainder of this section we examine these issues�

����� Dynamic load balancing

Many of the load balancing strategies in Charm have a spontaneous component� The strategy

may periodically check the sizes of queues on the local processor� compare it to the sizes of

queues on neighbors� and redistribute work� Such periodic activity cannot be replayed because

of its dependence on time�

The trace recorded for replaying the program contains information about the request and

subsequent creation of a task� In the case when the task is a response message to BOC or chare�

the destination is 	xed� However in the case of a message to create a chare� the destination

has been determined through some load balancing strategy� This must be preserved in the

replay� In our current solution� a sequential script looks at all the trace data� determines the

destination of every new chare message� and creates a destination log 	le for each processor�

which contains the destination of all new chares generated on that processor�

A replay load balancing strategy� shown in Figure ���� implements the known load re�

distribution� Like all other load balancing strategies it is also implemented as a BOC� Each

branch of the BOC keeps a map for the local processor� which tells it where a new chare

message needs to go� this information is read in from the destination log for the local processor�

Whenever a new chare message is generated locally� the load balancing strategy determines its
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BranchO�ce Replay f

entry LdbInit� �message InitMsg #msg� f
�# initialize the branch of the strategy #�
last map $ ReadMapData�MAX MAPS��

g

public NewChare From Local�msg� f
int event $ GetEvent�msg��
int map $ FindMap�event��
SendMsgBranch�Replay(NewChare From Net� msg� map%%��
if �map � last map� last map $ ReadMapData�MAX MAP��

g

entry NewChare From Net� �message void #msg� f
QsEnqMsg�msg��

g

public ExtractStatus�msg� f g

public AddStatus�msg� f g
g

Figure ���� Replay dynamic load balancing strategy�

destination and sends it there� The behavior of the old load balancing strategy is therefore not

replayed� only its e�ect is�

����� Quiescence detection

In Section ���� we described the implementation of the quiescence detection algorithm� The

algorithm checks for local quiescence by examining the state of local queues� Therefore� a replay

strategy would be able to replicate the behavior of the quiescence detection algorithm only if it

replicated the state of the queues at all points of time� Replicating the state of the queues adds

considerable complexity to the replay� because one must also replay the queuing and dequeuing

events on each processor� Instead� there are two simpler strategies for dealing with quiescence�

�� Ignore the behavior of the old quiescence detection algorithm� and let the system detect

quiescence for the replayed program�
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�� Do not even detect quiescence� rather send the quiescence message� whose creation is

known from the trace� when the system is quiescent�

The advantage of the 	rst scheme is that it works without any modi	cation to any code� and

there is no trace information needed� The advantage of the second scheme is that there is no

overhead of detecting quiescence� The disadvantage is that the quiescence message must be so

identi	ed and sent at the appropriate time� We have chosen the 	rst scheme for its convenience�

����� Speci	cally shared variables

Speci	cally shared variables are implemented as BOCs and their properties are ensured using

messages to communicate between di�erent branches of the BOC� Any time�dependent behavior

in the exchange of messages could pose problems in replicating the behavior of the shared

variable�

In our 	rst implementation of a monotonic variable� the values of the variable on all pro�

cessors were combined by propagating values up a spanning tree on all processors� combination

occurred by making each processor in the spanning tree wait for a pre�determined interval of

time for other values from its children� In some of our applications� we found that monotonic

variables were rarely updated� and therefore a di�erent implementation was more e
cient�

broadcast the value of the variable to nearest neighbors� recursively� until everyone had the

value� In this implementation� there are no time�dependent features� and therefore it can be

replayed� However� the behavior of the spanning tree implementation cannot be replicated in

a replay�

����� Related work

Malony ���� reasons that tracing will always cause perturbation� and has suggested methods to

compensate for perturbation� His scheme involves determining the perturbation associated with

every trace event� Equipped with this knowledge� one can apply the requisite compensation for

every trace event in the program to obtain unperturbed performance information�

Hollingsworth et� al� ���� have developed an approach in which instrumentation for tracing

is done dynamically and on demand� if information about a particular quantity is desired� the

corresponding instrumentation is added by modifying the core image of the program� This
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approach has its merits� but for automatic performance analysis� we need all trace information

before analysis can be done� In such cases� all instrumentation is necessary� and therefore

dynamic instrumentation has no utility�

Recently� Hollingsworth and Miller ����� have developed an approach called the W � model�

which attempts to reduce the amount of data traced for parallel program performance analysis

by intelligently activating the trace dynamically when and where it�s needed� Their model

attempts to make such decisions based on low level architecture�language characteristics� such

as lock�usage� semaphores� and barriers� and some generic high level characteristics� such as an

object�s wait�time for messages� Their approach is not complete� because the tool can provide

trace reduction only for the set of problems it knows about�

��� Summary

In this chapter� we discussed how trace information is collected for a Charm program� We also

talked about our strategies to deal with two problems in tracing� namely� asynchronous clocks

and perturbation� We attempt to resolve the problem of asynchronous clocks by recreating

approximate real time from the local and logical times available in the trace� We attempt to

reduce the amount of perturbation due to tracing by using the replay mechanism� The replay

mechanism was previously proposed as debugging support to replay asynchronous message

arrival orders�
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Chapter �

Important attributes of the event

graph

In Section ���� we describe some basic attributes of the event graph� Performance analysis of all

events in the event graph can be expensive and does not provide suitable focus� In Section ����

we describe our choices for a set of events on which performance analysis can be conducted�

In Section ���� we describe logical separation events� These events are used to partition the

execution of a program into independent units� such that each of the units can then be analyzed

separately� In Section ���� we discuss the utility and the nature of patterns in Charm programs�

The type of analysis and the behavior of the program can be better understood if it is viewed

as a composition of smaller� easily understood patterns�

��� Basic attributes of the event graph

Once tachyons have been eliminated in the event graph �V�E� using the algorithms in Chapter ��

the following theorem is true�

Theorem � 
Creation� For any event v � V � vc � vs � vf 


Note that the relation between vc and vs is strict inequality because we assume that there is

some overhead associated with creating an object� and so� in practice� the request must happen

before the event is created� �

Observation � 
Causality� Causality guarantees that x� y 	 xs � yc
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Justi	cation� The system must begin to process an event� before the event itself can create

other events� Therefore if an event x creates an event y� the execution time of x must precede

the creation time of y� i�e�� xs � yc� �

Theorem � 
Acyclic� �V�E� is a directed acyclic graph


Proof� Assume that the graph had a cycle x�� ���� xn� such that x� $ xn and �
n��i�� ���x
i� xi��� �

E�� Such a cycle is not possible because it violates Theorem ��

�
n��i�� ���x
i� xi��� � E� �����

	 �
n��i�� ��x
i � xi��� �definition�

	 �
n��i�� ��x
i
s � xi��

c � �causality�

	 �
n��i�� ��x
i
s � xi��

c � xi��
s � �creation� v � V� vc � vs�

	 �x�c � x�s � x�c � x�s���x
n
c � xns �

	 x�s � xnc �transitivity�

	 x�s � x�c �x� $ xn�

The last equation violates the Creation Theorem� �

Note that a directed acyclic graph doesn�t have to be a tree� even though the underlying

undirected graph is connected� e�g�� consider the directed acyclic graph in Figure ���� In fact�

the directed acyclic graph for Charm events is a tree� as we prove later on in this chapter�

C

D

B

A

Figure ���� A directed acyclic graph� whose underlying graph is not a tree�

In a Charm program� there are two computations proceeding concurrently� the user and

the system� System events correspond to the activities of the load balancing� the quiescence

detection� and other system modules� The two computations interact very infrequently� For
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example� the system creates the CharmInit entry point� which initiates the user computation�

Subsequently� the only user event that is ever created by a system event is the message sent by

the quiescence detection module to the user program when the algorithm detects no activity

in the system� The quiescence detection algorithm is activated only if the user makes a call to

the StartQuiescence system call�

Since �V�E� includes only user computation� and the CharmInit and quiescence detection

entry points are created by system events� we can treat these as events without a creator� �One

would assume that if all computation  system and user  were included in V � all events would

have a creator� However this is not true� The quiescence detection and some load balancing

algorithm have events� which are created based on a timer value� such events have no creator��

Observation � Only the CharmInit entry point and quiescence detection entry points have no

creator


The following de	nitions are used later in this thesis�

De�nition � An event x is said to causally precede an event y� if x $ y� or x � y� or there

exist z��


�zk� such that ��x� z�� � �
k��i�� ��z
i � zi��� � �zk � y��


Let x	 y denote the fact that x causally precedes y�

De�nition � We de�ne the precedent set of an event x to be the ordered set of events fx�� ���� xk $
xg� such that �
n��i�� ��x

i � xi��� � ��
t��t� x��


Let xprecede denote the precedent set for x�

De�nition � We de�ne the �rst event of a precedent set� xprecede� to be the event y � xprecede�

such that� 
v�xprecede�y 	 v�
 Let �x denote the �rst event of the precedent set for event x


�x is well de	ned only if the set is 	nite� The set is 	nite because�

�� There are only 	nitely many events in time before any event in the event�time diagram�

�� All events that causally precede an event must have happened before it in time �causality

and transitivity��

�� The graph is acyclic� therefore there cannot be an in	nite chain of causal predecessors of

any event�
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Because there are only 	nitely many events before an event� and no in	nite chains� hence the

set of events that causally precede an event must be 	nite�

Theorem � The �rst event in the precedent set for event x� occurs earlier �in time� than all

other events in the precedent set� i
e
� 
v�xprecede��xs � vs�


Proof� Since 
v�xprecede��x 	 v�� the proof follows from Theorem � and transitivity� �

Theorem � For any precedent set� xprecede� its �rst event �x can have no creator


Proof� The proof is by contradiction� Support the 	rst event did have a creator� Then by the

de	nition of a precedent set� the creator� say v� must be in the precedent set� From causality�

it follows that vs � �xc� And from the Creation Theorem� it follows that �xc � �xs� Therefore�

by transitivity� vs � �xs� From Theorem �� it follows that the 	rst event occurs earlier than all

other events� Since the creator of the 	rst event must occur before it� so the creator must occur

before all events in the precedent set� Hence the creator is the 	rst event of the precedent set�

This contradicts the assumption that �x is the 	rst event� �

Theorem � The �rst event of any precedent set is either the CharmInit or a quiescence detection

entry point


Proof� The proof follows from Observation � and Theorem �� �

De�nition � We de�ne the antecedent set of an event x to be the set of events fx $ x�� x�� ���� xng�
such that �
ni����x	 xi�


Let xantecede denote the antecedent set for x�

De�nition 	 We de�ne the last event of an antecedent set� xantecede� to be the event y �
xantecede� such that� 
v�xantecede�yf � vf �
 Let �x denote the last event of the antecedent set for

event x


Theorem 	 Let� x� be the CharmInit and x�� ���� xk be the quiescence detection entry points


The underlying graph de�ned by the antecedent set of xi is a tree


��



Proof� A connected graph with n nodes is a tree if it has n � � edges� Since xi 	 v� where

v � xiantecede � so if one ignores the direction of the arcs in the underlying graph� for any

v � xiantecede� there is a path from v to xi� and vice versa� The underlying graph is then

connected by transitivity� since there is a path from v� to x
i and a path from xi to v�� where

v�� v� � xiantecede� then there is a path from v� to v� through xi� Let the cardinality of xiantecede

be n� Then� because every event in xiantecede� except x
i has exactly one creator �Observations �

and ��� there are n� � edges� Therefore� the underlying graph for the antecedent set is a tree�
�

Theorem 
 Let� x� be the CharmInit and x�� ���� xk be the quiescence detection entry points


Then� V $ x�antecede � x�antecede ��� � xkantecede


Proof� Obviously� every event in the sets on the right hand side is in V � It remains to show the

converse� By Theorem �� if v � V � then �v � fx�� ���� xkg� Since �v is in the precedent set of v�
therefore by de	nition� �v 	 v� By the de	nition of the antecedent set� v � �vantecede� So every

event in V is in the antecedent set of one of x�� ���� xk� So V $ x�antecede�x�antecede � �����xkantecede�
�

Theorem � Let� x� be the CharmInit and x�� ���� xk be the quiescence detection entry points


Then� xiantecede � xjantecede $ )


Proof� The proof is by contradiction� Let there exist i� j such that y � xiantecede and y � xjantecede �

Then� by de	nition� xi 	 y and xj 	 y� But this implies that the event corresponding to y

had two messages that created it� This is not possible since the underlying graph of a Charm

event diagram is a tree� Thus� it is not possible for any i� j that any event lie in both xiantecede

and xjantecede �

Theorems � and � tell us that the event diagram of a Charm program is a union of disjoint

graphs�

De�nition 
 If� x� is the CharmInit entry point� and x�� ���� xk are the quiescence detection

entry points� we de�ne the antecedent set xiantecede as the ith disjoint phase
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��� Critical path

Performance analysis of all the events in the event graph can be very time consuming� Analysis

can be made more e
cient and focused by choosing only a subset of events which have a

signi	cant impact on the performance of the program� One choice for such a set is the critical

path in the program� The critical path in a program� as de	ned by Yang and Miller ����� is

the longest computational chain in the event graph of the program �an example appears in

Figure ����a��� In this de	nition� communication latencies and scheduling delays are ignored�

only computational times and dependences between processes are taken into account� Since

such a set ignores parallel components of program behavior� such as communication latencies�

it does not adequately represent the performance of the parallel program� However� critical

path analysis is still useful in the detection of sequential performance problems in the program�

A critical path also provides a lower bound on the completion time of a parallel program with

an in	nite number of processors�

A

C

B

D

critical 
path

A

B

C D

critical
path

(a)

(b)

Figure ���� Alternate de	nitions of critical path
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An alternate de	nition of the critical path has also included communication latencies in the

computation of the longest chain in the event graph �an example appears in Figure ����b����

Such a critical path models information about parallel program behavior better than the simple

computational time based critical path� In addition� if all delays� such as waiting for a message to

arrive and delays in scheduling of messages� are accounted for in the computation of the critical

path� the critical path will include the event that 	nished last in the execution� However� if

delays are not accounted for in the computation� the critical path may not include the last event

in the program� We consider the last event to be an important event in the program because it

directly represents the turnaround time of the program  any improvements in its execution

time would translate into improvement of the turnaround time of the program� Therefore a

de	nition of the critical path which include communication latencies and scheduling delays

provides a good model of parallel program behavior� Further� since this de	nition includes

communication latencies and scheduling delays� it provides a very useful component of the

program behavior on which automatic analysis can focus�

We use an extension of this de	nition of a critical path to determine the the set of events�

called the last event chain� on which performance analysis techniques need to focus� An ex�

tension of this de	nition is needed for Charm programs because the presence of quiescence

detection events cause the corresponding event graph of a Charm program to be split into un�

connected components �Theorems � and ��� In such a graph� the notion of a longest chain in

the graph is not su
cient� because the events in the longest chain will lie in only one of the

connected� In the following theorem� we prove that the disjoint phases are also disjoint in time�

This theorem makes it possible to extend the second de	nition of critical path�

Theorem � Let� x� be the CharmInit and x�� ���� xk be the quiescence detection entry points


Further� let� x�s � x�s ��� � xks 
 Then� the trees de�ned by x�antecede � ���� x
k
antecede are all disjoint in

time� i
e
� for � � i � k� �
t�xi
antecede

��

v�xi��

antecede
��tf � vs�


Proof� Since x�� ���� xk are quiescence detection entry points� choosing two consecutive events

from x�� ���� xk implies that at least one of them is a quiescence event� Since only the 	rst

event is CharmInit� so irrespective of what xi is� xi�� must be a quiescence detection event� A

�Note that this de�nition of critical path is equivalent to starting from the last event in the computation and
tracing back through its creators to the beginning of the program�
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quiescence detection event� by de	nition� occurs only when there is no activity in the system�

Therefore all activity initiated by the event xi� which occurs before xi�� must have terminated

before xi��� And since� xi�� precedes all events in its antecedent set� therefore all events in the

antecedent set of xi will occur before all events in the antecedent set of xi��� �

Since each disjoint phase is disjoint not only in terms of events that constitute the phase

but also in terms of time� therefore� we can de	ne a last event chain for each phase as follows�

De�nition � We de�ne the last event chain of the ith disjoint phase as the precedent chain of

the last event of the ith phase


Note that this de	nition of the last event chain corresponds to the second de	nition of critical

path in the case when the graph has only one component�

The last event chains of each phase is then independent and disjoint� Hence the last event

chain of the computation can be de	ned as follows�

De�nition � The last event chain for the computation is the union of the last event chains for

each disjoint phase of the event graph of a Charm program


For example� in Figure ���� the last event chain for the computation is a union of the two

disjoint chains g � f � e and c� b� a�

time

e f ga b

d

c

point  e.

quiescence is detected
and a message sent to entry

h

last event
chain

Figure ���� Last event chain�

��� Logical separation events

One critical issue that needs to be examined is the range of time over which a program�s trace

should be analyzed� For example� in order to compare the loads on many processors� one would

need to identify the time from which to start counting events and the time at which to 	nish
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counting events on all the processors� There are many possibilities� The analysis could be

carried over the duration of the entire program or over 	xed periodic intervals of time �the

interval can be user�speci	ed or can be some heuristically chosen value�� However� a program

often goes through di�erent natural phases in its execution� each one di�erent from the other�

For example� in an iterative solver each iteration can be thought of as a phase� In such a

situation� the impact of di�erent performance criterion may be di�erent on di�erent iterations�

and hence the analysis could be di�erent for each iteration� Therefore an analysis carried out

over the entire program or any pre�de	ned interval may provide incorrect feedback� because

they may not coincide with the phases in execution� The best ranges of time would be those

which correspond naturally to di�erent phases of computation in the user program�

How does one go about de	ning and determining such phases� Our objective that each

phase be separately analyzable leads to the de	nition of the boundary between two phases as a

point in time such that the relative times of the events before that point in time have no impact

on the performance �i�e�� the relative timings� of the events after it� We denote the events which

separate a program into such natural phases as logical separation points� In the remainder of

this section� we motivate and provide a formal de	nition of logical separation points�

Empirically speaking� parallel programs are naturally repeating� One type of events that

naturally separate the execution of a program into phases� are those at which the program

goes through a global synchronization� At such an event� all activity in the program ceases�

and activity is subsequently resumed from that event� Since the user execution begins at the

CharmInit entry point� and all subsequent activity is initiated there� we make the following

observation�

Observation � The CharmInit entry point is always a logical separation point


When the user requests for quiescence to be detected in a program� a quiescence detection

algorithm monitors the state of computation� and sends a message to a pre�speci	ed entry

point when there is no possibility of further activity in the system� A quiescence detection

event therefore splits the execution of the program into time�disjoint phases� Hence the following

observation�

Observation � An event that is the result of a quiescence detection message is a logical sepa�

ration point
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We have already proved that the antecedent sets for CharmInit and quiescence detection

entry points are disjoint� acyclic directed graphs� Consider any one of these antecedent sets�

Are there other events in the antecedent set which divide the program into its natural phases�

By our de	nition� any event such that the performance of events before it has no impact

on the performance or timings of the events after it should also be logical separation point�

A natural way of viewing such points is as an articulation point in a graph� In a connected

graph� a node is de	ned to be an articulation point if the removal of the node and its incident

edges causes the graph to be split into multiple connected components� Figure ��� shows the

articulations points in two di�erent graphs� In the top graph� point c is an articulation point�

while in the bottom graph� points a� b and d are articulation points�

If you consider the graphs to be event diagrams� where each node represents an event and

the edges �in the forward time direction� represent creation of an event� then the articulation

point in the top graph separates two phases of the event diagram� one consisting of events a�

b� and d� and the other consisting of events e� f� and g� Notice that the 	rst set of events does

not a�ect the relative performance of the second set of events�

However as the bottom 	gure shows� an articulation point need not necessarily split the

graph into phases of program execution� The second graph could be thought of as the event

diagram of a tree�structured computation� thus� even though each interior node of such an event

diagram would be an articulation point �in this case b and d�� neither of the articulation points

separates the events in the diagram into distinct phases�

One key factor seems to be the separation of phases in time� so we must include temporal

conditions for an event to be a logical separation event� From the intuitive notion of logical

separation points as global synchronization events� an event can be a logical separation point

if there is no other event which can occur concurrently with it� This would intuitively de	ne a

logical separation point� With this motivation� we de	ne a logical separation point as follows�

De�nition �� An event� x� is a logical separation point if it satis�es the following conditions�

�
 There are no events which occur concurrently �in real�time� with it�

��
t����ts � xf � � �tf � xs��� ��x� t�� �����
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Figure ���� Event c is an articulation point in the top 	gure� and events a� b� and d are each
articulation points in the bottom 	gure�

�
 There is no event that crosses over x� i
e
� there is no event �excluding ones created by

x�� which is created before the completion of x� and is processed after it�

��
t���tc � xf� � �ts � xf� � ��x� t�� �����

These conditions determine all logical separations points�� however some of them are not

necessary for analysis� Consider the event diagram in Figure ���� a chain of events constitutes

a sequence of logical separation points� For the purpose of partitioning the execution of the

program into phases� choosing each one as a logical separation point means that the phases in

between consist of no events� The amount of analysis that needs to be done can be simpli	ed

by collapsing the chain of logical separation points into either the 	rst or the last event as the

�Since the conditions used in determining logical separation points are temporal� it is possible that a di�erent
trace ordering would produce a di�erent set of logical separation points� With the current de�nition� this is
indeed possible� If all synchronization information about the program was available� a better de�nition is possible�
In such a de�nition� a logical separation point would be an event which logically succeeds every event before it
in time� and logically precedes all events after it in time�
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only logical separation point� we have arbitrarily chosen the last event of the chain as the only

logical separation point� Hence the following observation�

PE3

PE2

PE1

PE0

These tasks
are a result
of a broadcast:
such tasks can
never be global
synchronization
points.

All these tasks are considered
as global synchronization
points. However for analysis, only
the last  task in the chain is 
necessary.

Figure ���� A chain of logical separation points and some events which can never be logical
separation events�

Observation 	 In a chain of logical separation events� the �logically� last event is su�cient


There is one note we should make to the above observation� Our initial de	nition attempted

to collapse chains in order to eliminate phases with zero events� Collapsing long chains of

logical separation points however causes another problem� which is collecting too many logical

separation points into a pre�existing phase� this could potentially a�ect the analysis� Therefore�

for long chains of logical separation events� both the 	rst and the last need to be considered as

logical separation points�

Once the logical separation points of an execution are determined� the program�s execution

can be partitioned into phases� each phase is the set of events that occurs between consecutive

logical separation points� We call each such phase logically independent� A logically independent

phase is a period in the execution of the program� which is independent from the rest of the
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execution� except for an event which triggers o� all the events in the period under consideration�

In an iterative solver with global reduction� for example� each iteration would be a logically

independent phase�

Now we must develop an algorithm to determine logical separation points and logically

independent phases� The most straightforward O�n�� and *�n�� algorithm is one in which the

algorithm checks every pair of events to see whether they could have occurred concurrently or

crossed over� An optimization which reduces the best case complexity would be to traverse the

events in the order in which they occurred� The 	rst algorithm does just that�

����� First algorithm to determine logical separation points

Figure ��� shows the 	rst algorithm to determine the logical separation events� The algorithm

determines the set of events� which satisfy the two equations ��� and ���� The logical functions�

NoConcurrentEvents and HasPredecessor� implement the two equations� respectively� An

event that has been created can be in one of three states�

�� Passive� An event that has been created already is 	rst designated as passive�

�� Ready� A passive event becomes ready if it is the next event �as de	ned in the event

traces� to be processed on a particular processor�

�� Active� An event becomes active if it is the earliest event amongst the ready ones�

The lists created� ready� and being processed maintain the list of passive� ready� and active

events in the program� The algorithm starts by inserting the earliest event from each processor

into the ready list� all events created before the ready event are inserted into the created list� In

every step� the least event from the ready list is inserted into the being processed list� An event

could cross over the current event only if it exists in either the created or the ready list at this

time� Similarly an event could occur concurrently with the current event only if it exists in the

being processed list list� If no event is determined in any of these lists which either crosses over

or which occurs concurrently with the current event� the current event is designated a logical

separation event� and the algorithm proceeds to the next event on the ready list�

This algorithm has a worst case complexity of O�n��� where n is the number of events� The

algorithm looks at each event to see if it satis	es the Equations ��� and ���� this involves checking
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TASK #task� #min task�
TASK LIST #created� #ready� #being processed� #sync list�

SkipToProcessing�TASK #task� f
while ��IsProcessing�task�� f
if �IsCreation�task�� AddList�created� task��
task $ task��next�

g
AddList�ready� task��

g

UpdateBeingProcessedList�� f
for �task$being processed� task� task$task�next�
if �EndProcessingTime�task� � BeginProcessingTime�min task��
DeleteList�being processed� task��

g

DetermineSyncPoints�� f
created$ready$being processed$sync list$NULL�
for �i$�� i�maxpe� i%%� SkipToProcessing�transaction list�i��head��
min task $ LeastList�ready��
while �min task� f
AddList�being processed� min task��
DeleteList�ready� min task��
if ��NoConcurrentEvents�being processed� min task� ��
�HasPredecessor�created� min task��

� min task is a global synchronization point �

AddList�sync list� min task��

SkipToProcessing�min task��next��
min task $ LeastList�ready��
UpdateBeingProcessedList���

g
g

Figure ��	� Algorithm to determine logical separation events in an execution�

to see if the lists created and ready are empty� and the only event in the being processed list is

the current minimum event� These operations can be done in constant time� However� in order

to determine the next ready event one needs to look at all the events in the created list� In the

worst case� when all the events are created at the beginning and on one processor� this part of

the computation can take O�n� steps� hence the worst case complexity is O�n��� However� on
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an average the algorithm does much better than O�n��� because the created list does not have

all events in it�

One observation allows us to reduce the number of times the two checks for logical separation

need to be done�

Theorem �� Every logical separation event must lie on the last event chain


Proof� The proof follows by contradiction� Let v be a logical separation point that does not lie

on the chain� and fp�� ���� pkg constitute the last event chain for the disjoint phase in which v
lies� Since pk is the last event for the disjoint phase� therefore vf � pkf � Further� since the last

event chain is also a precedent chain by de	nition� therefore� it follows from Theorem � that p�

is either the CharmInit or a quiescence detection entry point� Since v belongs to a disjoint phase

de	ned by p�� therefore� p� 	 v� which implies that p�s � vc� From de	nition� vc � vs � vf �

Combining the three equations �p�s � vc� vc � vs � vf � and vf � pkf�� we arrive at the following

equation�

p�s � vs � vf � pkf �����

Because p����pk is the precedent chain for pk� therefore� p� � p����� pk� which implies that�

p�s � p�s ��� � pks �����

Now one of the following must be true�

a� �
i� j��pis � vs � pjs � vf�

b� �
i��pis � vs � vf � pi��
s �

The 	rst condition �a� violates condition ��� for a logical separation point that no other event

occur concurrently with v� The second condition �b� violates condition ��� for a logical separa�

tion point that no events cross over� Since one of these conditions is true� it contradicts the fact

that v be a logical separation point� Therefore� by contradiction� all logical separation points

must lie on the last event chain� �

Intuitively� a logical separation point provides the only connection between the set of events

before and the set of events after it �see Figure ����� Therefore� if the last event chain crosses

from an events after a logical separation point to an event before it� the only way it can do
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Figure ��
� The last event chain and the logical separation points�

is by passing through the logical separation point� This result allows us to prune the search

for a logical separation points to those events that lie on the last event chain� Except in the

unusual case when the computation is a chain� the last event chain would have considerably

fewer events than there are in the system� Therefore� in the average case� the complexity of the

program would be much better�

����� Second algorithm to determine logical separation points

We have also designed and implemented a second algorithm which does not try and verify the

two conditions for every event� Instead it attempts to determine the number of !active" events

at a particular time� If this number is �� then it indicates that there is only one event in the

system at that point in time� This indicates that the event is a logical separation point because

it satis	es the two conditions� no concurrently occurring event and no event that crosses over�

Figure ��� shows the second algorithm to determine logical separation events� The algorithm

maintains a heap of the earliest event ready to be processed on each processor� and the count

active of the number of active messages� A message is potentially active if it is created and not

processed or if it is being processed in the system� Whenever a creation event is encountered�

the count of active messages is incremented� and whenever an event is completed� the count is

decremented� When the count is � at the time the system begins processing an event� it means

that there is only one event that could possibly be active at that time� inclusive of the current

event� Thus� the current event must be a logical separation point�

The complexity of the algorithm is O�n � log�p��� where n is the number of events and p
the number of processors� Each event is examined only once� and for each event� it is added
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TASK #task� #min task�
TASK LIST #sync list�

SkipToProcessing�TASK #task� f
while ��IsProcessing�task�� task $ task��next�

g

DetermineSyncPoints�� f
for �i$�� i�maxpe� i%%� SkipToProcessing�transaction list�i��head��
min task $ LeastList�ready��
while �min task� f
switch�min task�type� f
case CREATION�
actual%%�
break�

case END PROCESSING�
actual� ��
break�

case BEGIN PROCESSING�
if �actual$$�� AddToSyncList�min task��
break�

g
SkipToProcessing�min task��next��
min task $ LeastList�ready��

g
g

Figure ���� Second algorithm to determine logical separation events in an execution�

and deleted from a sorted heap of p events� Therefore� there are O�log�p�� operations for every

event� hence the complexity is O�n � log�p���
Why are logical separation points and logically independent phases a good idea� Logical

separation points demarcate the execution of the program into phases which are logically inde�

pendent� Therefore� performance analysis of each logically independent phase is independent

of that for any other phase� Further� any steps taken to tune performance of one will not

worsen the performance of other phases� Another important feature of logical separation points

is that they identify a !band" of time in which no activity crosses over� As a result� they can

be relatively accurately identi	ed even with approximate real time reconstruction� A possible
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generalization of a logical separation point that may be useful is a set of k events� at most one

from each processor� such that no other event crosses over them�

��� Patterns of communication

A parallel computation� based on a message passing model� is at the lowest level a bunch

of processes communicating through messages� Often the messages form easily recognizable

patterns� such as those of a reduction or a broadcast� There are two di�erent ways in which it

would be useful to know the nature of message passing patterns in a program�

�� It can help us detect potential problem patterns in a user program� e�g�� a bottleneck

event�

�� Di�erent considerations are necessary in terms of performance analysis for di�erent pat�

terns� For example� in a spanning tree reduction� the balance in the computation across

processors is not as important as the depth of the spanning tree and its branching factor�

Conversely� in a jacobi iterative solver� where processors exchange messages with each

other� the balance in the computation involved in the exchange is very important�

There are a large number of message passing patterns possible� We have identi	ed the

following patterns of message passing to be of interest to us �they are discussed in detail later

on��

�� Bottleneck� If all processors send messages to one processor� it can become a bottleneck

if it is a server processor or if a global synchronization occurs on it�

�� Broadcast� One processor broadcasts a message to all other processors� possibly including

itself�

�� Exchange� Each processor sends �and therefore by symmetry receives� messages to �from�

its neighbors�

�� Reduction� All processors contribute a value which is combined to produce a global value�

often the value may be zero� in which case the reduction is a synchronization operation�

A reduction may be implemented by a spanning tree�
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�� Cyclic� Each processor sends out a message in a ring through all or some of the other

processors�

�� Chain� Each processor sends out a message in a chain through some or all other processors�

It di�ers from a cyclic pattern� because the message does not return back to the processor

from which it originated�

�� Sequential chain� One processor sends out a message� which goes in a chain through all

processors�

The patterns described above are quite complex� However� they can be constituted from the

six basic conceptual patterns� shown in Figure ���� The circle in the 	gure represents an entry

point and the arrows represent messages� An entry point can receive one or multiple messages�

as a result of which it may send out none� one� or multiple messages� We assume that an entry

point does not spontaneously generate activity�

(a) 1-in-0-out (b) 1-in-1-out (c) 1-in-k-out

(f) k-in-n-out(e) k-in-1-out(d) k-in-0-out

Figure ���� Building blocks of message passing patterns�

Consider the example of a spanning tree reduction in Figure �����A�� Each process receives

values from children in a spanning tree� which it combines and sends up to its parent� The

messages arriving in and leaving out of each processor can be characterized as a k�in���out

pattern� where k is ��

Consider another example of a Jacobi iterative solver� In each iteration� each processor

gets a broadcast message� Upon receipt of the broadcast message� a processor sends out its

local value to its four �processors on the edge of the mesh send out to two or three neighbors�

��



e

a

b

c

d

f

e
g

f

e
g

f

b

a

c

d

(A) (B)

Figure ����� Partition of message patterns for a spanning tree reduction�

neighbors� Subsequently each processor receives messages from its neighbors� which it uses

to recompute its value� and then it sends out the value for a global reduction� Figure ����

shows how the computation in a Jacobi iterative solver can be composed from a ��in�k�out and

a k�in���out pattern� The 	rst block represents the receipt of the broadcast and the sends to

the neighbors� while the second block represents the receipt of values from neighbors and the

participation in a reduction�

receive values from 
neighbors and participate
in a reduction 

receive request to
start iteration, and broadcast
to neighbors

Figure ����� Partition of message patterns in a process of a jacobi iterative solver into com�
binations of possible patterns�

Let us try and relate the patterns in Figure ��� to events in Charm programs� One immediate

problem is the fact that entry points cannot simultaneously receive multiple messages� So a

k�in���out or a k�in�n�out pattern would look very di�erent in the event�time diagram of a Charm

program�s execution� Figure ���� shows how these two patterns look for Charm programs�

In event�diagrams for Charm programs� there can be no k�in�n�out patterns� where k � � and

n � �� In fact� there are only three basic building blocks for patterns in the event�time diagrams
for Charm programs� these are the 	rst three� a� b� and c in Figure ���� One must now be able

to compose these basic patterns into one of the six conceptual patterns� and subsequently into

more complex message passing patterns�

��



Charm
implementation

implementation
Charm

Figure ����� Patterns of message passing in a Charm implementation of the spanning tree
reduction�

In order to use the three basic building blocks in Charm to understand the more complex

message passing patterns� we 	rst observe that a logical separation event precedes all events

in the corresponding logically independent phase� Therefore� we can isolate our examination

of how message passing patterns are composed to each logically independent phase separately�

We also observe the following characteristics of an entry point�

�� An entry point is a code�block� which performs some speci	c function� Often� the code

in an entry point �even on di�erent processors� performs the same set of operations�

�� All instances of an entry point are triggered by a message of the same type� Further� it

is likely that all messages are created from entry points which are of the same type�

As a consequence of these observations� it is likely that the entry points and the messages that

constitute a pattern� are of the same type� For example� all the interior events in a spanning

tree reduction are likely to correspond to the same entry point� Of course� more complex

patterns could be generated with a combination of multiple message types and multiple entry

point types� However even looking at patterns formed by a single entry point provides us with

a vast amount of information about program behavior�

We describe the scheme with which patterns are determined for events� the scheme is valid

for branch�o
ce chares� It will work for chares with some modi	cations� We begin with the

following de	nition�
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De�nition �� The logical depth of an event t is the number of events in the ordered set tprecede

which correspond to the same entry point as t


Figure ���� shows the logical depth of the events in the execution of a spanning tree on �

processors�

5

4

3

2

1

0

Event-time diagram Conceptual view

0 0

0

1 1

Figure ����� Logical depth of events in a spanning tree reduction�

Intuitively� we attempt to determine the logical order in which events corresponding to an

entry point occur� Once the logical order has been established� one can see !phases" of an event

occurring on di�erent processors� in the 	rst phase the events at logical depth � are executed�

in the next the events at logical depth � are executed� and so on�

Figure ���� shows the algorithm to determine logical depth for each entry point inside a

logically independent phase� The basic algorithm is similar to a depth 	rst search� except that

the depth assigned to a node in the graph is not the depth in the depth 	rst search tree� but

the logical depth with respect to an entry point�

Once the logical depth for the events corresponding to each entry point has been determined�

one creates the logical matrix for each entry point� The logical matrix� Me� for an entry point

e is constructed as follows�

� The matrix is of dimension pXk� where p is the number of processors and k is one more

than the maximum logical depth of any event corresponding to e�

� Me�i��j� $ ��� if there is no event corresponding to e with logical depth j on processor i�

� Me�i��j� $ �l�� ���� ln�� if l�� ���� ln are processors which created the events with logical depth

j on processor i�
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DFS�TASK #v� int ep� int depth� f
TASK #w�
if �v � ep $$ ep� v � depth $ depth% ��
for �w � v � children�
DFS�w� ep� depth%���

g

LogicalOrdering�TASK #separator� f
for �ep � UserEntryPoints�
DFS�separator� ep� ���

g

Figure ����� Algorithm to determine logical depth of entry points�

Once the logical matrix� Me� has been computed� one can determine di�erent patterns by

examining its entries� As an example consider the logical matrix in Table ��� for the spanning

tree shown in Figure ����� Given a logical matrix Me� how does one tell that it corresponds to

Processor Logical depth
� �

� �� ��� ��

� ��� �� ��

� � ��

� �� ��

� �� ��

� �� ��

Table ���� Logical matrix for a spanning tree reduction on � processors�

a spanning tree� Here are the signs for which one looks�

�� Each processor creates at most one event of type e�

�� Only one processor creates no event of type e�

�� The events of type e at the greatest logical depth occur on only one processor� and it is

the same processor which creates no other events of type e�

In Chapter �� we discuss how logical matrices for other patterns look� and how they can be

detected�
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����� Related work

Cuny and Hough ���� ��� ��� have used patterns to provide a better visual understanding of

the order of occurrence of nonatomic and concurrent events� Their work is in the context of a

parallel debugger called Belvedere� Their approach consists of reordering events into logically

equivalent event graphs� in which the patterns of message passing are obvious� In most cases�

reordering can be achieved by determining the connected components of the event graph� and

then displaying the graph so that all components at the same level start at the same time�

However in some cases� reordering is not possible because of circular dependences� In such

cases� the user can construct partially consistent views� which they call perspective views� The

principal focus of their approach is to provide a visual picture of the execution of the program�

which makes it easy to identify anomalies �and hence bugs� in message passing patterns� Our

approach aims at detecting the pattern itself so that it can be used to better analyze the

performance of a parallel program�

Islam ���� has classi	ed application using patterns of synchronization and communication�

Information about the nature and pattern of synchronization and communication in a user

program� can be used to design a better message passing protocol speci	cally for that program�

as compared to the generic one available�
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Chapter �

Integrated automatic performance

analysis

In Chapter �� we described the type of information needed about a Charm program�s behavioral

characteristics and the methods used for acquiring it� In Chapter �� we de	ned various attributes

of the event graph and suggested algorithms to determine them� In this chapter� we describe the

framework in which the event graph� which represents information about a Charm program�s

behavioral characteristics� can be analyzed automatically for performance problems�

Some of the techniques we have developed in automatic analysis are well known in perfor�

mance analysis literature� However there is a di�erence in the foci of our analysis and previous

work� We examine this di�erence in Section ���� In Section ���� we introduce the integrated

framework for analysis and motivate some performance analysis techniques that become nec�

essary� These techniques and others are described in in Section ���� along with methods to

evaluate the severity of a performance problem� In Section ���� we describe how the application

of the analysis can be optimized by using the last event chain� In Section ���� we describe how

di�erent analyses are combined�

We introduce some notation that will be needed in this chapter� Let�

me denote the message type corresponding to entry point e�

e�� ���� en be the entry points in the Charm program�

P be the number of processors� and
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� and � be the latency parameters for message transfer�

��� Nature of analysis

In previous work� the focal point of analysis has been either the processor or a message treated

as a single generic type� For example� performance data is displayed in terms of number of

messages sent and received by a processor� or the utilization on a processor� Two performance

analysis tools that provide some degree of program speci	c feedback are�

�� Gprof ���� was one of the 	rst tools to provide call�graph pro	ling� It measures time

spent in executing each procedure� and the fractions of that time spent in executing other

procedures called from it� However� call�graph pro	ling does not provide any information

about messages and their association with procedures� Since Gprof was never meant for

performance analysis of parallel programs� this is reasonable to expect�

�� Upshot ���� allows one to view a timeline of user de	ned events that occurred on each

processor� However� Upshot does not provide any speci	c performance information about

message types in the program�

In our approach� the focus of the analysis is sharper� our analysis is done with respect to an

entry point or a speci	c message type� We examine this contrast in more detail in this section�

At the lowest level� a Charm program consists of message and the execution of entry points�

Because the execution model of Charm is message driven there is a clear association between

work �execution of an entry point� and the type of message that caused it� Further� the di�erent

types of work and messages� and their association are all statically determined� because�

�� A message can trigger the execution of only the de	ned entry points in the program�

therefore all work must correspond to one of the de	ned entry points�

�� The CkAllocMsg call used to allocate Charm messages� allocates only messages of types

de	ned in the program� therefore a message must correspond to one of the de	ned message

types�

�� An entry point receives a message whose type is statically determined� therefore the

association between an entry point type and a message type is statically determined�
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In the SPMD model� a single process executes continuously on each processor� and sends

and receives messages periodically� There is no direct association between work and messages�

One can associate with a message the computation that immediately follows its receipt and until

the receipt of the next message� However� in general� such a partition of the user computation

will not separate the code into its natural partitions� such as functions� Therefore� identifying

pieces of work to the user can be cumbersome� Identifying message types and their association

with work is an even more severe problem�

A message can be a string of characters� or an array of some sophisticated data types� a

send call in a typical SPMD model simply takes an address and the number of bytes starting

from that address that need to be sent� Therefore� the messages in the system can be of any

arbitrary type� Are there other ways in which the type of a message can be determined� Can

a message be distinguished using the tag which the user attaches� or the line numbers of the

send or receive statement corresponding to it�

send(msg1, B, size1, tag1);
barrier();
send(msg2, B, size2, tag1);

recv(msg1, &pe, &size, &tag);
f1(msg1);
barrier();
recv(msg2, &pe, &size, &tag);

(B)

f2(msg2);

(A)

Figure 	��� Messages with identical tags can do di�erent pieces of work�

If the tags of two messages are the same� it does not necessarily mean that the message

types �and their intended functionality� are the same� A user may re�use the same tag for two

messages in two di�erent portions of his code� if he knows that they cannot arrive at the same

time� Figure ��� shows an example in which process A sends two messages to process B which

have di�erent functionalities� but have the same tag for the messages� the same tag can be used

for both messages without any possibility of con�ict because the two processes participate in a

barrier synchronization between the sends for the two messages� This example illustrates that

a tag cannot always be used by itself to distinguish between messages�

Can the originating line number of the corresponding send for the message be used as a

distinguishing factor� The line number is also not su
cient� because messages doing identical

work can be sent from di�erent points in the program� Consider the example in Figure ����

Both �A� and �B� show examples of how a spanning tree reduction could be implemented in the
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if  (NumberMyChildren==0)

else  {

}

       while (received != NumberMyChildren) {
                recv (msg, &pe, &size, &tag);
                compute(msg);
                received++;
       }

       while (received != NumberMyChildren) {
                recv (msg, &pe, &size, &tag);
                compute(msg);
                received++;
       }

(A) (B)

received=0; tag=tag1;

received=0; tag=tag1;
      send ( msg, parent, size, tag1);

if (parent) send (msg, parent, size, tag1);

if (parent) send (msg, parent, size, tag1);

Figure 	��� Messages doing identical work can be sent from di�erent portions of the user
program�

SPMD paradigm� Each message is combined with values at an interior node in the spanning

tree using the compute call� and therefore they do identical work� In the implementation in

Figure ����A�� since the two sends originate from di�erent line numbers� it is not possible

to determine whether or not their intended actions are the same� Note that the code could

be written as in Figure ����B�� in which case the line number of the send could be used to

distinguish this type of message�

      while (!done) {
              tag=-1;              pe=-1;

ReceiveLoop() {
done=0;

              switch (tag) {
              case SERVICE:

              case CLIENT:

              case TERMINATE:
                      done=1;

}

}
      }

store(msg); break;

compute(msg); break;

              recv(msg, &size, &pe, &tag);

Figure 	��� Messages which do di�erent things can be received at the same place in the
program�

Can the line number at which the message was received be used as a distinguishing factor�

This is also not always possible� Consider the example of the receive loop in Figure ���� Such a

loop is common in cases when the user is trying to maximize the number of outstanding receives

that are acceptable at any point in time� e�g�� we are using such a receive loop in a parallel

molecular dynamics programs called NAMD �Not Another Molecular Dynamics Program� being
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written in PVM� The basic idea is that messages of all types can be received using a wild card

receive statement� and the appropriate processing function can be invoked according to the tag

or the contents of the message� Therefore� the line number of the corresponding receive cannot

be used by itself to distinguish di�erent types of messages�

In most cases it is possible to classify messages into types using a combination of tags and

line numbers of sends and receives� however this approach can be cumbersome� However� in the

worst case� the system may end up identifying the number of di�erent types of messages in the

system to be as large as the number of messages sent in an execution run� The increased com�

plexity of creating displays and analysis for a large number of message types forces performance

tools for SPMD program to present information about messages as a whole� with no distinction

between di�erent types of messages� Further analysis is often done with respect to a processor�

and not with respect to speci	c work on a processor� We elaborate on the consequences of this

di�erence in the foci of previous work and our approach with examples throughout this chapter�

��� Integrated automatic performance analysis

In performance analysis� a user typically examines performance data for potential performance

problems� such as load imbalance and poor granularity of tasks� Our objective in automatic

analysis is to automatically provide the user with feedback about the components of a parallel

program responsible for poor performance� along with information about the performance loss

due to each such component� The process of automatic analysis is meant to be iterative� the

user can choose the component a�ecting the performance most severely� make appropriate mod�

i	cations� invoke the analysis component again� and repeat the analysis�modi	cation process

until it results in an e
cient parallel program�

After the event graph has been constructed by reading in all the program traces� automatic

analysis can be carried out� Figure ��� summarizes the basic algorithm for automatic analysis�

We 	rst determine attributes of the event graph� such as the last event chain� logical separa�

tion points� and the pattern of message passing for each entry point using the functions De�

termineLastEventChain� DetermineLogicalSeparationPoints� and DeterminePatterns� respectively�

Once the logical separation points have been determined� the execution of the program can be
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partitioned into logically independent phases using adjacent pairs of logical separation points�

The performance of events within each logically independent phase is analyzed separately�

TASK LIST #separation list� #last event list�

Expert�� f
�# determine logically independent phases and patterns #�
DetermineLastEventChain�last event list��
DetermineLogicalSeparationPoints�separation list��
DeterminePatterns���

�# for each logical phase #�
for �current$separation list� current� current$next� f
next $ current�next�
utilization $ ComputeTaskCounts���
if �utilization � ��� f
SystemIdiosyncrasy�current� next��
PhaseByPhaseAnalysis�current� next��

g
CombineAnalyses���
PhaseReport���

g
WastefulWorkAnalysis���
EvaluateLDB���
SharedVariableAnalysis���
CriticalPathAnalysis���
SummaryReport���

g

Figure 	��� The performance analysis expert�

Before any analysis is done� the function ComputeTaskCounts computes the following quan�

tities for each logically independent phase�

Np
e � the number of instances of execution of the entry point e on processor p�

Gp
e � the average granularity for the entry point e on processor p�

Ne� the number of instances of execution of the entry point e on all processors �i�e��P
pN

p
e ��

Te $
P

p�N
p
eG

p
e�� the total time spent executing entry point e across all processors� and

��



Ge� the average granularity for the entry point e on all processors �Te	Ne��

The function ComputeTaskCounts also returns the processor utilization� for the current logically

independent phase� Analysis techniques are invoked for a phase if the processor utilization

during that phase is less than ��'��

The 	rst analysis technique invoked ascertains whether the performance loss is actually

due some system idiosyncrasy� Once it has been determined that the performance problem is

because of user code� PhaseByPhaseAnalysis is invoked� The inputs to PhaseByPhaseAnalysis

are the event graph� its attributes� and information about counts and granularities of events�

The broad goal of the function PhaseByPhaseAnalysis is to provide feedback to increase the

utilization of processors with the following caveat� Utilization must be increased� while keeping

the amount of speculative work low� In speculative computations� the amount of work that a

processor does depends on the order in which the execution of sub�tasks in the computation is

scheduled� If a poor schedule is chosen� processors can end up doing a large amount of wasteful

work� Though this will keep the processors busy� the turnaround time of the program will

increase�

PhaseByPhaseAnalysis� shown in Figure ���� 	rst identi	es all those points in time in each

logically independent phase when the utilization of processors is poor� If processor utilization

is poor even though there is work in the processor�s queues� then one possibility is that the

overheads of task creation dominate useful computation� Utility analysis can be carried out to

determine the parts of code that are responsible for such performance loss�

Processor utilization may be poor because there is no work in the processor�s queue� i�e�� the

processor idles� The analysis techniques that can be invoked at this point depend on the nature

of tasks involved� If the tasks involved are those which are dynamically mappable under the

control of a load balancing strategy� then it becomes necessary to analyze the performance of

the strategy itself� However� if the tasks involved are statically mapped� then other techniques

become relevant�

�We de�ne processor utilization to be the average percent of time spent by each processor in doing user work�

�The choice of ��� as good processor utilization is a heuristic� One way to tune performance would be to
allow the user to set the heuristic value at lower levels� such as ���� at the beginning of performance analysis�
and move it to higher levels� such as ���� later on� This would allow them to focus on severe performance
problems early on in the analysis� Later� the user could move the threshold higher� thereby getting an idea of
the less severe factors a�ecting performance�
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Figure 	��� Phase�by�phase analysis�

�� A processor could idle while waiting for other processors to complete� if the load on that

processor was less than the load on other processors �balance analysis��

�� Or� a processor could idle if the degree of parallelism was insu
cient� so that there wasn�t

enough work to give to every processor �degree of parallelism analysis��

�� Or� a processor could wait if the next message it was supposed to receive was a large

message �latency analysis��

We have brie�y motivated some techniques for performance analysis� The di�erence in the

analysis for dynamically and statically mapped tasks appears large� However� a number of

techniques used for statically mapped tasks are also included in a modi	ed manner in the load

balancing strategy analysis� In Section ���� we discuss these and other relevant performance

analysis techniques in greater detail�
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��� Evaluation of severity of a performance problem

The applications of performance analysis techniques in the automatic performance analysis

framework will often result in a litany of performance problems� In most cases� there are only

a few severe performance problems� In order to make performance analysis worthwhile� one

should be able to identify the worst o�enders so that users can then concentrate their e�orts

on solving those problems 	rst whose solution would yield the maximum performance bene	ts�

We de	ne the severity of a performance problem as follows�

De�nition �� The severity of a performance problem is the amount of reduction in the pro�

gram�s execution time if the problem is �xed


The 	rst heuristic is not to report any trivial problems� For example� the CharmInit entry

point lies on the critical path and the last event chain� Therefore� it can be identi	ed as a

performance problem by many analyses� As an application of the 	rst rule� we do not report

any problems with CharmInit� except under special circumstances�

The severity of problems with some entry points are minor� How does one choose a cuto�

for the severity� Instead of choosing a minimum level of severity of a problem before it is

reported� we have chosen to ignore a problem� if its normalized severity is not too large� In

formal terms� the heuristic we use is�

Heuristic � If a problem is determined to have a severity s� it is not deemed su�ciently severe�

unless s
S
� f � where S is the combined severity of all problems in the logically independent phase�

and f is a heuristically determined fractional value
 In our case we have chosen it to be �
�


We de	ne the function overlap which takes two arguments as follows�

De�nition �� overlap�t�� t�� $ maxfP
v�V t��t�

p
�min�t�� vf� �max�t�� vs�� j p � Pg� where P

is the number of processors� t� � t�� and V t��t�
p $ fv j �v � Vp� � �vs � t�� � �vf � t��g is the

set containing the events that occur within a time interval �t�� t�� on processor p


Then� overlap�t�� t��� de	nes the maximum time spent in user computation on any processor

between time t� and t� as shown in Figure ���� Why is the overlap function useful� Suppose

there is a performance problem� which if solved could eliminate the time interval �t�� t�� from

the program�s execution time on one of the processors� Because at least one processor has
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Figure 	�	� The overlap function de	nes the amount of computation that overlaps with a
speci	ed period of time�

computation equal to overlap�t�� t�� in that same interval of time� so the best case improvement

in the program�s performance could only be t� � t� � overlap�t�� t���

��� Performance analysis techniques

In this section� we describe some performance analysis techniques and the methods with which

we evaluate the severity of the performance problems they determine� Performance analysis

techniques can diagnose some well known problems� such as imbalance in load ���� the time

taken for synchronization ���� and small granularity with respect to communication latencies ����

We describe techniques that diagnose common place problems such as above� and other more

sophisticated problems� The techniques described in this section have been arrived at by asking

questions� such as �Why is a processor not doing useful work at this time��� The techniques

range from questions about the bene	ts of creating a task to questions about the balance of

shared variable access across processors�

����� Scheduling analysis

The message�driven execution model of Charm adds a new dimension to performance analysis�

We have previously noted that Charm provides greater possibilities of concurrency because any

message that arrives at a processor has the potential of getting scheduled for execution� Could
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this adaptiveness in scheduling lead to performance problems� If a message that creates a task

on the last event chain is delayed because other arriving messages which are not on the last

event chain are scheduled for execution� there is a possibility that the turnaround time for

the application could be increased� Charm provides two di�erent schemes to counter such a

problem�

�� Queuing strategies� Charm permits the user to link in one of many di�erent queuing

strategies� The user can exercise coarse control over the execution order of messages by

choosing an appropriate strategy� Thus� for example� by choosing a lifo strategy� the user

can schedule the execution of later arriving tasks 	rst�

�� Prioritization� A better mechanism to exercise control over message scheduling is by

assigning messages priorities� Prioritized queuing strategies in Charm select the message

with highest priority available in the queues for execution� So� for example� it is possible

to shorten the length of the last event chain by giving preference to the tasks that lie on

it�

In this section� we examine a technique to analyze the execution of a program in order to be

able to suggest which tasks should be prioritized to improve turnaround time� The last event

chain contains the last events in each logically independent phase� Therefore� it contains the

set of tasks which a�ect the execution time most severely� and improving which would improve

the turnaround time� We de	ne tasks on the last event chain of the execution of a program as

critical tasks� and others as non�critical tasks�

Figure ��� shows a situation� where a di�erent schedule based on priorities could improve

turnaround time� The tasks on the last event chain that need to be completed on processor �

are delayed because the task C on processor � that triggered them is scheduled later than other

tasks� Scheduling analysis would identify such occurrences and suggest that C be given higher

priority than A and B�

Scheduling analysis examines each event on the last event chain� and proceeds to determine

a better schedule if it 	nds a task which was scheduled on an idle processor� Our experience

shows that the above technique works only if the following conditions are met�
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Figure 	�
� Scheduling analysis�

�� There are critical tasks� such as C in Figure ���� which wait to be scheduled while other

non�critical tasks� such as A and B in Figure ���� are executed� This criterion determines

non�critical tasks whose execution could be scheduled later�

�� There are critical tasks� such as D in Figure ���� whose execution is preceded by idle peri�

ods� This criterion establishes the possibility of improvement� because critical tasks could

be scheduled during these idle periods �of course� without causing other idle periods��

thereby increasing processor utilization�

Scheduling analysis in Charm consists of three components� the 	rst component determines

the last event chain in the program�s execution� the second component checks whether there

are any critical tasks whose execution was preceded by idle periods� and the third component

checks for non�critical tasks which were executed while critical tasks were not scheduled for

execution�

Let t be a task on the last event chain which is delayed� Let v be the last delayed task on

the last event chain� such that t	 v�

Heuristic � The severity of this scheduling problem is ts�te�overlap�vf��ts�te�� vf�� where
te is the time at which the message for task t was enqueued for scheduling


Justi	cation� If a task on the critical path is scheduled later than other tasks not on the

critical path� then the delay is the elapsed time between the time the message was enqueued�

te� and the time at which the system started processing the message� ts� Therefore� v could

have 	nished as much earlier as the delay in scheduling task t� which is ts � te� Subtracting

overlap�vf � �ts � te��� the amount of overlap within the period vf � �ts � te�� vf � we get
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the maximum possible performance improvement� and hence the severity of the problem as

ts � te � overlap�vf � �ts � te�� vf�� �

Since priorities are e�ective only for tasks which reside in the queue at the same time� there

can be still be a problem if long non�critical tasks are scheduled for execution before the arrival

of the message for a critical task� In this case� even though the critical task may have higher

priority� it will not be selected because it was not even in the queue� One possible solution to

this problem is to provide constructs which force a message to wait� In the scenario we just

described� non�critical tasks could be forced to wait� even though the processor was idle� until

the message for the critical task arrives and is scheduled for execution�

����� Tail end message analysis

Quite often it is the case that the message to a remote processor is sent at the end of an entry

point� If the user computation has a su
cient degree of parallelism� then it is likely that the

wait time necessary for the communication of the message will be overlapped with something

else on the receiving processor� However if that is not the case� the receiving processor could

idle until the message arrives� The solution is obvious� but may not be possible in some cases�

move the send earlier in the entry point� It may not be possible if the information necessary

for the message is available only at the end of the entry point�

Heuristic � Let x be the tail end event� and let y be its creator
 Then the severity of the

problem is �xc � ys � overlap�ys� xc��


Justi	cation� Since the problem is because the message is sent at the tail�end of the creator

entry point� the execution time could be speeded by moving the corresponding send earlier� The

earliest it could be moved to is the beginning of the creator�s entry point� i�e�� an improvement

of �xc�ys�� Subtracting from it the overlap in that period of time� one gets the greatest possible
improvement� and hence the severity of the problem� as �xc � ys � overlap�ys� xc��� �

����� Pipelining analysis

In a computation� sometimes large messages may need to be sent to a remote processor for

processing� Since the latency involved in sending a large message is considerably longer� if

the transmission time of the communication is not overlapped with other work� the receiving
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processor can be idle for some time before the message arrives� Figures ����a� and ����a� show

the case of a large message that arrives at an idle processor�� For the remainder of this section�

we shall refer to events in Figure ��� and Figure ��� as Case � and Case �� respectively�

A

B

A

Entry point B
is split into
four smaller
events, which
provide a pipeline
effect.

Processor 0

Processor 0

Processor 1

Processor 1

(a)

(b)

b

b

ga + m

TranmissionTime(A’)
ga + k*m

b

b q  + g  /k b

q  + g bTransmissionTime(A)

Figure 	��� Pipelining when ga � gb�

The severity of the problem can be reduced if the message is pipelined� the message is

broken into smaller fragments� and they are sent out individually� The transmission times of

later fragments can then be overlapped with the computation time for the earlier fragments�

Figures ����b� and ����b� show the e�ect of pipelining on the same examples�

In both Figure ����a� and ����a�� when the large message is sent without pipelining� the

duration of time from the beginning of task A to the 	nish of task B is�

ga %mb� �z �% ��% �sb�� �z �% gb % qb� �z �
where� the 	rst term is the combined granularity of A and the time to allocate the message�

the second term is the transmission time for the message to entry point B of size sb� and the

third term is the granularity of B and the time to schedule the message for execution�

We make the following assumptions for pipelining�

�Note that the di�erence in the two cases is the relative granularities of tasks A and B�
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Figure 	��� Pipelining when gb � ga�

�� If the large message is split into k smaller ones� then each fractional message would need

to be computed by �
k

th
of the computation associated with entry point A�

�� Each of the k small fractions of the large message would result in computation equal to

�
k

th
of the computation associated with entry point B�

Thus� in Figure ����b�� a message of size mb

k
is sent at the end of ga

k
computation and causes

gb
k
computation at the other end� In addition� each new message requires mb for allocation�

Therefore the new computational time of A is ga%mbk� The duration of time from the beginning

of task A to the 	nish of the last fraction of task B is�

ga %mbk� �z �% ��% ��
sb
k
��� �z �% qb %

gb
k� �z �

where� the 	rst term is the increased granularity of A� the second term is the transmission time

for each fractional message� and the third term is the granularity of �
k

th
fraction of B and the

scheduling time�
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Similarly� in Figure ����b�� a message of size mb

k
is sent at the end of ga

k
computation and

causes gb
k
computation at the other end� In addition� each new message requires qb for scheduling

on processor �� Therefore the duration of time from the beginning of task A to the 	nish of the

last fraction of task B is�

ga
k
%mb� �z �% ��% ��

sb
k
��� �z �% gb % kqb� �z �

where� the 	rst term is the granularity of �
k

th
fraction of A and allocation of a message� the

second term is the transmission time for each fractional message� and the third term is the

granularity of B and the time necessary for scheduling�

The reduction in time duration for Cases � and � is�

Case � � ��sb % gb���� �
k
� %mb�k � �� �����

Case � � ��sb % ga���� �
k
� % qb�k � �� �����

Notice that the reduction depends on the degree of pipelining k� What is the value of k for

the maximum possible reduction in Case �� Taking the 	rst derivative of Equation ���� we get�

���sb % gb�
�

k�
%mb $ �

	 k� $ �sb�gb
mb

	 k $
p
��sb�gb

mb
� �����

The value of k determined by Equation ��� provides the maximum reduction in Case �� because

the second derivative is positive� The possible performance improvement in Case �� is therefore�

k� $ mb�
p
��sb�gb

mb
�� �� % ��sb % gb���� �p

	
�sb�gb
mb



�

Similarly� the maximum performance improvement in Case � will be�

k� $ qb�
p
��sb�ga

qb
�� �� % ��sb % ga���� �p

	
�sb�ga

qb


�

���



Subtracting possible overlap that exists in that period� we determine that the severity of the

pipelining problem in Cases � and � are�

Case � k� � overlap�Bf � k�� Bf�

Case � k� � overlap�Bf � k�� Bf�

�����

����� Message combining analysis

In some cases� there can be a performance loss because there are a number of small messages

going from one processor to another� In such a situation� the exact opposite of pipelining is

necessary� performance can be improved if the small messages are combined into one larger

message� Consider the example in Figure �����a�� The entry point A is executed more than

(a)

(b)

Processor 0

Processor 1

A A A A

B’

C D

C D

Processor 0

Processor 1

A A A A

B B B BC

C

Figure 	���� Combining messages�

once on processor �� and each time a small message is sent to entry point B on processor �� If

the messages from the multiple executions of entry point A are collected into one large mes�

sage which is sent at the end resulting in a longer entry point B� as shown in Figure �����b��

turnaround time can be improved� because one saves on the initial latencies of creating mul�

tiple small messages� Of course� such a combination will improve performance only if there is
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su
cient work to do on the other processor �processor � in this example�� so that it will not

idle while the larger message is in transit�

The cost of allocating and sending k small messages to entry point B is k�mb%�%�sb�� The

cost of sending one large message is �mb % � % �ksb�� The maximum reduction in turnaround

time is �k � ���mb % ��� which is possible if the destination processor has su
cient work to

overlap the transit time of the larger message�

Thus� the criterion for combining and pipelining are di�erent�

�� Combining is a useful technique when the latency of sending a larger message can be

overlapped with computation�

�� On the other hand� pipelining is useful when the latency of sending a large message cannot

be overlapped with computation�

����� Sequential chain analysis

One particularly damaging set of events can be a sequential chain� it is a set of events� x�� ���� xn�

such that 
i���n���xi � xi��� and no two events of the chain exist on the same processor�

Figure ���� shows an example of a sequential chain�

Beginning of chain

End of chainEvent before chain

Figure 	���� An example of a sequential chain�

We identify sequential chains in the event graph by examining the logical matrix �de	ned

in Section ���� for entry points� The properties of the logical matrix for a sequential chain are�

�� The maximum logical depth � p� �� where p is the number of processors�
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�� Each processor executes only one event�

�� There is only one event on all processors for any logical depth�

Processor Logical depth
� � � �

� � �� �� ��

� �� � �� ��

� �� �� � ��

� �� �� �� �

Table 	��� The logical matrix for a sequential chain�

Table ��� shows the logical matrix for a sequential chain�

Heuristic � Let x�� ���� xn be the sequential chain of events
 Then the severity of the problem

is
	P��
	xn

f
�x�s


P
� overlap�x�s� x

n
f �� where P is the number of processors


Justi	cation� The duration of the sequential chain is from the beginning of the 	rst event

till the end of the last event in the chain� which is �xnf � x�s�� If the sequential chain were

distributed across all processors� then each processor would do only �
P

th
of the work� Hence the

total improvement in performance� or the severity of the problem is
	P��
	xn

f
�x�s


P
� Subtracting

from it the overlap in that same period of time� one gets the total time added because of the

sequential chain� which is
	P��
	xn

f
�x�s


P
� overlap�x�s� x

n
f �� �

����� Bottleneck analysis

An entry point e can become a bottleneck on one processor� if it becomes the recipient for

messages from all processors� Figure ���� shows event diagrams for two di�erent types of

bottleneck�

�� In Figure �����a�� entry point A becomes a bottleneck� because it waits for messages from

all other processors before creating subsequent activity in the program�

�� In Figure �����b�� entry point A becomes a bottleneck because it acts as a server for

requests from all other processors�
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Figure 	���� Two examples of bottleneck�

We can determine if an entry point is a bottleneck by examining its logical matrix� The

properties of the logical matrix for an entry point which is a bottleneck are�

�� The maximum logical depth of events of type e is ��

�� All events of type e are processed at a single processor�

�� Each processor creates at least one event� the processor which processes all events may

be excluded�

Table ��� shows the logical matrix for a bottleneck on four processors�

Processor Logical depth
�

� ��� �� ��

� ��

� ��

� ��

Table 	��� The logical matrix for a bottleneck�

����
 Task utility analysis

An activity� such as the creation of a task has an associated cost and utility� Utility analysis

attempts to measure the cost�utility ratio of an activity to decide whether the activity is really

useful� For Charm programs� utility analysis analyzes the e�ectiveness of creating a new task�

How can one determine whether it is useful to create a task� We make the following

observations�
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�� In the Charm execution model� a message non�preemptively invokes an entry point inside

a chare� Therefore an entry point e can be considered to be a task and the associated

message me its creator�

�� The utility or granularity of a task in a program is the average computational time needed

by the task�

�� The cost of creating the task is the cost of creating the associated message� This includes

the cost of allocating the message� the latency involved in sending it to a remote processor��

and the cost of scheduling the message on that processor�

The utility of a task can be determined by comparing the granularity of the task and the cost

of creating the associated message�

The granularity of tasks in an application is an important factor in the performance of an

application� If the tasks are too 	ne grained� then the system overheads �communication latency

time� message processing time� shared memory access time� context switch time� scheduling�

etc�� can adversely dominate the execution of the program� Conversely� if the tasks are too large�

grained� then there would be too few tasks to e�ectively parallelize� Therefore it is necessary

to carefully choose an appropriate granularity for tasks in a parallel program�

Note that the choice of granularity may need to be machine�dependent� For example� the

cost of creating� transmitting� and scheduling a small Charm message is about ���� microsec�

onds on a network of workstations� while it may take as little as ��� microseconds on the CM���

So the utility�cost ratio for a program� whose messages are small and the average granularity

of tasks is ��� milliseconds� is favorable for the CM��� but not favorable for a network of work�

stations� Of course� if the messages were large� then the granularity of tasks would need to be

greater�

The analysis corresponding to task utility analysis in previous work ���� is the communi�

cation to computation ratio analysis� which looks at the ratio of the amount of time spent in

�The message driven execution model of Charm provides multiple mechanisms to tolerate latency� Therefore�
it seems contradictory to include this in the analysis for cost of creating a message� In reality� when the processors
have high utilization �indicating good overlap
 this analysis will not be invoked� This analysis is invoked only
when the processor utilization is low and there are su�cient tasks� which often indicates high system overheads�
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communication to the amount of time spent in computation by a processor� Fowler et al ����

have proposed the following systematic approach to use this ratio in order to improve a program�

�� If the ratio is small� it indicates that a lot of time is spent in computing� One needs

to perform critical path analysis to identify sequential portions of the code that a�ect

performance most�

�� If the ratio is large� it indicates that the processor is communicating excessively� and the

user program needs to be examined to reduce communication tra
c�

All analysis is performed manually by the user with the assistance of multiple views of the

program data� One problem with this strategy is that even though it may identify the problem

and the corresponding processor� it cannot identify more speci	cally the block of code or message

in the program that needs to examined� Our analysis will identify the o�ending entry point�

thereby attention can be focussed on improving the utility�cost ratio for that entry point�

Heuristic � If an event x is determined to have poor granularity� then the severity of the

problem is �Ix
P

pN
p
x � Tx�	P � where Ix is the ideal granularity for entry point x


Justi	cation� Assume that Tx� the total computational time for entry point e cannot be altered�

Since the entry point has poor granularity� performance can be improved if the overheads of

executing the entry point is reduced� This is possible if the entry point is executed fewer times

with larger granularity� the easiest choice for granularity is the smallest acceptable granularity

Ix
�� The current overheads are Ix

P
pN

p
x � If each execution of the entry point has at least

the smallest acceptable granularity� then the entry point e will be executed Tx	Ix times� and

the total overheads will therefore be �Tx	Ix�Ix� which is Tx� Therefore the decrease in total

overheads will be �Ix
P

pN
p
x � Tx�� and so each processor�s execution time can potentially be

reduced by �Ix
P

pN
p
x � Tx�	P � �

The implications of utility analysis is di�erent for di�erent types of messages� For a message

which creates a chare� poor granularity might suggest that the computation intended for the

chare be subsumed� i�e�� be carried out by the creator chare itself� In contrast� it may not

be possible to subsume the computation in a message which is a request or a response to an

�A good choice for granularity is about ten times larger than the cost of creating the task�
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existing chare� for the necessary information may lie or be needed at the destination� In such a

case� the user may need to increase the granularity of the message by combining many messages

to the same chare into one larger message� if possible�

����� Runtime idiosyncrasies analysis

In high�level parallel languages� there are often idiosyncrasies in their implementation� In most

cases� the implementation details do not� and should not� matter� However in some cases�

knowledge of the implementation details can help solve mysterious performance problems� A

low�level� but illustrative example of a system idiosyncrasy was reported by Saini ����� On the

Paragon a program executed twice over ran faster the second time than it did the 	rst time� It

is necessary for an automatic performance tool to carry a list of such idiosyncrasies so that it

can inform users if their program is a�ected by one of them� In a system such as Charm� which

also provides many advanced features� such as automatic load balancing� quiescence� etc�� the

user must be willing to accept certain overheads� However� the system must inform the user

if the overheads of these underlying mechanisms outweigh their utility� and the user should be

advised against their use if at all possible� The following analyses are carried out in Projections

to determine Charm runtime idiosyncrasies�

�� Are there tasks which are too large grained� We saw earlier that tasks needed to have

a minimum granularity so that their utility exceeded the overheads of creation� How�

ever� tasks which are of large granularity can also cause problems in ways that may be

unexpected to the user� Since the execution of an entry method is atomic �it cannot be

interrupted until it is executed completely�� large grained tasks may occupy processor

resources� thereby causing delays in processing of small grained requests� possibly crit�

ical� by other processors� For example� in some load balancing libraries each processor

sends out messages to request work from other processors� If these messages are delayed

by a large grained task on the destination processor� the requesting processor may not

get work� Consequently the load balance may su�er critically� Similarly� requests for

data from distributed table are sent in the form of small grained messages� the delay in

servicing such requests will delay computation waiting for the reply�
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Some system tasks may be carried out through system interrupts �without violating atom�

icity for the user code�� However network interrupts are generally expensive on current

parallel machines� Therefore in programs where there are large grained entry methods

which cause such problems� the user must be informed that they be split into smaller

tasks�

�� Are there large sequential code portions� The execution of a Charm program starts at the

CharmInit entry point� where the user can create speci	cally shared variables� Charm

semantics speci	es that the value of all variables created inside CharmInit are available to

all other entry points� Since the user can create other computation inside the CharmInit

entry point� such computation needs to be delayed until the values of all speci	cally shared

variables created inside CharmInit are available on all processors� This is implemented

by having processor � broadcast an initialization message after the completion of the

CharmInit entry point� User computation begins on processors only after the initialization

message has been processed�

Since all processors wait until the completion of CharmInit� if the user performs a lot of

work inside CharmInit� it will result in the sequentialization of a large portion of their

code� The performance analysis tool should be able to detect this and inform the user�

Heuristic 	 If system idiosyncrasy analysis determines that the CharmInit entry point

was taking too long� then the severity of the problem is G�
CharmInit��� �

P
�


Justi	cation� One could obtain better parallel performance� if the computation inside

CharmInit entry point were distributed across all processors� resulting in
G�
CharmInit

P
com�

putation� The savings in sequential execution time would be G�
CharmInit� G�

CharmInit

P
� and

therefore the bene	t across P processors would be G�
CharmInit��� �

P
�� �

�� Is load balancing strategy useful� A user who does not need a load balancing strategy

�because the program does not have any dynamically created chares that need to be dy�

namically mapped� may still be paying for the overhead of a sophisticated load balancing

scheme that periodically exchanges load information� for example� By examining the

types of objects created �dynamically mapped vs� statically mapped�� we can recommend

against using a particular strategy in a particular program�
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�� Is quiescence useful� The overheads associated with quiescence include a periodic function

call and messages when processors go idle� The quiescence detection algorithm works

e
ciently with little overhead if the user program has few idle periods� However if the

user program does not need quiescence detection or if quiescence detection is active for

a large period of time� the user could be advised to omit quiescence detection or start it

late�

����
 Balance analysis

One of the most common performance problems in parallel programming is the imbalance in

the utilization of processors� This is specially true in the case of irregular applications where

the amount of work associated with a task is not easily determined� A processor�s time can

be divided into three types of activities� user work� overhead� and idle time� Balance analysis

attempts to evaluate whether each type of activity is balanced across processors� Note that

balancing any two of them will balance all three activities�

In previous work� balance analysis has been done by comparing the total amount of com�

putational time and overheads on di�erent processors� Our approach focuses on identifying the

speci	c task which is the cause of imbalance�

	������ User work

We have shown earlier in this chapter how the computation on a processor can be partitioned

according to the type of the message that caused it and the corresponding entry point that is

executed� An imbalance in user computation on a processor can occur only as the result of an

imbalance in computation corresponding to one or more entry points� Balance analysis can now

be more speci	c because it can compare the balance of work for di�erent types of messages� and

provide feedback about the sort of message that has imbalance in work� rather than just the

processor number� The computation associated with an entry point type e can be imbalanced

because of any of the following reasons�

�� The number of messages of type me are di�erent on two processors� or

�� The granularity of messages of type me are di�erent on two processors�
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In theory the load imbalance can be caused by any combination of the above reasons� However

in practice it is impacted most by one the above� In any case� it helps the user most if we can

identify the worst o�enders among the above�

There is one more aspect to comparing loads� because a straight�forward comparison of the

loads may not always produce useful analysis� Consider a program� where all processors do

an equal amount of computation� and subsequently participate in a spanning tree reduction�

In this case� the interior nodes of the spanning tree would process k messages� where k is the

branching factor� while the leaf nodes would process no messages� The analysis would then

needlessly identify these messages as the source of imbalance and delay�

However� we can eliminate such unnecessary feedback by determining from the pattern of

message passing whether balance analysis needs to be done for that particular message type�

In our analysis� we do not conduct balance analysis for messages addressed to an entry point

whose message passing pattern is that of a spanning tree reduction� On the other hand� we

always perform balance analysis for messages whose pattern is that of a ring or a chain �these

are de	ned in Chapter ��� A ring can be distinguished from the following message passing

characteristics�

�� In every logical step� each processor receives exactly one message� and

�� Each message travels through some or all of the available processors before arriving at

the processor from which it was originally sent�

An example of a logical matrix �de	ned in Chapter �� for a chain on � processors is shown in

Table ����

Processor Logical depth
� � �

� � � �

� � � �

� � � �

� � � �

Table 	��� The logical matrix for a cycle�
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Heuristic 
 If balance analysis determines the number of occurrences of an entry point x to

be unbalanced across processors� then the severity of the problem is �max�Np
x��

P
pN

p
x	P �Gx


Justi	cation� Assume that the total time of execution for entry point x� Tx� or the number

of messages for entry point x� Nx� cannot be altered� Performance can be improved if the

number of occurrences of the entry point are balanced� i�e�� each processor has
P

pN
p
x	P � In

that case the processor with the maximum number of occurrences� max�Np
x� of the entry point

x would have �max�Np
x��

P
pN

p
x	P � fewer messages to process� and hence the bene	t would

be �max�Np
x��

P
pN

p
x	P �Gx� �

Heuristic � If balance analysis determines the granularity of an entry point x to be unbalanced

across processors� then the severity of the problem is �max�Gp
x��

P
p
G
p
x

P
�Nx

P



Justi	cation� Assume that the total time of execution for entry point x� Tx� or the number

of messages for entry point x� Nx� cannot be altered� Performance could be improved if the

granularity of x were balanced� i�e�� each processor had
P

pG
p
x	P � In that case the processor

with the largest granularity max�Gp
x� of the entry point x would have �max�Gp

x��
P

pG
p
x	P �

less work to do� and hence the bene	t would be �max�Gp
x��

P
p
G
p
x

P
�Nx

P
� �

	������ Overheads

The overheads of system activity can be classi	ed into two categories�

�� System overhead� The overheads of background system activity due to libraries for load

balancing� quiescence detection� and speci	cally shared variables are classi	ed under li�

brary overhead�

�� Per message overhead� The overheads associated with a message for its creation� trans�

mission� and scheduling are classi	ed under per message overhead�

In addition to the balance desired for user work� it�s also essential that the overheads of user

work also be balanced� Thus� the overheads of a load balancing or quiescence detection strategy

should be balanced�

Heuristic � If balance analysis determines the system overheads to be unbalanced across pro�

cessors� then the severity of the problem is �max�
P

e�SystemNp
eG

p
e��

P
e�System�

NeGe

P
��
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Justi	cation� All Charm libraries are implemented as branch o
ce chares� and their work

can also be partitioned into entry points belonging to these branch o
ce chares� The anal�

ysis of severity for imbalance of system library overhead� then� becomes very similar to the

analysis for user work imbalance� Performance can be improved if the library overheads

were balanced� i�e�� each processor has

P
e�System

	NeGe


P
� In that case the processor with the

maximum overhead� max�
P

e�SystemNp
eG

p
e� would have lesser overhead� and hence bene	t� of

�max�
P

e�SystemNp
eG

p
e��

P
e�System

NeGe

P
��

	������ User work and overheads

Often the user partitions the set of available processors to perform heterogeneous tasks� so that

some processors may do user work� while others perform tasks involving large overheads� For

example� we were designing a hierarchical load balancing strategy� which used a multi�rooted

tree on the processors� The roots of the tree were responsible for the load balancing while the

other processors were responsible for user work� thus even though the roots did no user work

while the other processors had very little overhead� the sum of their overheads and user work

was balanced� In such cases� it�s necessary to determine whether the sum of the user work and

overheads of the processors are balanced�

	������ Memory usage

Another analysis which is useful for determining scalability �in terms of size of inputs that can

be used� is determined by the balance in memory usage� For example� in the hierarchical load

balancing strategy discussed above� some large data structures necessary for the strategy were

located only on the roots of the tree� Since the branching factor of each tree was �� and the

leaves were at the 	rst level� so in the worst case the strategy did not use as much as ���	���th

of the available memory� Consequently the size of the programs we could run were limited�

As a user� without a performance analysis tool� one will notice this problem only when the

program fails on a large size application� With performance analysis one would get advance

notice while running smaller problems that a memory imbalance problem exists�
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������ Locality analysis

It is well understood in parallel programming that local requests are faster than remote requests�

Remote requests take longer because they have to contend for system resources� such as network

or bus� and wait for remote processors to respond to their request� The performance of a parallel

program can be improved if a majority of requests are satis	ed locally� In locality analysis� the

system attempts to analyze how well the program maintains locality of requests during the

execution of the program�

One component of locality is to maintain processes that need to communicate on the same

processor� In general� this means that the system must examine the communication patterns

between all the processes and look for alternative placement of tasks which would reduce inter�

process communication� Charm provides the user with many di�erent load balancing schemes�

each with di�erent set of trade�o�s� the analysis must determine whether the mapping induced

by the dynamic load balancing scheme is appropriate to the requirements of inter�process com�

munication in the application� This is discussed in more detail in Section �������

������ Load balancing analysis

Charm permits chares to be created dynamically� and also provides runtime assistance for

load balancing of chares� Many di�erent load balancing strategies� such as� random� ACWN

�Adaptive Contracting Within Neighborhoods�� Manager� Token� and Receiver are available in

Charm� The user can choose to link their program with any one of these strategies�

The various load balancing strategies in Charm employ di�erent protocols to balance load�

Further� no single strategy is uniformly the best for an application� therefore it becomes neces�

sary to analyze a strategy�s performance� In addition to a metric for evaluating the e�ectiveness

of the load balancing strategy� other metrics to evaluate how well it maintains locality and its

overhead are also necessary� In this section� we discuss the metrics used to evaluate a load

balancing strategy�

	������� Load distribution e�ectiveness

The most obvious metric would appear to be the average utilization of processors� Let 
�t� be

the function which de	nes the number of concurrently executing tasks during the execution of
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the program at time t� Then the utilization of processors during a time interval �t�� t�� is given

by the expression�

�

t� � t�

Z t�

t�


�t�

P
dt

We have described before that a Charm program can consist of two types of tasks� one of

which is dynamically created and mapped� and the other which is statically mapped� Since both

these tasks contribute to the processor utilization� this metric is not su
cient to understand

the e�ectiveness of the load balancing strategy� We therefore separate 
�t� into 
s�t� and


d�t�� where the subscript s and d denote the static and dynamic components� Therefore� the

contribution to the utilization due to dynamically mappable tasks is given by the expression�

�

t� � t�

Z t�

t�


d�t�

P
dt

Now� consider the following scenario for two strategies�

�� 
d�t� $ � for the 	rst strategy and 
d�t� $ � for the second strategy�

�� 
s�t� $ � for the 	rst strategy and 
s�t� $ � for the second strategy� and

�� Both programs are executed on � processors�

The contribution to utilization is ���� for the 	rst strategy and ���� for the second strategy�

Notice that even though the ratio is better for the second strategy� it is not necessarily the better

strategy� because the overall utilization is better for the 	rst strategy� Thus the metric must

take into account the statically mapped tasks� If there are 
s�t� tasks being executed in the

system at any time t� then only P �
s�t� processors are available for dynamical load balancing�

The following metric provides a better estimate of the contribution towards processor utilization

by dynamically mappable tasks�

�

t� � t�

Z t�

t�


d�t�

P � 
s�t�
dt �����

However this metric is also not su
cient� Let �s and �d denote the number of available

static and dynamic tasks during the execution of the program� respectively� Now� consider the

following scenario for two strategies�
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�� 
d�t� $ � for the 	rst strategy and 
d�t� $ � for the second strategy�

�� 
s�t� $ � for both strategies�

�� �d�t� $ � for the 	rst strategy and �d�t� $ �� for the second strategy� and

�� Both programs are executed on � processors�

The contribution to utilization is ���� for the 	rst strategy and ���� for the second strategy�

Notice that even though the ratio is better for the second strategy� it is not necessarily the better

strategy� The reason is fairly simple� the ratio does not account for the degree of parallelism in

the program� Thus� even though the 	rst strategy utilizes the processors poorly� the problem

is due to the low degree of parallelism� and not necessarily because of the ine�ectiveness of the

load balancing strategy�

The following metric provides an indication of the e�ectiveness of load distribution�

�

t� � t�

Z t�

t�


d�t�

�d�t�
dt �����

One problem with the metric for e�ectiveness of load distribution is that it ignores the fact

that the maximum number of tasks that can execute at any given point in time cannot exceed

the available number of processors� It does not really matter if there are ���� available tasks�

because if there are only � processors� the maximum number of concurrent tasks can only be

�� Therefore a second indication of the e�ectiveness of load distribution is the modi	ed metric�

�

t� � t�

Z t�

t�


d�t�

min�P� �d�t��
dt

Note that we have cut o� the number of available tasks at the number of processors� However�

all processors may not be available to dynamically mapped tasks� since statically mapped tasks

execute on them� Thus� taking into account statically mapped tasks� the modi	ed second metric

for e�ectiveness of load distribution is the following expression�

�

t� � t�

Z t�

t�


d�t�

min�P � 
s� �d�t��
dt �����
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Note that Equation ��� reduces to Equation ��� when �d � P �
s� and reduces to Equation ����
otherwise� Thus Equation ��� models both processor utilization and the e�ectiveness of the

load balancing strategy�

Note that the metrics do not make much sense at the singularity points� e�g�� when �d�t�� $ �

at some time t�� We partition the program using such singular points� and compute the load

balancing e�ectiveness according to Equation ���� The value of load balancing e�ectiveness is

chosen to be � when the function being integrated has a singularity�

	������� Locality induced by strategy

Every time a task is sent to a remote processor� the strategy incurs the overhead of the send and

the latency of the transfer� Another important measure of the performance of a load balancing

strategy is the extent to which it schedules tasks locally� A good measure of locality is the

average number of hops that a piece of work travels under the control of the load balancing

strategy� The best scenario is one in which tasks do not make any hops� because the amount

of communication required is minimum� The random load balancing strategy in Charm always

sends out work to a randomly chosen processor� in this case the average number of hops traveled

by a task is always P��
P
� because if P chares are created the randomness ensures that one chare

will remain locally� In the ACWN strategy� a processor sends out work only if the load on one

of its neighbors is less than a threshold� which is dynamically determined according to the loads

on neighbors� In this case the number of hops can range from � to � �the maximum number of

hops that a task is allowed to travel�� with the average expected to be below � because chares

are not sent out when the system is in saturation�

	������� Overhead of load balancing messages

This quantity is the ratio of the number of messages used by the load balancing strategy to the

number of user messages� The random load balancing strategy uses no messages to communicate

amongst the branches of the strategy� so this number is �� The ACWN strategy uses messages to

communicate the load status on processors to their branches� these are exchanged periodically�

so their number is determined by the length of execution of the program and by the load on

processors themselves�
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	������� Priority balancing

Another metric which is useful in the context of speculative computations is the e�ectiveness of

the load balancing strategy in maintaining priority globally� This metric is computed by taking

an average of the global priority rank �amongst all the available messages at that time� of each

message when it is picked up for execution� Obviously� the smaller the rank� the more e�ective

is the priority balancing�

	������� Use of metrics

How does one use all these metrics to determine the best strategy� There is no straightforward

answer even if we consider computations with no speculative component� The least important

metric is the overhead of the strategy itself� for if the strategy distributes load e�ectively�

provides better processor utilization� and maintains locality� the overheads do not really matter�

Locality is an important metric because the strategy balances only messages to create new

chares� Subsequntly� all response messages to the chares are sent to the location where the chare

was created� Thus� even though the load balancing strategy may do an e�ective job� substantial

overheads may be incurred because each response message travels to a destination processor�

The most important metric in the analysis of a load balancing strategy is Equation ����

������ Degree of parallelism analysis

One critical e
ciency issue for a Charm program is providing su
cient number of parallel

tasks� The message driven execution model encourages a style of programming in which the

user creates an environment where each processor has more than one task to schedule� Since any

task can be scheduled in a message driven strategy� such a style will keep processors busy� Thus

a critical measure of program�s parallel potential is the degree of parallelism� or the number

of tasks available at any point in time� We use the following metric to evaluate a program�s

degree of parallelism�

�

t� � t�

Z t�

t�

�d�t�

P
dt
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������ Shared variable analysis

The nature of information sharing and the methods of access of the shared information often

a�ects the performance of the parallel program� It is therefore important to know about the

nature of shared variable access in parallel programs� The usage of the 	ve information sharing

mechanisms in an application program provides some insight into the nature of information

exchange in the program� This insight can be utilized to provide a more accurate analysis of

the performance of programs� Performance concerns that can be addressed when one knows

the nature of information sharing �through speci	cally shared variables� in a Charm program

are the utility of creating a shared variable and the nature of its accesses�

	������� Is it useful to create a shared variable�

An important analysis for a shared variable is to assess whether the cost of it is justi	ed by its

use�

�� If some information is represented as a read�only variable or a write�once variable� and

is not accessed often� the cost of replicating the variable on nonshared memory machines

might exceed the savings in access time� In such cases� it might be better to make the

variable into an entry in a distributed table� or to replicate it only on the processors that

need it�

�� If a monotonic variable is updated frequently� the spanning tree implementation should

be chosen� However� if it is updated rarely then the 	ooding implementation should be

chosen�

	������� Are shared variable accesses local�

Another aspect of locality is to keep accesses to shared variables local as far as possible� In

Charm� only the distributed table mechanism is subject to this analysis� The operations on

the remaining speci	c modes of information sharing have been chosen carefully so that most

accesses can be implemented with local accesses� The following analyses could be carried to

determine if the shared variable accesses are local�
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�� If some information is represented as an entry in a distributed table� and it is accessed

very frequently by many di�erent processors� analysis could suggest that the data be made

write�once�

�� If a large number of entries in the distributed table are accessed only once� it would

be most e
cient to locate their insertion and access on the same processor �the locality

principle�� where possible�

�� If an entry of a distributed table is accessed repeatedly on the same processor� then it

should be cached �the caching principle��

������ Critical path analysis

The critical path in a program�s execution is the longest computational chain in the execution

of the program� Since the events that lie on the critical path all add up to realize the longest

computational chain� it stands to reason that improving their computational performance will

shorten the length of the chain� In a parallel program� where the order of execution of events is

more indeterminate� it is not always the case that making the critical path shorter by making

the tasks that lie on it more e
cient will always mean a reduction in the execution of the

program� However� Hollingsworth et al ���� have shown that critical path analysis provides

much better results than some other sophisticated metrics�

Critical path analysis in Charm determines the longest computational chain �communication

costs are considered to be zero� in terms of the entry points which executed� This� then� exactly

determines the sequential portions of the code that need to be made more e
cient�

��� Wait event chain and its utility in analysis

A number of the techniques we de	ned in Section ���� such as balance analysis� tail end analysis�

or pipelining analysis� can be applied for every event in the execution of the program� However�

in practice� we have found it useful to apply the analysis for the small subset of events which

lie on the last event chain�

Figure ���� shows the scheme with which di�erent analysis techniques� discussed in Sec�

tion ���� are applied for the events in the last event chain� The broad idea behind last event
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ChainAnalysis�TASK LIST #list� f
int idle�
TASK #current� #previous�
for �current$list� current� current$previous� f
previous $ current�previous�
idle $ DetermineProcessorIdleTime�current��
if �Acceptable�idle�� continue�

�# we have identi	ed an event with unacceptable wait #�
�# check if its message passing has a problem pattern #�
if �SequentialChain�current��
previous $ SkipToBeginningOfChain�current��

if �Bottleneck�current�� continue�

switch �current�type� f
case NewChare�
�# dynamically mapped task� hence evaluate ldb strategy #�
evaluate ldb $ TRUE�
break�

case ForChare�
case BocMsg�
overlap $ DetermineOverlap�CreationTime�current��
BeginProcessingTime�current���

TailEndMessage�current��
Pipelining�current��
SchedulingAnalysis�current��
BalanceAnalysis�current��
break�

g
g

g

Figure 	���� Last event chain analysis�

chain analysis is to start the analysis with the last event in the last event chain� i�e�� the event

that 	nished last in the program�s execution� Starting from the current event we trace back

along the chain� until we arrive at an event which is scheduled on a previously idle processor�

Such an event identi	es an idle period on a processor� which when reduced will �likely� have

impact on the overall performance� There are two possibilities at this point�
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�� If the creator of the current event is also scheduled on an idle processor� it may have

added some delay on its own� in addition to propagating any prior delay�

�� If� the creator of the current event is not scheduled on an idle processor� then the delay is

either due to scheduling �Scheduling analysis� or other problems� such as large messages

�Pipelining analysis�� etc�

Using results from pattern analysis� we 	rst determine whether the message passing for an

event has the pattern of a bottleneck or a sequential chain� If it does� then this is recorded�

and the analysis continues with the previous event on the last event chain� For sequential

chain� analysis is simultaneously carried out on all events in the chain� Therefore� analysis for

the previous event is unnecessary if it is part of the sequential chain� therefore we skip to the

beginning of the chain� and continue the analysis�

If the event�s message passing pattern does not match that of a bottleneck or a sequential

chain� we proceed to analyze the event according to the type of message that created it� If it is

a new chare message� a boolean variable is set to indicate that load balancing analysis should

be carried� The analysis is more interesting if the event is a response message to an existing

chare or branch o
ce chare� In that case� tail end� pipelining� scheduling� and balance analysis

are applied to determine the performance problem�

��� Combination of di	erent analyses

The algorithm for automatic performance analysis uses many di�erent techniques to analyze

problems� Often analysis will suggest many di�erent strategies to improve performance� For

example� the analysis might determine a problem of low granularity with gain analysis and

simultaneously determine a problem of load imbalance with balance analysis� Sometimes the

analysis reports from two di�erent techniques will have a correlation� which indicates a more

severe problem� One must be able to automatically combine such analyses and provide a more

realistic feedback� We brie�y describe some combinations we have explored�

�� Balance and Tail end� Balance analysis may determine that the reason for poor perfor�

mance is that two processors have imbalanced loads� Tail end analysis may determine

that a processor idles because it received a message sent at the tail end of an entry point�
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The two analyses can be combined if the wait for a tail end message is increased because

the processor sending the message has considerably greater load than the destination

processor�

�� Balance and Pipelining� Again� balance analysis may determine that the reason for poor

performance is that two processors have imbalanced loads� Pipelining analysis may de�

termine that a processor idles because it receives a large message� The two analyses can

be combined if the wait for a large message is increased because the processor sending the

message has considerably greater load than the destination processor�

�� Runtime and Load balancing� A poor load balancing strategy will not only lead to idle

processors� but it could also cause quiescence detection to become active and interfering�

In such a case� one should report that the excessive overheads of quiescence detection are

due to a poor load balancing strategy�

��
 Related work

Gprof ���� was one of the 	rst tools to provide call�graph pro	ling� It measures time spent in

executing each procedure� and the fractions of that time spent in executing other procedures

called from it� This was proposed as a sequential tool� but is useful for analyzing the performance

of sequential code�blocks�

Critical Path ���� is the longest computational chain in a program� In the computation

of this metric� inter�process communication time is ignored� It provides a good idea of the

procedures that take the longest to execute� suggesting thereby that they must be improved in

order to improve the performance of the program�

Logical Zeroing ���� attempts to ascertain the improvement in the length of the critical

path by zeroing out the e�ects of a speci	c procedure� The scheme is simple� each procedure

is zeroed out� and the critical path is computed� the di�erence in the lengths between the old

and the new paths is the cost of improving that procedure� One should therefore target the

procedure which has the greated bene	t�

Quartz NPT ���� measures time spent in doing useful work �ignoring inter�process arcs�� For

each procedure� the metric is computed by adding the ratios of time spent in the procedure and

the degree of parallelism at that point� Essentially� the procedure is divided into periods with
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the same degree of parallelism� and then the ratio is computed for each period� and added up to

get the metric for the procedure� NPT uses elapsed time� and not the time spent in executing

the user process� One advantage of this method is that it realistically models events� such as

spinning on a lock or waiting for disk i�o� The disadvantage is that one cannot distinguish

between the time spent doing useful work and the time the application was not executing�

Slack ���� is a metric used to compute the bene	ts associated with improving a task on the

critical path� Often in addition to the critical path� there exists another secondary path� only

slightly smaller than the critical path� Because of this secondary path� 	xing the procedures

on the critical path� may not greatly reduce the program execution time� Slack attempts to

measure the inter�relationship between the critical path and other secondary paths�

In previous work in analysis� Jamieson ���� has used the characteristics of parallel algorithms�

in conjunction with the characteristics of parallel architectures� to provide an understanding of

how well the algorithm is suited to di�erent architectures�

Recently� Hollingsworth and Miller ����� have developed an approach called the W � model�

which attempts to reduce the amount of data traced for parallel program performance analysis

by intelligently activating the trace dynamically when and where it�s needed� Their model

attempts to make such decisions based on low level architecture�language characteristics� such

as lock�usage� semaphores� and barriers� and some generic high level characteristics� such as an

object�s wait�time for messages� Our approach deals with more program�speci	c characteristics

of the program� and will provide more language level suggestions for performance improvement�

Fahringer ���� has developed Weight Finder and P �T �Parameter based Performance Pre�

diction Tool� to predict the performance of Vienna Fortran programs� The tool works as follows�

�� First� a sequential pro	ling run of the program is performed� With this the tool col�

lects concrete and characteristic values for sequential program parameters� such as loop

iteration counts� true ratios� and frequencies�

�� Next� based on the sequential parameters� the tool computes parallel performance pa�

rameters� such as work distribution� number of transfers� transfer times� amount of data

transferred� network contention� and number of cache misses�

�� Finally� the information about the parallel program parameters are used to improve per�

formance of parallelizing compiler by predicting the impact of di�erent data distribution
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strategies� and the impact of various program transformation strategies� such as loop

fusion and interchange�

Their current approach has two limitations�

�� The performance prediction is based on the six parallel program parameters described

above� The relative importance of these parameters need to be identi	ed for each machine

by running a set of training programs� This identi	es the parameter one should look at

in the analysis� However� their strategy does not currently include techniques to choose

between con�icting results for parameters� For example� in comparing two strategies if

the amount of data transfer is less for the 	rst� but the cache misses are more for the 	rst�

then the strategy which needs to be selected is not clear�

�� There are always a number of optimization strategies that can be applied at any point

in time� Their work can accurately determine the e�ect of each individual optimiza�

tion strategy� However� they do not provide any information on the optimal order of

application of multiple strategies� This makes the information about the magnitude of

performance improvement less useful� it is easy to know that an optimization is useful�

however it is more di
cult to determine the order in which optimizations should be tried�

Fahringer ���� suggests that determining local minima is not feasible� and believes that a

backtracking strategy is su
cient�

��� Summary

In this chapter� we have presented a framework for automatic performance analysis� The

framework uses the event graph� its attributes and various performance analysis techniques�

We have also presented schemes to evaluate the severity of a performance problem� This

helps identify the most important performance problems� Performance analysis in Projections

is meant to assist the user by identifying signi	cant performance problems automatically and

suggesting possible improvements directly� such as the use of a di�erent load balancing strategy�

or a prioritization strategy� or to suggest remedies that may or not be possible depending on

the user�s application characteristics �e�g�� pipelining analysis��
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Chapter �

Case studies

In this chapter� we report our experience in using Projections to analyze the performance of

four applications�

�� Traveling salesman problem� A large portion of the analysis for the 	rst application� a

traveling salesman problem� was conducted using only the visualization component of

Projections� The analysis motivated the development of semi�distributed load balancing

strategies for balancing priorities� Recently� we evaluated the strategies we developed

earlier using the automatic analysis component of Projections�

�� Matrix multiplication� The second application is a matrix multiplication problem� which

was designed to illustrate the use of distributed tables� The analysis allowed us to improve

the performance of the algorithm considerably� It also motivated the development of a

caching library for distributed tables�

�� Multiple linear solvers� The third application is a multiple linear solver� This application

illustrates how incomplete information about a program can cause automatic analysis to

fail� It also illustrates the usefulness of the display component of Projections�

�� EGO� The fourth application is EGO� a parallel molecular dynamics program� Automatic

analysis suggested how the performance of the program could be improved� The analysis

was veri	ed using a model� however since the basic algorithm for EGO has been deter�

mined to be non�scalable in terms of its memory requirements� the future development

and integration of the analysis has been suspended�
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The 	rst two applications are chare based applications and use load balancing libraries�

while the last two applications are branch o
ce chare based applications� Together� they

demonstrate the usefulness of the performance analysis tool for irregular computations� such

as traveling salesman problem and for regular computations� such as molecular dynamics� In

the remainder of this chapter� we discuss our experiences with Projections for each one of the

above applications�


�� Traveling salesman problem

The initial analysis for this problem was carried out with the earliest version of Projections�

which only provided visual feedback about performance information speci	c to the Charm

execution model� Subsequently� the automatic analysis component was used on the 	nal version

of the load balancing algorithm that we developed�

The Traveling Salesman Problem �TSP� ���� is a typical example of an optimization prob�

lem solved using branch�bound techniques� In this problem� a salesman must visit n cities�

returning to the starting point� and is required to minimize the total cost of the trip� Every

pair of cities i and j has a cost Cij associated with them�

We have implemented the branch�bound scheme proposed by Little� et al ����� In Little�s

approach� one starts with an initial partial solution� a cost function �C�� and an in	nite upper

bound� A partial solution comprises a set of edges �pairs of cities� that have been included

in the circuit� and a set of edges that have been excluded from the circuit� The cost function

provides for each partial solution a lower bound on the cost of any solution found by extending

the partial solution� The cost function is monotonic� i�e�� if S� and S� are partial solutions and

S� is obtained by extending S�� then C�S�� � C�S��� Two new partial solutions are obtained

from the current partial solution by including and excluding the !best" edge �determined using

some selection criterion� not in the partial solution� A partial solution is discarded �pruned� if

its lower bound is larger than the current upper bound� The upper bound is updated whenever

a solution is reached�

In the Charm implementation of the branch�bound solution of TSP� each partial solution

is represented by a chare and the cost of the partial solution is the priority of the new�chare

message� A monotonic variable is used to maintain the upper bound� We term as useful
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messages all new�chare messages with cost less than the cost of the best solution� and as useless

messages all new�chare messages with cost greater than the cost of the best solution�

Figure ��� shows results of execution runs of a ���city TSP on a shared memory machine�

the Sequent Symmetry� The information is presented in terms of speedups and the number of

nodes �of the branch�bound tree� that are generated during the computation� A look at the

	gure shows that the number of branch�bound nodes generated remains almost constant in all

the runs� and the speedups are close to linear�
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Figure 
��� Speedups and the number of nodes generated for executions of an asymmetric ��
city TSP on the Sequent Symmetry�

The TSP application was executed on �� processors of an NCUBE�� with the ACWN ����

�adaptive contracting within neighborhoods� load balancing strategy� Figure ��� shows the

result of the execution of a ���city asymmetric TSP problem on an NCUBE�� with the ACWN

load balancing strategy�

Notice that we get nearly linear speedups in the case of the shared memory machine runs�

while in the case of the nonshared memory machine runs �with either load balancing strategy�

the speedups seem to saturate after � processors� Figure ��� show overviews of new chare

creation and processing over stages for the ACWN�

In Figure ���� note that even after the solution was found at about ���� seconds� many

new chare messages were still created� In our implementation� we prune at creation all useless

messages� Therefore these new�chare messages could be created only if there remained in the
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Figure 
��� Speedups and number of nodes generated for an asymmetric TSP problem on the
NCUBE�� using the ACWN load balancing strategy�

Figure 
��� Overall e
ciency and number of chares created and processed over the execution
of a branch�bound implementation of TSP on an NCUBE�� with the ACWN strategy�

system useful messages even after the best solution was found �� As the processor utilization is

�Note that in a traditional performance tool which shows sends and receives for messages� the plots would
have looked considerably di�erent� because they do not distinguish between the receipt of a message and its
scheduling� In this case� the plots shows scheduling of messages� and therefore we are able to make this analysis�
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close to ���' prior to this time� this must have happened because many useless messages were

processed before the solution was found�

Why are the speedups good in the shared memory implementation� In the shared memory

implementation� all processors share one priority queue of tasks� Therefore tasks are processed

in the order of their priorities� consequently very little useless work is done� and the amount

of speculative work is low� Since the total amount of work remains fairly constant even as the

number of processors increase� and since all processors are busy ��' of the time the completion

time is much faster�

Why are the speedups not good in the nonshared memory implementation� Since the

average busy time for each processor is ��' we can eliminate longer idle times �as the number

of processors grow� as a reason for poor speedups in the case of nonshared memory runs� In the

nonshared memory implementation� tasks are distributed across all processors� Non�prioritized

load balancing strategies do not balance priorities so that a lot of low priority messages �which

may be pruned in an optimal execution� may get processed on some processors� while there

are still high priority messages to be processed on other processors� This leads to a great

deal of speculative work which manifests itself in the increase in the number of branch�bound

nodes� In the case of both the random and the ACWN load balancing strategies� the number

of nodes increases by almost ���'� and speedups were not good  even though there are more

processors� there is more work �indicated by increase in number of nodes� to be done� hence the

completion time does not decrease in proportion to the increase in the number of processors�

The above results indicate that in such speculative computations it is important that nodes

be processed in the order of their priorities� Any e
cient prioritized load balancing strategy

should be able to ensure� as far as possible� that the processing of tasks occurs in the global

order of their priorities� A simple measure of how well the load balancing strategy follows the

above criterion is the variance in the number of nodes created with the number of processors

 the lesser the variance� better is the criterion being adhered to� and vice versa�

What should be the nature of a load balancing strategy so that tasks are processed in their

global order of priorities� Our experience with the centralized queue for tasks in the shared

memory model versus the completely distributed queues for tasks in the case of nonshared

memory models �using random and ACWN load balancing strategies� suggests that a prioritized
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load balancing strategy would perform better if it balanced load and priorities between partially

distributed queues�

We outline the development of a prioritized load balancing strategy assisted by Projections�

The 	rst step towards the development of a good prioritized load balancing scheme was a cen�

tralized load manager strategy� Clearly this strategy would not scale well  the load manager

would be a bottleneck� However� implementing and experimenting with this strategy allowed

us to con	rm the validity of the criterion mentioned earlier� and to determine the modes in

which the bottleneck occurs�


���� First Step� Load Manager Strategy

In this strategy one processor is chosen as the load manager� the remaining processors are its

managees� Managees send all new work to the load manager� The load manager is responsible

for the bu�ering of new work in a prioritized queue and assigning loads to each of its managees�

A managee keeps the load manager informed about its load status in two ways  	rst� by

periodically sending load information to the load manager� and second� by piggybacking load

information onto each piece of new work sent to the load manager� The strategy that the

load manager adopts in distributing load among its managees is to maintain the load on every

managee within a minimum and maximum allowable load range� Whenever a load manager

receives new load information about a managee� it sends it work only if the current load on the

managee is less than the minimum load  we de	ne the minimum acceptable load on a processor

as the leash size� The leash is used to keep managees busy with work� while the manager sends

it more work� We had expected that varying the leash size would make a di�erence� However in

all our experiments any leash size of greater than � performed equally well� One of the reasons

for this might be that the average granularity of work for the ���city case is about ��� seconds�

and this might be su
cient to mask the idle time needed for a managee to request work from

the manager�

Figure ��� shows the results of the execution of a ���city TSP with the Load Manager

strategy� Notice that the number of nodes have remained fairly constant� and the speedup is

almost linear� The execution with the Manager strategy took �� seconds� and a total of ����

partial solutions were generated� The optimal solution was found at ��� seconds� Figure ���

show overviews of new chare creation and processing over stages for the Manager case� Note
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Figure 
��� Speedups and the number of nodes generated for executions of a �� city asymmetric
TSP on the NCUBE�� using the load manager strategy�

that very few new�chare messages are created after the best solution is found indicating that the

load balancing strategy did a good job of balancing both the load and priorities of new�chare

messages� The Load Manager strategy works well up to �� processors� but its primary drawback

is that it is not scalable to many more processors� In fact� it failed to run for the problem at

hand for �� processors� The failures were due to too many messages per unit time� which lead

to an over�ow of the system message bu�er�

This motivated the next stage in the development of a multi�level prioritized load balancing

strategy� the multiple managers strategy� Multi�level strategies have been studied before�

Furuichi et al ���� present a strategy to partition the search of an OR�parallel graph in a

distributed and hierarchical fashion among various processors  some processors function as

sub�task generators and distribute the tasks among the remaining processors� One critical issue

in their strategy is the generation of sub�tasks of reasonable granularity  if the grainsize is

small� then the overheads of distributing would be substantial� if the grainsize is too large� then

there might not be enough work to distribute� The model of computation in ���� is di�erent

from ours� in their model tasks are generated at and divided by only the task�generators�

while in ours tasks can be generated at any managee� Ahmad and Ghafoor ���� have presented

a semi�distributed strategy for task allocation for regular topologies� such as hypercubes� as

an alternative to completely centralized and completely distributed task allocation strategies�
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Figure 
��� Overall e
ciency and number of chares created and processed over the execution
of a branch�bound implementation of TSP on an NCUBE�� with the Manager strategy�

Neither of the above strategies take into account the additional factor of balancing priorities of

tasks over processors�


���� Second Step� Multiple Managers Strategy

In the multiple managers strategy� the processors in the system are partitioned into clusters�

One processor in each cluster is chosen as the load manager� the remaining processors in the

cluster being its managees� Managees send all new work created on themselves to their corre�

sponding load manager� Each load manager has two responsibilities�

�� It must distribute the work among its managees� As in the load manager strategy� the

managees inform their load managers of their current work load by sending periodic load

information and piggybacking load information with every piece of new work they send

to the manager� The manager uses load information from its managees to maintain the

load level within a certain range for all its managees�
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�� It must balance both load and priorities over all the load managers in the system� This is

accomplished by an exchange of high priority tasks between pairs of managers� Each man�

ager communicates with a de	ned set of neighboring managers  in our implementation

the managers were assigned positions in an n�dimensional cube� and the neighbor relation

was de	ned as neighbors in the cube� An exchange of tasks between a pair of managers

occurs in two steps� In the 	rst step� the managers exchange their load information� In the

second step each manager sends over some tasks to the other manager� Even if the loads

are balanced� the managers exchange a 	xed number of high priority tasks  this does

the priority balancing� Further� if the loads are unbalanced� the manager with greater

load sends to the manger with the lesser load additional tasks  this does the task�load

balancing� Note that the tasks exchanged are the highest priority tasks on each manager�

We have experimented with a strategy in which one half of the top priority tasks were

exchanged� but this resulted in a degradation in performance� perhaps because of the cost

of determining the top half elements� We can intuitively explain why exchanging the top

priority tasks might be su
cient� the managees of each manager are already working on

the top priority elements on their load managers� which are likely to generate new high

priority tasks� Therefore an exchange of work between managers causes a distribution of

the top priorities between two managers and their managees�
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Figure 
�	� Speedups and the number of nodes generated for executions of a �� city asymmetric
TSP on the NCUBE�� using the multiple managers strategy� In this case the cluster size is �
processors�
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Figure ��� shows the results of runs of a ���city TSP with a multiple managers load balancing

strategy� The speedups were good for ��� processors� but thereafter the number of nodes

increased sharply� and the speedup remained unchanged� One of the reasons might be that

there was not enough new work at the managers �� In that case the priority balancing would

not be e�ective causing expensive nodes to be processed early� In the example in Figure ���

approximately ���� nodes were expanded for ��� processors� which works out to �� nodes per

processor for the ��� processor case and only �� nodes per processor for the ��� processor

case for the entire duration of the computation� which does seem to be a small number of

nodes on each processor� In order to con	rm our analysis we ran the TSP program for a larger

problem size� The results for the ���city run of the TSP are shown in Figure ���� Actual times

are provided� instead of speedups� because the program did not run on a single processor due

to insu
cient memory� The results show better speedups till ��� processors and con	rm our

analysis�
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Figure 
�
� Speedups and the number of nodes generated for executions of a �� city asymmetric
TSP on the NCUBE�� using the multiple managers strategy� In this case the cluster size is ��
processors�

The multiple managers strategy scales up reasonably well to ��� processors� Could we

have used larger problems and obtained speed�ups for even more processors� Probably� yes�

However� we ran out of memory for larger problem sizes� The reason for this is that there is an

�Note that the automatic analysis component of Projections would have identi�ed this problem using the
degree of parallelism analysis�
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imbalance in the memory requirements of the load managers and the managees in the multiple

managers strategy� The imbalance arises because all newly created work is queued up at the

load managers� This poses problems because the amount of new work that can be created

becomes limited by the number of managers and their available memory� even though there is

a larger amount of memory available on the managees �assuming all processors in the system

have equal amount of memory� and that there is more than one managee for each manager��

Our 	nal load balancing strategy attempts to balance the memory requirements of the load

manager and the managees�


���� Third Step� Token Strategy

The token strategy is very similar to the multiple managers strategy� The processing elements

in the system are split up into clusters  one processor in each cluster is chosen as the load

manager� the remaining processors are its managees� New work created on managees is stored

in hash�tables on the processor itself� while a token containing the priority of the new work is

sent to the load managers� The load managers balance tokens and priorities among themselves

by exchanging their high priority tokens  a 	xed number of tokens is always exchanged

to accomplish priority balancing� while some more tokens may by exchanged to balance the

number of tokens on the load managers� Each managee informs its manager of its load by ���

piggybacking load information with each token it sends to the manager� and ��� periodically

sending load information� When a manager decides that one of its managees �say M� needs

work� it selects the highest priority token on it� and sends a request to the processor that

generated �and stored� the work corresponding to the token asking for the work to be sent to

M �

There were two problems that we anticipated with the token strategy�

�� In the manager and the multiple managers strategies� new work traveled two hops  one

hop for the work to be sent to the manager and another hop for the work to be sent from

the manager to a managee �ignoring the number of hops a message might take because of

load balancing�� In the token strategy� each piece of new work causes three hops  one

hop for the token to be sent to the manager� one hop for the manager to send managee a

request to send work� and a third hop for the work to be sent�
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�� There may be a delay in a processor responding to a request to forward work it owns

because it may be busy executing user work� which is non�preemptible in the Charm

execution model ��

We had hoped that the second problem could be mitigated if we managed the leash size so that

the managees had some work to do� while work was being sent to them however� experimental

results indicate that any leash size of greater than � performed equally well�

Figure ��� shows the execution times and the number of nodes generated for runs of a ���

city asymmetric TSP on the NCUBE�� with the token strategy� The results are comparable

to those obtained with the multiple managers strategy� The advantage of using tokens in the

token strategy case was countered by the disadvantage of each message traveling three hops�

compared to two hops for the multiple managers strategy� The token strategy� however� is

superior when it comes to solving larger problems because it utilizes the available memory

much more e
ciently�
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Figure 
��� Execution times and the number of nodes generated for executions of a �� city
asymmetric TSP on the NCUBE�� using the tokens strategy to balance load� In this case the
cluster size is �� processors�

Figure ��� shows the execution times and the number of nodes generated for runs of a ���city

asymmetric TSP on the NCUBE�� with the token strategy� Notice that the number of nodes

generated in this case are fairly constant for up to ��� processors and the speedups are good�

�Newer versions of Charm circumvent this problem on some machines by using a system level interrupt�
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Figure 
��� Execution times and the number of nodes generated for executions of a �� city
asymmetric TSP on the NCUBE�� using the tokens strategy to balance load� In this case the
cluster size is �� processors�

How good is the token strategy� The results of execution runs of the �� city asymmetric TSP

seem to indicate that the number of nodes created remains nearly constant with the number

of processors� Is there any room for further improvement� In order to answer these questions

we need to examine two quantities� the amount of wasteful work done and the fraction of time

spent waiting for new work by each processor�

We have attempted to estimate the amount of wasteful work done by determining the

distribution of nodes in terms of cost over time of the nodes created and processed in the

execution runs of the ���city TSP problem� Table ��� shows the number of useful and useless

nodes created and processed for various stages of the program execution for two separate runs

of the �� city asymmetric TSP� In the 	rst run� A� the initial upper bound is selected to be

in	nite� while in the second run� B� the initial upper bound is selected to be one unit greater

than the cost of the best solution� In our implementation� we prune at creation all nodes with

cost greater than the current upper bound� Since the initial upper bound is one unit greater

than the cost of the best solution� no useless nodes are created in run B� Note that in Table ���

the number of useless nodes created in Run B are more than zero� This is because we have

counted nodes whose cost equals the cost of the best solution as useless nodes�

An examination of the distribution of the number of nodes processed before the best solution

in case of Run A shows that the number of useless nodes processed are very few� and the
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Nodes Created Nodes Processed

Before Soln� After Soln� Before Soln� After Soln�

Useful Useless Useful Useless Useful Useless Useful Useless

����� ����� ��� ���� ����� ��� ���� �����

Initial Upper Bound� INFINITY ��������
Time 	rst solution was found� ������ ms
Time 	nished� ������ ms

�A�

Nodes Created Nodes Processed

Before Soln� After Soln� Before Soln� After Soln�

Useful Useless Useful Useless Useful Useless Useful Useless

����� ���� ��� ��� ����� � ���� ����

Initial Upper Bound� ��� �optimal�
Time 	rst solution was found� ������ ms
Time 	nished� ������ ms

�B�

Table 
��� Number of useful�useless nodes created�processed� before�after the best solution
was found�

number of useful nodes are substantially more� This means that very little wasteful work is

done before the best solution is found� However� the number of useless nodes processed after

the best solution is found is considerable  is this wasteful work� The answer is no� because

these nodes were created before the solution was found when the upper bound in this case was

in	nite� and they are simply being picked up and discarded after the best solution was found�

This analysis is con	rmed if we repeat the above run with an initial upper bound which is one

greater than the cost of the best solution� In this case �Run B�� the distribution of costs of nodes

processed before the solution was found look very similar to the results in Run A� However� the

number of useless nodes processed after the solution was found are substantially less than the

corresponding number in Run A  much fewer useless nodes are created in Run B� because

our implementation prunes all useless nodes at creation time� This reduction manifests itself

in a faster 	nish time� though the time to 	nd the 	rst solution remains virtually unchanged�

The time spent in wasteful work before the best solution is found is a small fraction �� �'�

of the time spent in doing useful work� The next quantity  fraction of time spent in waiting
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for work by processors  was determined to be an average of less than �' for each one of the

managees� These two quantities indicate that the token strategy performs fairly well� though

some small improvement might be possible�


���� Fourth Step� Aperiodic Strategy

Later� when the automatic analysis component of Projections was ready we ran it on the token

strategy for a �� city TSP problem on a network of � workstations� The analysis� shown in

Figure ����� indicated the following problems existed with the load balancing strategy�

�� The load balancing strategy was not performing e�ectively� i�e�� even though there was

work available� processors were still idle�

�� As a result of poor load balance� many processors were idle� which resulted in the quies�

cence detection algorithm being turned on excessively� This happens because the quies�

cence detection algorithm is adaptive� and becomes active only when processors become

idle� Since the load balance was not adequate� it left many processors idle� Therefore�

the quiescence detection algorithm became unnecessarily active�

A look at the creation and processing of new chare messages in the overview� shown in

Figure ����� showed the cause of the problem� The priority balance seemed to work� because no

new chares �with low priorities� were created after the initial burst� However� the performance

of the load balancing scheme is poor after the solution is found� The reason for this poor

performance is the periodic component built into the strategy� A managee has two ways of

letting the manager know of its status�

�� Each managee periodically sends its status to the manager�

�� Load status is piggybacked onto each message carrying a token sent to the manager�

Upon receiving status update from a node� the manager sends the managee work if its load

is poor� In the 	nal stages of the algorithm� when the solution has been determined� no new

chares are generated� Therefore the only mechanism available for a managee to inform its

manager of its status is the periodic message� After the solution has been determined� work

on the managees is of small granularity� because it consists mostly of examining and discarding

messages� Thus a managee 	nishes its work quickly and waits until its periodic message is sent
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Figure 
���� Analysis for the execution of a ���city TSP problem on a network of � worksta�
tions using the token strategy�

to the manager to receive more work� This explains the peaks of processing after the solution

has been found�

In the new aperiodic strategy� we eliminated periodic status updates� Instead� now status

information is sent to the manager whenever the load becomes poor on a managee� As a

result� the best solution in the �� city case is determined in ���� milliseconds and the entire

branch�bound tree is searched in ���� milliseconds� In comparison� for the periodic version of

the token strategy the best solution in the �� city case was found in ���� milliseconds� and the

entire branch�bound tree was searched in ���� milliseconds�

Figure ���� shows the creation and processing of the entry point for branch�bound� Notice

that now the execution 	nishes soon after the best solution is found �approximately where the

creation graph dips sharply�� Also notice that the branch�bound part of the computation

seems to occur more at the end now� The reason for this� as con	rmed by the analysis in
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Figure 
���� Number of branch�bound nodes created and processed in the execution of a
���city TSP problem on a network of � workstations using the token strategy�

Figure ����� is the CharmInit entry point� The input data is read in the CharmInit entry point�

and as pointed in the analysis in Figure ���� that accounts for a large performance loss�

In Section ������ we saw that the multiple managers strategy out�performs the token strategy

for certain problems� We attribute the superior performance of the multiple managers strategy

to the fewer hops taken by each message� Some of the delays due to extra message hop in

the token strategy can be reduced by caching work corresponding to the best tokens on the

managers� We would to like to investigate the e�ect of caching high priority nodes on the

managers on the performance of the token strategy�
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Figure 
���� Number of branch�bound nodes created and processed in the execution of a
���city TSP problem on a network of � workstations using the aperiodic token strategy�


�� Multiple linear solver

We considered an application which tries to solve n independent sparse penta�diagonal systems

using the Gauss�Siedel �red�black� iterative method ���� Such computations arise in unsteady

�uid �ow calculations� Since the systems are di�erent �and have di�erent boundary conditions��

they converge at di�erent rates� In the Charm implementation� the solutions of all the n systems

were carried out simultaneously  this was done so as to exploit the possibilities of overlap

provided by message driven execution� The solution of each system goes through multiple

iterations� In each iteration� a processor exchanges data with its neighbors� computes upon the
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Figure 
���� Analysis for the execution of a ���city TSP problem on a network of � worksta�
tions using the aperiodic token strategy�

data it has received� participates in a global reduction on the new values� and then starts the

next iteration on receiving the result of the reduction�

Figure B�� shows a picture of some of the Projections views of the program�s execution

trace� The expert analysis informed us that the critical path analysis indicated improvement

if certain entry points lying on the critical path were prioritized� However even though many

entry points were listed on the critical path� only two were listed as potentials for prioritization�

The timelines for this trace provide an explanation for this analysis�

Figure ���� shows timelines for stage � �one of the 	rst stages of the execution of the

program� and stage �� �one of the last stages of the execution of the program�� The timeline

on the left corresponds to the former� and the timeline on the right corresponds to the latter�

The dark�blocks are reduction phases in the execution� The timeline on the left shows that the

processors continue solving other systems� while reduction is being carried out for one system�

Consequently� there is high degree of overlap in stage � �and most of the stages during the

beginning stages of execution�� In the timeline on the right� one notices that processors idle
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Figure 
���� Timelines for some processors for stages � and �� of the program execution�

while the reduction is being carried out� This occurs because only one system remains to be

solved at the very end� and therefore there is no possibility of overlapping the reduction with

the solution of other systems�

Critical path analysis� therefore� correctly identi	ed the critical tasks �the ones solving the

last system�� however the same tasks were also identi	ed as non�critical� This occurs because

the program uses the same object and the same entry points to solve all the systems� Therefore
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the analysis could not suggest an e�ective prioritization scheme on its own  CharmInit and

Init are initialization entry methods and are executed only once�

This example illustrates the usefulness of critical path analysis� It also illustrates that the

limitations of any expert analysis comes primarily because the user often re�uses code blocks for

di�erent portions of the computation� which the analysis tool needs to comprehend in order to

be able to completely analyze the program� This could be overcome if the tool had additional

information of the structure of the object itself�

Of course� automatic analysis assists manual analysis in such cases� too� In this case� it

informed the user that the critical path was the problem and identi	ed the speci	c entry points

on the critical path�


�� Matrix multiplication

In this section� we will illustrate the use of automatic analysis with a simple example� matrix

multiplication� There are many di�erent and sophisticated matrix multiplication algorithms�

For simplicity� we have chosen the basic O�n�� algorithm� In the parallel implementation� the

result matrix �AxB� is divided into rectangular blocks� and each block is computed in parallel�

The computation of each block will need multiple rows of A and multiple columns of B�

Figure ���� shows a Charm implementation of a dynamic formulation of matrix multipli�

cation� The chare mult computes a rectangular block of size row grain x col grain� Since the

size of each rectangular block is the same� the number of �oating point operations computed

by each chare is exactly the same� However� a Charm program can be executed on a network

of workstations� where the di�erences in the speeds of the individual workstations can cause

even uniform tasks to take non�uniform amounts of time� Therefore this program employs

dynamic load balancing� But� a load balancing strategy that dynamically places chares on

processors as the program executes makes it impossible to estimate the sets of rows of A and

columns of B that would be needed on a particular processor� A trivial solution would be to

replicate matrices A and B on all processors� the obvious problem with this approach is that

the program is not scalable to large input matrices� The distributed table abstraction can be

used to solve this problem� The rows of A and the columns of B are stored� using the Insert

call� as entries in distributed tables� row table and col table� respectively� Figure ���� shows the
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table row table� col table�
readonly int rows� cols� row grain� col grain�

chare main f
entry CharmInit� f
for �i$�� i�rows�row grain� i%%� f
get row�i� row grain� row��
Insert�row table� i� row�� g

for �i$�� i�cols�col grain� i%%� f
get column�i� col grain� col��
Insert�col table� i� col�� g

for �i$�� i�rows� i%$row grain�
for �j$�� j�cols� j%$col grain� f
msg $ �MSG #� CkAllocMsg�MSG��
msg��row index $ i�
msg��col index $ j�
CreateChare�mult� mult(start� msg��

g g g

chare mult f
entry start� �message MSG #msg� f
recd rows $ recd cols $ ��
index $ msg��row index�
Find�row table� index� row cont� me��
index $ msg��col index�
Find�col table� index� col cont� me�� g

entry row cont� �message TBL MSG #msg� f
recd row$�� store row�msg��data� row�� PrivateCall�continue���� g

entry col cont� �message TBL MSG #msg� f
recd col%%� store col�msg��data� col�� PrivateCall�continue���� g

private continue�� f
if ��recd row �� recd col�� f
dot product�result� row� col��
index $ row index#cols%col index�
Insert�result table� index� result��

g g g

Figure 
���� A matrix multiplication implementation�

matrices A and B being inserted in the CharmInit entry method of the main chare� Each entry

of the distributed table is a user�speci	ed number of rows�columns� in this case each entry is

either row grain number of rows or column grain number of columns� The chare mult is used to
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compute a block of the result matrix� When it is 	rst created �start entry point�� the chare uses

the Find call to get the necessary rows and columns� Computation of entries in the particular

block of the result matrix is done when both the rows of A and the columns of B have arrived�

Once the result is available� it is inserted into a distributed table result table from where it can

be accessed in a subsequent phase of computation�

Machine Time �ms�

CM�� ��� pes� ����

Network �� pes� �����

Analysis� poor granularity�
Solution� increase granularity�

�A�

Machine Time �ms�

CM�� ��� pes� ���

Network �� pes� �����

Analysis� imbalance of table entries� duplicate accesses� imbalance of table inserts�
Solution� Use better hash function for balance

�B�

Machine Time �ms�

CM�� ��� pes� ���

Network �� pes� �����

Analysis� imbalance of table inserts�
Reason� Inserts are imbalanced because they all occur in CharmInit�

�C�

Table 
��� Sequence of results for di�erent versions of the matrix multiplication implemen�
tation as analysis is applied and the program is changed to account for various analyses� All
times are in milliseconds for multiplying two ���x��� matrices�

Table ��� shows the performance of di�erent versions of our algorithm as the analysis was

used to improve its performance� The initial results are shown in Table ����a�� The analysis

informed us that the main problem was that the granularity of tasks �in particular� for the
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entry point that did the matrix multiplication� were too small� Our 	rst modi	cation was to

run the program with larger granularity� this was done by letting each chare compute a bigger

block of the result matrix� In this case the size of the block that each chare computed was

increased from �x� to ��x�� �by changing row table and col table from � to ���� Table ����b�

shows the timings with this change� One interesting note to add is that the granularity of tasks

for best performance was about the same on the CM�� and the network of SUN workstations�

This is not surprising because even though the CM���s processor was about � times faster than

the SUN workstation processor we were using� it was balanced by the CM�� communication

network which was �� times faster than the SUN�s ethernet connection�

The automatic analysis for the modi	ed program showed that the main problems were

imbalance of table entries� duplicate accesses� and imbalance of table inserts� In the next round

of changes� we were able to make the distribution of table entries balanced across processors by

choosing a better hash function for the tables� Further simultaneously enabling caching �using

the caching system library provided in Charm� of shared variable accesses �to reduce duplicate

accesses� resulted in the timings shown in Table ����c�� The times for the same program without

enabling caching were almost the same� caching did not provide any real performance bene	t in

this program� However caching reduced the amount of redundant storage because of concurrent

retrievals of the same shared variable on each processor� consequently larger problem sizes could

be run�

The 	nal analysis still showed some problems about the imbalance of table requests� This

is so because all our inserts into the distributed tables� row table and col table� occurred in

CharmInit� which is executed only on processor �� For these small machine con	gurations this

is not a signi	cant problem� However in larger problems� it would be useful to distribute the

inserts across all processors�


�� EGO� A parallel molecular dynamics algorithm

In molecular dynamics simulations� a large fraction of the computing time is spent in the eval�

uation of Coulomb and van der Waals forces� both involving O�N�� �oating point operations�

where N is the number of atoms in the molecule� The Coulomb forces� which describe the

electrostatic interactions in a homogeneous dielectric environment depend on the charges qi
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and qj of pairs �i�j� of atoms and on the corresponding vector �rij $ �ri � �rj joining the atoms

at positions �ri and �rj � The force between atoms i and j acting on atom i is

�Fij $
qiqj�rij
�
�r�ij

� �����

The evaluation of the remaining interactions� namely bonded� in case of large polymers� con�

sumes only a small fraction of computer time� Further the van der Waals forces are compu�

tationally very similar to the Coulomb forces� Therefore� we examine only the evaluation of

Coulomb forces�

Since the evaluation of long�range pair interactions is the computationally most demanding

part of a simulation� this task needs to be accelerated� EGO employs two techniques to reduce

the O�n�� operations needed to compute the electrostatic forces�

�� From Newton�s law� the force between atoms i and j acting on atom j is

�Fji $ � �Fij � �����

Using Equation ���� it is not necessary to compute both �Fij and �Fji� therefore it is possible

to cut down the computation time to about one half by avoiding redundant computations�

�� In order to gain a substantial speedup� EGO uses a new distance classing algorithm ����

to account for long�distance interactions� The algorithm classi	es each pair of atoms

into one of eight distance classes according to the distance between the atoms in the

pair� It then evaluates the Coulomb forces for atom�pairs in the closer distance classes

more frequently than the forces for atom�pairs in farther distance classes� thus avoiding

unnecessarily frequent computations of interactions between particles which are far apart�

The algorithm is closely related to the multiple�time scale �MTS� algorithm suggested

in �����

The interactions between any pair of atoms are mutually independent� Hence� the atoms

of a biopolymer are distributed over the available set of processors� each processor computing

the interactions corresponding to the set of atoms local to it� The atoms assigned to a speci	c

processor will be referred to as the 
own� atoms of that processor� all other atoms are the


external� atoms� For a discussion of the computational task of a processor we separate the
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Coulomb force Fi on atom i into two contributions

�Fi $
X

�own�
atoms j

qiqj�rij
�
�r�ij

%
X

�external�
atoms k

qiqk�rik
�
�r�ik

� �����

In order to evaluate the 	rst contribution the processor needs to know only the coordinates of

its 
own� atoms j� The second contribution� however� requires knowledge of the coordinates of

all 
external� atoms k� Each individual term of the second sum is referred to as a partial force�

These coordinates are passed around the processors in such a way that any time coordinates

pass by� a processor uses them to complete computation of the total force �Fi that acts on its


own� atoms�

on self, and then send out
two packets, one with all

interactions and the other
only with bonded atoms
for bonded interactions processors which bond with

my atoms, compute bonded
forces and send them back.

previous processor in ring,

and send to next processor
in ring.

complete

compute energy,
participate in global

receive broadcast
from processor 0
with new energy values,
and update coordinates.

reduction on energy,

for bonds

Calculate all bonded and

coordinates for Coulomb

Coulomb forces for atoms

compute Coulomb interactions,

Receive coordinates from

Receive coordinates from all

Ring is

Receive forces

Integrate forces,

Figure 
��	� Program �ow in EGO�

Figure ���� shows the computational structure of the EGO program� An integration step

begins with each processor computing the electrostatic forces for atoms it owns� Subsequently� it

sends out two messages� one containing coordinates of all its 
own� atoms to the next processor

on the ring� and the other containing coordinates of its 
own� atoms for which their bonded

partners lie on other processors� The 	rst message goes around in a ring� such that each

processor computes the pairwise interactions between its atoms and the atoms in the message�

This computation ceases when the message returns to the originating processor� For the second

message� each processor waits until it has all information about the bonds for its atoms� It then

computes the bonded forces and sends them back to the processors whose atoms participate in
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the bonds� Once the bonded forces and the pairwise message arrive� each processor does a local

integration to determine the local energies� followed with a reduction to determine the global

energy� and 	nally receives the new energy in a broadcast from processor �� The next integration

step begins after each processor uses the new energy values to compute new positions�

Figure 
��
� Analysis report for experimental model of EGO�

Our initial performance studies con	rmed that most of work involved computing the elec�

trostatic forces� In order to easily study the e�ects of various techniques on performance� we

conducted our studies on an experimental model� In the experimental model� we stripped out

all i�o and bonded computations� and simulated the computation and message sizes for only the

Coulomb interactions� The analysis given by Projections for the model appears in Figure �����

Projection�s analysis showed that the biggest performance problem was the large message being

sent at the end of the entry point that computed the Coulomb interactions �NextComputation��

and performance could be improved if the message could be sent earlier�

The message which arrives at the NextComputation point contains coordinates and forces

for all the atoms of a processor earlier in the ring� Since the coordinates do not change� they

can be sent to the next processor in the ring right away� However� the values of the forces in
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the message need to be updated to account for the forces due to the atoms on that processor�

Therefore� the forces need to be sent out only after they are updated�

The 	rst optimization involved breaking up the message that arrives at the NextComputation

entry point� The smaller part of the message containing the coordinates is sent out immediately

to the neighbor� while the larger packet containing the forces computed in that entry point are

sent out only at the end� The performance of the program improved from ��� seconds to ���

seconds� an improvement of about ��'�

Figure 
���� Analysis report for experimental model after 	rst optimization�

We had expected the large message containing the forces sent at the end of the NextCom�

putation entry point would also pose a performance problem� However� the analysis� shown in

Figure ����� indicates little possibility of further improvement in the program� Why doesn�t

this large message sent at the end of the NextComputation entry point pose a problem� The

amount of computation dependent on this message containing forces is substantially less than

the amount of computation depending on the message containing coordinates� Therefore� de�

laying the force message does not delay a large amount of computation� it only adds some

latency� which is e�ectively overlapped by the large computation triggered by the coordinate

message�

���



Chapter 	

Conclusion

Performance tuning of parallel programs is a complex problem� It is clearly desirable to provide

the programmer with system support for this purpose� This is particularly true if parallel

programming has to become a broad based activity involving a large number of programmers

whose primary area of expertise is likely to be in an application domain and not in performance

tuning of parallel programs� This thesis has explored a possible approach in this direction�

Most current performance tools provide visual or aural feedback about generic performance

parameters� such as utilization and network tra
c� Further� most tools target the SPMD model

of computation� In this thesis� we focused on the performance of parallel programs written in an

object�based and message�driven paradigm� New language�speci	c visual feedback techniques

become necessary for this purpose� because the execution model of a message�driven program

is signi	cantly di�erent from that of the SPMD model of execution� Further� automatic perfor�

mance analysis becomes feasible for such a model because it provides considerable information

about a program�s behavior�

One of the essential ingredients for automatic performance analysis is a language with

high degree of speci	city �a language for which information about program behavior is readily

acquired�� The Charm language was used for this purpose in this thesis� As illustrated in

Chapter �� a performance analysis system can acquire information about the behavior of a

Charm program through one of the following mechanisms�
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�� Language constructs� such as messages and chares� provide information about placement

and granularity� Further� as described in Chapter �� we developed speci	c information

sharing mechanisms that provide more information about shared data�

�� System libraries� such as quiescence� load balancing� and queuing strategies� provide more

information about points of global synchronization� placement� and scheduling of tasks�

Based on these mechanisms� detailed information about a program�s behavior can be col�

lected� In Chapter �� we described the construction of the event graph by combining compile

time information and run time traces� The event graph is a rich data structure containing

substantial amount of information about program behavior� We also discussed two problems

in the obtaining traces� asynchronous clocks and perturbation due to tracing� We solved the

problem of asynchronous clocks with a restricted post�mortem simulation of the program�s ex�

ecution� which generates approximate real time order� We developed a replay�based technique

which reduced the amount of perturbation in a program by as much as half in some cases� with

this strategy the 	rst run of the program is used to collect timing information and minimum

traces needed for replay� and the second run is used to collect extensive performance data� The

tracing for replay perturbs the program by about �' in most cases� Once the event graph has

been constructed� it is used to provide program and language speci	c performance feedback

and automatic analysis�

The visual component of the performance analysis tool for Charm� described in Chapter B�

provides feedback speci	c to the Charm execution model� such as creation of chares and over�

heads of quiescence detection and load balancing� Visual feedback also includes program speci	c

information� such as the numbers and granularities of various methods in chares�

Automatic analysis is carried out by splitting the event graph into logically independent

phases� The performance of a logically independent phase can be analyzed and improved in�

dependent of the rest of the computation� because it has no e�ect on the computation that

follows it� We described algorithms to compute logically independent phases in Chapter ��

Performance analysis carried out for each logically independent phase is diagnostic� various

performance analysis techniques are triggered o� on the basis of di�erent program behavior�

The analysis is focused by restricting attention to a small subset of events in the whole com�

putation� The subset of events we consider are those included in the last event chain in the
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computation� The last event chain of the computation is the union of the last event chains

in all logically independent phases� The last event chain in a logically independent phase is

constructed by starting with the event that completed last in the phase and tracing through

its chain of creators to the 	rst event in the phase� The last event chain is a representa�

tive component of program behavior� and improving the performance of events lying on that

chain will normally lead to improvement in the turnaround time of the program� The algo�

rithm for the construction of the last event chain is described in Chapter �� The performance

analysis techniques we developed diagnose well�known problems� such as load imbalance� and

other problems� such as scheduling analysis and pattern analysis� Various performance analysis

techniques are described in Chapter �� The automatic analysis infrastructure thus consists of

the following� an algorithm to partition the execution into logically independent phases� an

algorithm to determine the last event chain� a decision�tree based approach which applies dif�

ferent performance analysis techniques to determine performance problems for each phase� and

techniques to combine di�erent analyses from the same and multiple phases�

The e�ectiveness of the techniques we developed are examined and demonstrated on four

representative applications� traveling salesman problem� multiple linear solver� matrix multi�

plication� and parallel molecular dynamics� We found that our techniques were able to identify

the program�s performance problems in most cases� In some cases� analysis techniques could

not isolate the problem precisely because speci	c information was not available� Even in such

cases� the analysis proved useful by providing partial information which the programmer could

use to solve the problem�

��� Future work

The approach we have pursued has identi	ed many new opportunities for performance analysis

and research issues that need to be investigated� So far� we have identi	ed a few issues for

future work� They can be broadly classi	ed under work for language speci	city improvements�

reduction in perturbation due to tracing� and new performance analysis techniques�
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����� Speci	city improvement

Our current de	nitions and operations do not provide a method to !destroy" a shared variable�

In the experience we have had so far with parallel programs such an operation has not been

needed� One consequence of not having a destroy operation on automatic analysis is that the

scope �in terms of execution time� of a variable is the entire program� This can sometimes lead

to broad� rather than focused� analysis� Further� one can conceive of parallel programs where

a destroy operation may become necessary because of memory usage� Therefore� we plan to

support this operation for speci	cally shared variables in future versions of Charm�

In future work� the acquisition component of Projections will be further developed to acquire

information about a program�s synchronization characteristics� We plan to use the Dagger ����

notation to acquire information about task�level synchronization in the program� We are also

investigating mechanisms to acquire additional information about speculative computations in

a program�

����� Perturbation reduction

In future� we plan to examine techniques to collect data from hundreds and thousands of

processors without requiring prohibitively large memory space� This would need development

of minimal data formats and compression techniques for the log 	les� A solution adopted at

times has been to display data on a real�time basis �i�e� displaying attributes as they are

generated during the run of the program� thus obviating the need to store them in 	les�� Such

displays constrain user�analysis in obvious ways� Another aspect of scalable displays is the

ability to select groups of processors for further review� Currently we allow the user to select

only contiguous sub�ranges� In future� the user can select groups of processors which have

some unifying thread  e�g� all the processors in the same position in all the planes of a

three�dimensional mesh�

����� New analysis techniques

The event graph data structure has considerable amount of information about Charm programs�

We haven�t exploited all the information in the event graph data structure� For example� one

aspect that has been virtually left out in the performance analysis techniques we developed
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so far has been the information about objects in Charm� Data encapsulation and ordering of

execution of methods inside an object �available through Dagger� makes it possible to isolate

the cause of an event to a limited set of methods in other objects� Figure ��� shows an example

in which only messages m�� m�� and m� in object O� a�ect message m
 in object O�� We plan

to acquire such information and use it for analysis�

m 2

mm 4

m 6

m0
1m

5

m3
Processor 0

Processor 1

m 7

O 1 O 2

O 3 O4

TIME

Figure ���� Causal analysis of events in a program execution�

Our experience has been that the capabilities of the analysis tool has increased with every

application program� We believe that the current techniques identify many severe and hard to

detect problems� but we anticipate that many more techniques will be needed as the performance

tool is used for new applications� One area of active research in future will thus be the addition

of new techniques�
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Appendix A

Quiescence detection

A�� Correctness proof for quiescence detection algorithm

In this section� we o�er an informal proof for the quiescence detection algorithm� The proof is

in two parts� 	rst� we prove that if the system is quiescent the algorithm will detect it� and�

next we prove that the algorithm detects quiescence only when the system is indeed quiescent�

Theorem �� If quiescence has occurred then the algorithm will report it�

Proof� If quiescence has occurred� then there are no activation messages remaining to be

processed� Since messages are not created spontaneously or lost� the counts for the creations

and processings of activation messages must match� and the algorithm will detect quiescence

in at most two iterations of Phase � followed by one iteration of Phase �� �

Theorem �� The algorithm will not report quiescence unless the system has been quiescent�

Proof� The proof is by contradiction� Assume that even though the algorithm has reported

quiescence� the system is not quiescent� Since the system is not quiescent� at least one of the

following must be true �from the conditions for quiescence� � there are unprocessed activation

messages or there is atleast one busy processor�

We introduce some notation 	rst� Let �i and �i denote the time at which the last instances

of Phase � and Phase �� respectively� were completed on processor i� Let + denote the time

at which processor � made the broadcast to initiate Phase �� And for a message m� let cm

denote its time of creation and pm its time of processing� Since the broadcast to begin Phase �
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occurred after all processors had completed Phase � and before any processor began Phase ��

therefore�

�
i� j���i � + � �j� �A���

Can there be any unprocessed activation messages in the system after Phase � if quiescence

has been reported� Let us assume that there are unprocessed messages in the system after

Phase �� Since each processor was idle at the end of Phase � on that processor� and no

messages can be created spontaneously� atleast one of the unprocessed messages� say a� would

have to have been created before Phase � on some processor� At the end of Phase � the counts

for number of messages created and processed were the same �otherwise Phase � would not

have been started�� Therefore� for every message whose creation� but not processing� occurred

before Phase �� there would be a corresponding message for which the processing� but not the

creation� occurred before Phase �� otherwise the counts would not match� Let b be a message

whose processing� but not creation� occurred before Phase �� Then the following is true�

�
i��ca � �i� �A���

�
i���i � pa� �A���

�
i��pb � �i� �A���

�
i���i � cb� �A���

At the end of Phase �� the counts for total number of messages created and processed in the

system� Nc and Np� have the same values as they had after the last iteration of Phase �� Since

nc and np are monotonically non�decreasing� their values must have remained unchanged on

each processor� implying that no messages were created or processed on any processor between

Phase � and Phase �� Therefore a and b must have been created and processed� respectively�

after Phase ��

�
i���i � cb� �A���

But b could not have been created after Phase �� for by combining Equations A��� A���

and A��� we get�

�
i� j��pb � �i � + � �j � cb� �A���
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Since a message could not have been created after it had been processed� no message such as b

could exist� But the messages a and b exist in pairs� therefore there can be no messages which

are unprocessed after Phase � if quiescence has been reported�

Can any processor be busy after Phase �� The end of Phase � on a processor implies that

the processor is idle �and has received messages from its children�� therefore if it is busy after

that it must be because it created or processed some activation message� However no messages

could have been created or processed after Phase �� otherwise there would have been an increase

in the counts nc or np� and quiescence would not have been detected� Therefore no processor

could have been busy after Phase ��

We have proved that after quiescence has been reported there are no unprocessed activation

messages and no busy processors in the system� Therefore when quiescence is reported� the

system is indeed quiescent� �

A�� Performance of quiescence detection in Charm

The quiescence detection feature in Charm has been used in the implementation of a wide

variety of real�life applications including parallel algorithms for logic synthesis ���� and for

test pattern generation of sequential circuits����� In order to measure the performance of the

quiescence detection algorithm in varying program contexts� we tested its performance for the

following four synthetic benchmark problems� on a nonshared memory machine�

�� Problem A is a parallel divide and conquer application� Computation starts with an

initial problem� which is recursively divided to create sub�problems which are executed

in parallel� The solutions from sub�problems are then combined� In the initial phases

of the computation when sub�problems are being created there isn�t enough work for all

processors� The situation is similar at the very end when solutions are being combined

and sub�problems 	nish executing�

�� Problem B is a multi�phase application� where each phase is itself a divide and conquer

application� There are six phases of the divide and conquer application� Parallelism and

�We do not need to use a quiescence detection algorithm to detect quiescence for any one of the bench�
mark problems
 the problems are only used as a controlled experiment� where the onset of quiescence can be
independently ascertained�
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processor utilization varies between near�idleness to total�utilization several times before

termination� Thus� Problem B is good benchmark to test the e
cacy and correctness of

the quiescence detection algorithm�

�� The task graph for Problem C is a 	nite length chain of processes with the property that

each process in the chain is created by the process preceding it in the chain �the 	rst

process in the chain is created by the main process�� and only one process in the chain is

active at any instant of time� Each new process is created on a randomly chosen processor�

�� In Problem D� each processor has one process� and the processes communicate along a

directed cycle on the processes� The computation consists of a pre�determined number of

iterations of sends and receives� In an iteration each process sends a message to the next

process in the cycle� and receives a message from the previous process in the cycle�

Table A�� shows the performance results of the quiescence detection algorithm for program

runs on the NCUBE��� a nonshared memory machine� Column � shows number of processors�

Column � shows the number of control messages that were used to detect quiescence� Column �

shows the number of iterations of Phase � and Phase � performed by the algorithm for that

execution run� Column � shows the time in milliseconds that elapsed between the onset and

detection of quiescence by the algorithm� A comparison of the number of control messages

needed to detect quiescence with the number of activation messages in that execution run shows

that in all cases� except Problem C� the number of control messages used are substantially lower

than the number of activation messages� Problem C is a 
hard� problem for the algorithm� for

there is only one active process on one processor at any time� and all other processors are idle�

The number of control messages generated and processed in Problem C occupy computational

resources of idle processors� and they shouldn�t be considered as an indication of the overhead

of the quiescence detection algorithm� This claim is substantiated by the results in Table A���

For Problem C� the number of control messages used by the quiescence detection algorithm is

substantially more than the number of activation messages �in most cases�� however the average

overhead of the quiescence detection algorithm for Problem C is only about ��'�

Table A�� shows the execution times for Problems A� B� C and D with and without the

quiescence detection algorithm on a nonshared memory machine� NCUBE��� For problems A

and B� the application performs better in some cases with the quiescence detection algorithm
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Table A��� The performance results of the algorithm for four problems A�D� on the NCUBE���
a nonshared memory machine�

running than without it� This is not as surprising as it may seem� because Charm provides

dynamic load balancing strategies whose behavior may change because of minor delays in pro�

cessing other messages due to the quiescence detection messages� For Problem C� the overhead

of the quiescence detection algorithm ranges from ��' to ��'� For Problem D� the overhead

of the quiescence detection algorithm ranges from �' to �'�

Our quiescence detection algorithm adapts automatically to system loads� When the system

is heavily loaded very few control messages are generated thus not interfering with the user

computation� More control messages are generated and processed when the system is lightly

loaded� but this time there isn�t enough user work with which the control messages can interfere�
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A B C D

� ��������� ����������� ����� �������

� ��������� ����������� ����� �������

� ��������� ����������� ����� �������

�� ��������� ��������� ����� �������

�� ������� ��������� ����� ��������

�� ������� ��������� ����� ��������

��� ������� ��������� ������ ���������

Table A��� The execution times for Problems A� B� C and D with�without the quiescence
detection algorithm on a nonshared memory machine� NCUBE��� All the times are in milli�
seconds�

���



Appendix B

Performance feedback and

visualization

A preliminary version of the display component of Projections was presented in ���� ���� It

provided information about generic program parameters� such as utilization of processors� and

some Charm speci	c information� such as creation and processing of messages of di�erent system

types� i�e�� NewChareMsg� ForChareMsg� BocMsg� or BroadcastBocMsg� The basic philosophy

of how information is visualized has remained essentially the same� However� we now display

much more Charm related and program speci	c information� In this chapter� we outline the

scheme with which the performance data for Charm programs is displayed�

In Section B��� we describe the types of information displayed� In Section B��� we describe

the di�erent visualization strategies in Projections� And in Section B��� we discuss related work

in program visualization�

B�� What is visualized


The message driven execution model of Charm allows us to decompose Charm programs into

messages and the entry points to which they are addressed� Therefore� for Charm programs

not only can we display generic system and processor�based information� such as utilization of

processors and idle time� but it is also possible to display Charm speci	c information about

messages classi	ed using either Charm�speci	c types or using program�speci	c types� The

display component provides the user with a mechanism to view�
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�� System speci�c performance information� This includes properties of system� such as

busy time� queue lengths� creation and processing of messages �or tasks�� where messages

are classi	ed according to the types de	ned by the system� such as NewChareMsg� For�

ChareMsg� BocMsg� or BroadcastBocMsg� In addition� one can view information about

the load balancing and the quiescence detection strategy�

�� Program speci�c performance information� Projections allows the user to view information

about the creation� processing� and granularity of messages to entry points�

B�� How is data visualized


Henceforth� we will collectively refer to system and program speci	c performance information as

program attributes� Projections displays data about program attributes which allows the user

to identify when� where and what type of work occurred during the execution of the program�

and how that corresponds to the processor utilization�

The execution of the user program is divided into equal�length periods of time called stages�

The length of the time period� called timestep� used to cut up the execution time into stages is

user�de	ned and can be changed interactively by the user to de	ne 	ner and coarser stages� as

desired�

The most basic Projections views treat program attributes as a function of two variables�

stage and processor index� Each program attribute can be thought of as a three�dimensional

object� and the views are merely projections of this object onto the coordinate axes de	ning

the object space� One set of views provide di�erent projections of this two�variable function�

We can represent the function� Fa� for the program parameter� a� as

a $ Fa�s� p�

In the above equation s is the stage of program execution and p is the processor index� The

stage� s� and the processor index� p� range over a stage�set and a processor�set� respectively� In

the default case the stage�set ranges over the stages for the period of execution of the program�

and the processor�set ranges over the processors used for execution�
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Figure B��� A sampling of Projection views�

Figure B�� shows a sample of views available in Projections� The top�level window for

Projections appears at the far�left corner� There are there types of views  overview� detailed�

and animation�

Figure B�� shows a Projections overview� An overview shows an aggregated �added across

all processors or across time� summary of the values of various program attributes� A detailed

view shows a complete view of all attributes either across processors or across time� An example

of a detailed view appears in Figure B���
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Figure B��� An overview �projected along processors��

Note that both the overview in Figure B�� and the detailed view in Figure B�� have an

View�User�Attributes button in the menu� This menu item allows the user to select user�

de	ned attributes� This menu is di�erent for each program� and re�ects the structure of the

program� the chares and the entry�functions that compose the chare� For example� in this

program� there are two chares� main and Dynamic� The main chare has three entry points�

CharmInit� Quiescence�� and Quiescence�� The Dynamic chare has the following entry points�

CollectEnergyFromChildren� CollectIndices� BranchInit� NextComputation� OtherInit� Rescale

� RecvToken � RecvForcePacket� RecvCoordPacket� Read � and StartComputation� Using these

menus� the user can display information about the creation and processing of messages to any

of the entry points�
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Figure B��� A detailed view �projected along time��

Figure B��� A timeline�

One can also query inside the detailed view to get a timeline � of events occurring on the

chosen set of processors for the chosen period of time� This view is useful in understanding

�This view is inspired by the performance tool developed at the Argonne National Laboratory called Up�
shot �����
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what happened on which processor at what time� Figure B�� shows an example of a timeline

view�

The third type of views are animation views� In these views each processor�s state is

represented as a color  blue for busy and red for idle� and intermediate shades between blue

and red representing intermediate levels of busy and idle� The processors can be arranged in

di�erent topologies� and the user can understand from the colors of processors through the

various stages of program execution the structure of the program� Currently� there are four

available topologies  spanning tree� square mesh� ring and three�dimensional mesh� Here

again� the user can interactively alter the topology of processor connections� length of a stage�

and the stage and processor periods� In the case of the three dimensional mesh view� the user

can specify the lengths and orientations of the three dimensions�

B�� Related work

There has been substantial work done previously on tools to visualize the behavior and perfor�

mance of parallel programs on parallel machines�

ParaGraph ��� aims to provide the user with a dynamic depiction of the behavior of the

parallel program by o�ering a re�enactment of the program�s trace through many di�erent

views� The views fall under four broad categories� utilization displays �e�g�� Gantt chart�

concurrency pro	le� etc��� communication displays �e�g�� message queues� animation� etc��� task

displays �e�g� task count� etc��� and other displays �e�g� critical path� phase portrait� etc���

ParaGraph provides multiple views of the same attribute� e�g� to study utilization there are

Gantt charts� concurrency pro	les� Kiviat diagrams etc�� so that the user may be able to see

di�erent aspects of the attribute in di�erent views� and this may aid the user�s understanding

of program behavior� Trace data for ParaGraph can be generated by instrumenting the user

program with primitives from PICL �Portable Instrumentation Communication Library������

Upshot ��� displays the log	le information as a time�line for each processor� A time�line

for a processor contains either �or both� an event trace of the program on that processor or a

trace of states of the program on that processor� An event is de	ned to have a beginning and

a closing state� Di�erent events may be displayed in di�erent �user�chosen� colors�
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Our approach in the display component of Projections combines ideas in ParaGraph and

Upshot� It allows the user to view generic system information� such as utilization and sizes of

queues� It also allows the user to view program speci	c information about various objects and

their corresponding methods� such as in Upshot� In addition it also provides information speci	c

to the Charm paradigm� which ParaGraph and Upshot do not provide� One key di�erence is

that our trace generation is automatic� The user does not need to instrument their code in

order to generate trace information� a link time option chooses the correct libraries�

In addition� neither Paragraph nor Upshot are speci	c to any language� Though this gener�

ality makes it possible to use them �exibly with many di�erent languages� along with it comes

the loss in information about a speci	c execution model� Projections is a performance tool

geared towards the programming language Charm� providing the user information about the

program in terms of language features� It is not proposed as a tool to replace all existing perfor�

mance tools� Rather� Projections is a performance tool that complements the general�purpose

nature of tools� such as Paragraph and Upshot� with information speci	c to Charm�

Pablo ���� ��� is a portable� scalable� and extensible performance environment being de�

veloped at the University of Illinois� Urbana� Pablo consists of two components� software

instrumentation and performance data analysis� The latter consists of performance data trans�

formation modules that can be graphically interconnected to form an acyclic� directed data

analysis graph� Performance data �ows through the nodes of this graph� and is transformed to

yield various performance metrics� Pablo is a more general displaying environment� which per�

mits a tool builder to display di�erent attributes of a program using many di�erent techniques�

in some sense it is a meta�tool� The work being done for Pablo was done concurrently with this

project� Tools such as Projections can be developed on top of Pablo with relative ease in the

future�

Balsa ���� was a program animation system developed as part of the electronic classroom

project at Brown University� In addition� to the capabilities of animation� it provides other

features such as being able to execute the program in the system itself� The user can generate

trace events by selecting points of interest in the program� which can then be displayed using

a renderer� It permits views to be reused between programs which produce the same traces� It

has one problem� it does not allow one to easily manipulate views�
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Voyeur ���� was developed with the idea that di�erent programs require di�erent animation

views� and therefore the user should be easily able to create speci	c views for their program�

It provides a class hierarchy of views� which can be combined to generate application speci	c

views�

Belvedere ���� ��� ��� attempts to solve the problems of complexity and concurrency in

parallel programs� Visualization tools often present incomprehensible diagrams of nonatomic

and concurrent events� Belvedere attempts to solve this problem by reordering the events

to produce more comprehensible views� In most cases� reordering produces logically equivalent

event graphs� However in some cases� reordering is not possible because of circular dependences�

In such cases� the user can construct partially consistent views� which they call perspective views�

Reordering for perspective views is achieved by determining the connected components of the

event graph� and then displaying the graph so that all components at the same level start at

the same time� They also use the notion of a phase of program execution� However� their

notion of a phase is substantially di�erent from our notion of logically independent phases� In

an iterative solver� where each processor exchanges elements with all neighbors� they denote

each exchange as a phase� while we denote one iteration of the solver as a phase�

Moviola ���� is an execution history browser� Its basic display is the execution graph of a

program� the displays can use either physical or logical time� The browser allows capabilities

to zoom� pan� and scroll through the graph in either direction� It also provides options for the

user to select subsets of processes� synchronization� and events�

B�� Summary

In this chapter� we described how visual feedback about information speci	c to the Charm

programming model is provided� Information is broadly classi	ed into generic system attributes�

such as utilization� and user attributes� such as creation of a speci	c entry point� Each attribute

of the information can be thought of as a function of the time and processor number� The

primary feedback mechanism provides projections of each attribute onto either the time or the

processor number�
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