Chapter 1
Modularity, Reuse and Efficiency with Message-Driven Libraries
This research was supported in part by the National Science Foundation grants

CCR-90-07195 and CCR-91-06608.

L.V. Kale and A. Gursoy
Department of Computer Science
University of Illinois at Urbana Champaign
1304 W. Springfield Ave., Urbana, IL-61801

Abstract

Software re-use via libraries is a strategy that allows the cost of software to be amortized. A
parallel programming system must support the ability to develop modules that can be “fitted
together” in a variety of contexts. Although it is important to be able to reuse parallel libraries,
it is also more difficult to use parallel modules in comparison to sequential module. We present
a methodology for developing libraries that addresses these issues effectively. The methodology,
which is embodied in the Charm system, employs message-driven execution (in contrast to
traditional, receive based message passing), information sharing abstractions, the notion of
branched objects, and explicit support for modules.

1 Introduction

Software re-use via libraries is a strategy that allows the cost of software to be amortized. A parallel
programming system must support the ability to develop modules that can be “fitted together” in
a variety of contexts. For example, one should be able to use a (previously written) parallel linear
system solver module and a parallel FFT module to construct a computational fluid dynamics
application program.

Parallel programs and modules are more difficult to produce than sequential ones; as a result their
is a higher premium on being able to reuse parallel libraries. Yet, the nature of parallel software
makes it more difficult to reuse modules developed independently: different modules may employ
different data distributions, control and data transfer may occur asynchronously or may have to
be explicitly synchronized, and one may have pay significant costs in efficiency for modularizing a
program to use libraries.

In sequential programs, the module interfaces are simple; a module is invoked by calling a sub-
routine with appropriate parameters. The control flow and data flow are co-incident. In case of
parallel modules, one must find suitable ways in which modules can exchange data. Some of the
requirements for promising reuse in parallel programs are:

1. One should be able to decompose a program into multiple modules, without losing efficiency
significantly.

2. The intermodule interfaces should allow distributed flow of data across modules to avoid
sequential bottlenecks. The data-exchange protocols should be sufficiently flexible so that

modules can be used in varied contexts, even when their clients may employ different data
distributions.

3. For practical promotion of re-use, it is desirable to allow modules which are distributed in
object-code format only, to protect the possible proprietary nature of modules.

2 Why Message-Driven Parallel Libraries

In traditional approaches, library computations are invoked by regular function calls. The library
call blocks the caller on all processors. After completion, the library module returns the result and
control to the calling modules. Some disadvantages of libraries in this style are:

1. Idle times in the library computation cannot be utilized even if there are other independent
computations

2. Caller modules must invoke the library on all processors even when only a subset of the
processors provide input, and receive output.

3. Library computations must be called in the same sequence on each processor.

A message-driven system, such as Charm [1], supports multiple objects per processor, and uses
a pool of messages on every processors. An object is scheduled for execution when there is a
message for it. In such a system, one can invoke multiple library modules concurrently, allowing
them to naturally overlap their idle times with useful computations. This is a substantial boost for
encouraging use of libraries.

As an example, taken from [4], consider an application A that invokes two independent library
modules B and C as shown in Figure 1. The B and C themselves are parallel computations which
may have their own idle times on all processors due to message latency and dependencies among
sub-computations. In the traditional approach, once the control is given to the library B, the
idle times of B can not be used by other modules. However, in message-driven execution model,
the control can be passed to the module C while B is idle provided that there is a message for
the C (or vice versa). Therefore, the idle times across library modules can be used effectively in
message-driven execution model.

3 Charm and Modularity

Charm is a portable object-based message-driven parallel programming system. A Charm pro-
gram/computation consist of potentially small-grained processes or objects, called chares, and a
special type of replicated objects, called branch-office chares. Charm supports dynamic creation of
chares, by providing dynamic (as well as static) load balancing strategies.

A chare consists of local data, entry-point functions, private and public functions. Private functions
are not visible to other chares, and can be called only inside the owner chare. Public functions
can be called by any object on the same processor. Entry functions are invoked asynchronously by
an object on any processor. Invoking an entry function in a remote object can also be thought of

busy [N ide []

A I]
= e __
’ iﬂ

4
busy [N ide []

Figure 1: SPMD and MD modules

j““'hm

as sending a message to it. A full description of the Charm language and its C++ based version,

Charm++, can be found in [2, 3].

The Charm runtime system is message driven. It repeatedly selects one of the available messages
from a pool of messages in accordance with a user selected queueing strategy, restores the context
of the chare to which it is directed, and initiates the execution of the code at the entry point.

The utility of message driven execution for efficient modularization has been already been de-
scribed above. In addition, features supported in Charm that support modularity and reuse include
branched objects, information sharing abstractions, and the module construct.

A branched object (BOC) is an object with a branch on every processor; all of the branches
answer to the same name. One can call public functions of the local branch of a BOC, send a
message to a particular branch of the BOC, or broadcast the message to all of its branches. BOCs
provide a versatile abstraction that can be used to implement static load balancing, local services
(e.g. memory management), distributed data structures, and inter-module interfaces. Two library
modules, each spread over all of the processors of the system, can exchange control and data easily
through public calls to each others local branches. This provides a simple mechanism for distributed
flow of data across modules. Of course, function calls used in the traditional programming model
also allow such exchange but they do not support encapsulation of the state of the library — so,
for example, names of global variables (which have to be used to express state) in the two libraries
can conflict in such situations.

Information is shared in a few but multiple, distinct ways in a parallel program. A “message” is not
an adequate mechanism for expressing information sharing, nor is any single generic mechanism
such as Linda’s tuples [6]. On the other hand, a shared variable is too amorphous a mechanism
— its generality is not needed in most situations and costs too much to implement. Recognizing
this, Charm provides six specific information sharing abstractions in addition to messages. Further
information about these abstractions can be found elsewhere [5]. Many of these mechanisms provide
flexible ways of data exchange across modules. For example, a distributed table holds a collection
of data items, each indexed by a distinct key. On distributed memory machines, this collection
may be distributed across the processors. One can insert, delete, and find data from such tables
asynchronously. Thus, a module may deposit data in a distributed table from which another module

may extract it, thus obviating the need for “hardwiring” data distribution requirements in module
interfaces.

Charm supports a well developed module system. As its first simple benefit, names in one module
do not conflict with those in others. Names that are exported to other modules are referred to
with a module prefix. For example, an entry function f of a chare ¢ in module m is invoked
as: m::c@f(msg). Thus, a library developer can freely use names — even including the names
that they wish to export — without worrying about possible conflicts. The recent concept of
”contexts” in MPI [7] eliminates conflicts on tags across modules, but other name conflicts remain.
Complex libraries often require the use of callbacks: a library module invoked by its client might,
during the course of its parallel computation, require further information from the client. As the
library is written independent of the client, it doesn’t know the names of entities in the client.
The client must pass references to such entities dynamically at invocation. Charm supports such
dynamic interfaces by treating function names, chare names, entry function names, and chare id’s
as first class objects — i.e. one can have variables in which to hold such entities and one can pass
them around. All of these features are supported with separate compilation, which is essential for
promotion of practical reuse in a commercial environment. Thus, multiple proprietary libraries can
exist in a larger application program without requiring access to their source code.

4 Message-Driven Library Interface Techniques

The interface between message-driven programs and message-driven libraries are different from the
interface for SPMD style. Since computations are split-phase in message-driven style, library calls
must provide a return address for the result or completion. The three separate steps of a simple
library interaction in message-driven style are: (a) creation of the library object, (b) invocation of
a library computation, and (c) reception of the result at a later point. The caller might execute
other code before the result is returned, including possibly invoking other library computations.

4.1 Patterns of Library Interactions

There are various ways of interaction between parallel library computations. However, most inter-
actions exhibit patterns that can be classified into a few groups (Figure 2). One of such interactions,
which we will call as distributed interface, is: when every object/node makes a request to the same
library and receives the result of the library computation. An example of this case is a reduc-
tion/broadcast operation which is very common in many scientific applications. A second pattern
is the client/server interaction. An object makes a request to the library. Here the library is a
server. Then the library computation continues concurrently with the rest of the application. The
library may involve parallel tasks on multiple processes. Eventually, the result is returned to the
requester by the library. The third pattern involves a single request from a client which triggers a
distributed computation and returns the result to multiple agents, (e.g., all branches of a BOC) as
specified by the client.

Another important interaction between library and computations is the delayed data access by
the library. In this interaction, the caller invokes the library, and then continues with some other
computation. Later, the library may request some data from the caller.

Figure 2: Pattern of Library Interactions

4.2 Parallel Library Interface

The first step in a typical Charm program is to create instances of library modules. Once the
instance is created, it can be invoked by all the participating computations using its unique instance
identifier. This requires the participating computations (or chares) to have the library’s instance
identifier. The creation phase, thus, consists of creating the instances of the library and distributing
the instance identifier to users of the library (clients). The creation of a library module can be
encapsulated into a function. The library exports this function, create, that handles all the steps
of a creating the library (the user does not have to know the details of the library). There are two
ways to invoke the create function:

lib_instance = LIB::create() or

LIB: :create(chareid,entrypoint)
In the latter case, the instance id is returned asynchronously to the given chare id via the named
entry function. A library can be invoked by sending a message to it. The library module exports
definitions of types that clients need, such as messages and names of chares and entry points.
This function needs input data from the caller (optional) and a return address. The result can be
returned in a message. In this case, the library invocation call is as follows:

LIB: :request(lib_instance,data,my chare instance,entry point)
The library instance 1ib_instance is invoked, and the result will be returned in a message to
entry point of the caller chare. A second option is to receive the result by function call

LIB: :request(lib_instance,data,result buffer,function ptr)
This call provides the library with input data, a pointer to the result area, result_buffer, where
the library directly puts the result there, and function ptr which is a public function that the
library module calls when the result is ready.

Concurrent library invocations: If the same library module needs to be called multiple times and
concurrently, what should the interface be? There are two options; the first one is to create multiple
instances of the library module as shown below:

idl = LIB::create();

id2 = LIB::create();
and different instances can be invoked concurrently as follows:

LIB: :request(idl,datal,mychareid,el);

LIB: :request(id2,data2,mychareid,e2);

The second option is to design the library module such that it handles concurrent calls. The caller
provides a reference number. The library maintains a separate environment for each reference
number to service the requests concurrently. A typical usage of this scheme is to create an instance
of the library and invoke the same instance with different reference numbers for each distinct
request.

idl = LIB::create();

LIB: :request(idl,datal ,REQUEST 1,mychareid,el);

LIB: :request(idl,data2,REQUEST 2,mychareid,el);
The reference number of the result message is set to the REQUEST_1 or REQUEST 2. If the
return is by a function call, the reference number can be passed as an additional parameter to the
return function.

5 Example and Performance

This example [4] is abstracted and modified from a real application — a core routine in parallelized
version of a molecular mechanics code, CHARMM. Each processor has an array A of size n. The
computation requires each processor to compute the values of the elements of the array and to
compute the global sum of the array across all processors. Thus, the " element of A on every
processor after the operation is the sum of the i** elements computed by all the processors. One
can divide the array A into k parts, and in a loop, compute each partition and call the reduction
library for each segment separately and concurrently. Table 1 shows the completion time of the
traditional and message-driven implementation of this example. The advantage arises from being
able to invoke multiple reductions which execute concurrently.

ncube/2 - Number of Processors
2 4 8 16 32 | 64
SPMD 0.45| 0.56 | 1.02 | 1.27 | 1.54 | 2.17
Message-Driven || 0.46 | 0.65 | 0.93 | 0.94 | 0.92 | 0.98

Table 1: Completion time (sec) of concurrent reductions, n = 40960, k = 160

6 Summary

Traditional library interface techniques do not allow one overlap idle times in one library with useful
computations in the client or another library. This encourages programmers to merge multiple
library modules together and tune them for efficiency. Message-driven execution, in contrast,
supports modularity without sacrificing efficiency. A programming system that combines message-
driven execution with facilities for flexible exchange of data and control across parallel modules,
and supports module with static and dynamic linkages and separate compilation, thus provides an
excellent substrate for building libraries.

References

[1] L.V. Kale, The Chare Kernel Parallel Programming Language and System, Proc. ICCP90, Vol
II, Aug 1990, pp. 17-25.

[2] Charm 4.3 Programming Language Manual, Department of Computer Science, University of
Illinois at Urbana-Champaign, Sep 1994.

[3] L.V. Kale and S. Krishnan, Charm++ : A portable concurrent object oriented system based
on C++, Proc. of OOPSLA 93, Washington D.C.

[4] A. Gursoy, Simplified expression of message-driven programs and quantification of their impact
on performance, Ph.D Thesis, University of Illinois at Urbana-Champaign, Apr 1994.

[6] L.V. Kale and A. Sinha, Information Sharing Mechanisms in Parallel Programs, Proc. of
IPPS-94, Cancun April 1994.

[6] N. Carriero and D. Gelernter, Linda in Context, Comm. ACM, 32-4 (1989), pp. 444-458.

[7] Message Passing Interface Forum, Document for a standard message passing interface, CS-93-
214, University of Tennessee, Nov, 1993.

