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We have been developing a compiler for

a subset of High Performance Fortran.
We have shown that generating message-
driven code provides an opportunity for
improved efficiency in the presence of com-
munication. By utilizing a notation called
Dagger, we are able to schedule work effi-
ciently without relying on complicated and
unreliable compile-time approaches. This
paper gives an overview of our approach
and reports on the project’s status.

1 Introduction

Some of the factors which might negatively affect
performance in a data parallel program are long com-
munication latencies, synchronization, and load im-
balance. These factors are related in that they hinder
performance by causing processor idle times, and their
effects might be diminished or eliminated by reorder-
ing the statements of the program. In the case of
communication latencies, since remote data accesses
take longer than local ones, it is desirable to mask the
latencies of the communication by overlapping those
accesses with other computations. Synchronization
may often be relaxed—for example, the global pro-
gram counter of the data parallel virtual machine need
not be physically realized as long as the semantics of
the user program are preserved. In the case of load
balancing, the overall execution time of a program
between two global synchronization points is exactly
the time required by the processor that finishes last.
Hence, in order for the computation to be speeded
up, some of the work done by that processor must
be transferred to other processors. One might expect

*This research was supported in part by National Science
Foundation grants CCR-~90-07195 and CCR-91-06608.

Laxmikant V. Kalé

Department of Computer Science
University Of Illinois
Urbana, IL 61801

kale@cs.uiuc.edu

load imbalances to be a relatively unimportant factor
in the performance of “regular”, data parallel com-
putations since data is usually distributed across pro-
cessors more-or-less evenly. Even for these problems,
however, uneven workload distributions across pro-
cessors may exist because some processors may carry
more elements than others, and some elements may
require a significantly greater amount of processing.
In this research, we handle these problems via a novel
approach to scheduling the instructions of the pro-
gram. By “scheduling” instructions, we mean spec-
ifying the order in which they are executed. This
includes determining when processors must synchro-
nize (to wait for data that is necessary for a later pro-
cessing step) and choosing among alternatives when
more than one instruction could execute. In the sim-
plest implementation, the compiler could generate
code that matches exactly the order of instructions
specified by the source program. But, as we have
seen already, such an implementation could miss op-
portunities to improve efficiency that are afforded by
the MIMD architecture. Another approach is to do
compile-time analysis to enable instructions to be re-
ordered into a schedule that better mitigates commu-
nication latency and load imbalance factors. However
such static methods may not be feasible due to a lack
of information at compile time.

We believe that an instruction schedule will be
most effective if it is expressed as a partial order
that is executed in a data-driven fashion so that it
is adaptable to run-time conditions as they unfold.
At compile time, it can be difficult or impossible to
identify code that will lead to unnecessary idle times.
For instance, the cost of executing a particular pro-
gram statement may depend on run-time inputs to
the program-schedules based on compile-time analy-
sis alone can only “guess” at what run-time conditions



will be. Program instructions must be reordered to
avoid unnecessary idle times, but in general, the num-
ber of statements needed (and available) to reorder
is influenced by run-time conditions and cannot be
completely predicted statically. For instance, at com-
pile time we may not know what the run-time load
of each processor will be, exactly which instructions
will execute for each processor, what the problem size
will be, perhaps the number of processors that will be
used during execution, or perhaps even what kind of
processors they will be.

In this paper, we will show how we approach this
scheduling problem by generating adaptive schedules
at compile time that enforce all the control and data
dependences correctly (so that necessary orderings are
preserved), while allowing the run-time system to re-
order processing of different messages (and associated
subcomputations) depending on the arrival order of
messages at run-time (and thus edapt to run-time con-
ditions). We have implemented this technique in a
compiler for a subset of High Performance Fortran
(HPF) [6] called DP. DP supports operations on en-
tire arrays such as arithmetic operations and assign-
ment, an assortment of array- and scalar-oriented in-
trinsics, and HPF’s control structures: indexed DO,
DO WHILE, FORALL and if statements. Arrays are
distributed among processors using HPF’s array dis-
tribution directives, and each processor computes its
own portion of an array. The schedule and compu-
tations are specified using a language called Dagger,
which is part of the Charm parallel programming sys-
tem [7]. Charm is an explicitly parallel language with
a message-driven execution model. Since Charm is
machine independent and has already been ported
to numerous shared-memory and nonshared-memory
parallel machines, the code produced by the compiler
is machine independent by default. The analysis re-
quired to generate good schedules is not particularly
difficult or expensive, leading to simpler code gen-
eration. Furthermore, this approach is orthogonal
to other kinds of optimizations, enabling a compiler
to take advantage of many other code improvements
such as optimization of data mapping, more detailed
dependence analysis, and communication combining.

2 Our Approach to Scheduling

We discussed in Section 1 the potential benefits of
constructing an instruction schedule that is adaptable
to run-time conditions. What this means in practical
terms is that the final order of execution must be de-
termined at run-time. However, there are many con-

straints on that order-namely the control and data
dependences in the source program-and these can be
determined (though not satisfied) at compile time.

We wish to find a minimal set of constraints on
the ordering of basic blocks (in our implementation,
each block is one or more statements in our intermedi-
ate language). Using some relatively straightforward
compile-time analysis, we construct a graph of basic
blocks in which the edges of the graph capture depen-
dences between blocks. In simplified terms, when a
block’s predecessors in the graph have completed, the
block is labelled as ready for execution by the run-
time system (which also selects and initiates ready
blocks). Execution begins with blocks which have no
predecessors and continues in a macro-dataflow fash-
ion [13] until execution is complete.

In summary, our approach depends on three com-
ponents:

1. A message-driven run-time substrate to provide
the ability to execute a multi-threaded schedule that
is adaptable to run-time conditions.

2. The ability to express the computation as a partial
ordering of sub-computations.

3. Analysis by the compiler to obtain the partial or-
dering of the instructions to be scheduled.

The first of these components is realized by the
Charm parallel programming system, the second by
the Dagger notation that runs on top of Charm. The
third is provided by the DP compiler which emits
Dagger code as its target language. Charm and Dag-
ger will be briefly discussed in the Section 2.1. An
overview of compilation of DP to Dagger is presented
in Section 2.2. sections.

2.1 Charm and Dagger

Charm supports the dynamic creation, manipu-
lation, and scheduling of small tasks called chares.
Chares may create other chares or send messages to
entry points of existing chares, enabling those chares
to be scheduled for execution. Entry points are de-
signed to execute for a relatively short time to yield
a “medium-grained” computation. A special kind of
chare, the branch office chare (BOC), is automati-
cally replicated on each processor. BOCs are use-
ful for describing a computation that is similar on all
processors—such as the array processing in DP. Each
processor executes its own instance of a BOC on its
own data resulting in SPMD-style processing.

Charm supports an asynchronous, message-driven!

INote that message-driven computation is very different
from message-passing.



programming style in an explicitly parallel C-like lan-
guage. Chares begin executing at a certain entry
point in response to the receipt of a message directed
to that entry point. There are no receive statements in
the language. A chare that sends a message continues
executing the entire entry point and then suspends,
waiting for another message. In the meantime, other
messages that have arrived are de-queued and execu-
tion continues, possibly in another chare.

Dagger [5] runs on top of Charm and is a notation
for expressing computations that can be represented
by directed graphs. Dagger facilitates the expres-
sion of the local synchronization of threads of execu-
tion by specifying the condition under which a thread
executes in terms of predecessor threads that must
complete first. In the DP compiler, we use Dagger
to schedule statements and messages of an executing
program—Dagger is the target language of our com-
piler. At compile time, the conditions under which
a statement may execute are described but the order
in which they will actually execute depends on which
of those conditions are met first during a particular
execution of the program. Using Charm constructs,
Dagger can in effect “execute” a dependence graph.
This results in a dataflow-flavored approach which en-
ables statements to be executed at their earliest op-
portunity.

Dagger allows one to define a special form of chare
in which the code is segmented into when blocks. A
particular when block is tagged with dependences that
must be satisfied in order to enable the when block
to be initiated for execution by the Charm run-time
system. These dependences assume one of two main
forms in Dagger:

1. An entry-the target of a message that will be sent
to the chare by some PE, or

2. A condition variable-a special variable that Dagger
watches.

A function called Ready is used to set the condition
variables, which are initialized to be “not ready”.
Syntactically, when blocks have the form

when cvy, cva, ..., CUm, €1,€2,. .., €p:
{ code to be executed }

When all condition variables cv; are ready, and for
each controlling entry e; an expect statement has
been executed and a message directed at e; has been
received, the when block is ready to execute. When it
actually executes depends on which ready when block
Dagger next selects for execution.

For example, given the following DP code frag-
ment,

asum = SUM(4)
bsum = SUM(B)
C = A % asum + bsum

the Dagger when blocks that might correspond to
these statements are as follows:

when A_computed: {
Compute sum of elements of A on this PE
Send local sum to reduction library
/* Library broadcasts result in amsg */
expect (amsg); }

when amsg: {
asum = amsg->result;
ready(asum_computed); }

when B_computed: {
Compute sum of elements of B on this PE
Send local sum to reduction library
expect (bmsg); }

when bmsg: {
bsum = bmsg->result;
ready(bsum_computed); }

when asum_computed, bsum_computed: {
Do C=A*asumt+bsum on local elements
ready(C_computed); }

Note that either SUM(A) or SUM(B) can begin first,
depending on whether A or B is ready first.

2.2 Compile-Time Analysis

To illustrate the actions a compiler might take in
translating DP to Dagger, consider the simple DP
code fragment from the last section. As stated previ-
ously, we wish to enable statements to be reordered
at run time. We will first create a data dependence
graph (DDG) for the program to assist in our analy-
sis. In the current compiler, we have chosen to keep
the dependence analysis simple. For instance, and
we don’t compute dependences (or the absence of de-
pendences) revealed by analysis of array subscripts.
Future versions of our compiler would benefit from
more in-depth dependence analysis.

Our DDG has two kinds of nodes. A computation
node will translate to a when block in the Dagger pro-
gram. A when block is labelled by condition variables
and entries corresponding to other DDG nodes upon
which the node depends. Message nodes in the graph
represent points at which messages are received and
have no corresponding computations. Message nodes
are of special interest because they indicate a depen-
dence on a run-time event which cannot be predicted



by the compiler (namely, the receipt of a message).

Analysis of Branches and Loops

In the presence of loops, analysis is complicated
by the fact that, due to branching, it is no longer
possible at compile time to determine precisely which
statements will generate the values used at run time
by other statements. For example, suppose we have a
Jacobi iteration code fragment as shown below.

Anew = init_val
DO WHILE (not_done(Anew,A,epsilon))
A = Anew
Anew = (1/(2+2%c)) * (CSHIFT(A,1,-1) +
CSHIFT(A,1,1) + c*(CSHIFT(A,2,-1) +
CSHIFT(A,2,1)) - W)
END DO
D = Anew - A

A and Anew are defined inside the loop. First,
the statement which computes D must be enabled by
either the defining statement in the last iteration of
the loop or the statement that defines the variable
if the loop is not executed (i.e., its defining state-
ment before the loop). In terms of Dagger, the state-
ment D = Anew — A will appear in a when block that
depends on condition variables that trigger the when
block after either (a) the definitions of A and Anew
in the loop, or (b) the previous definitions of A and
Anew if the loop is not taken. Second, if the loop is
taken (i.e. in case (a)), the A and Anew definitions
inside the loop must not trigger the D = Anew — A
statement until after the last iteration of the loop.
Also, suppose that for some arbitrary processor P, a
neighboring processor Q sends a message to P (say,
its left boundary for a left CSHIFT). It could hap-
pen that before P processes this message, it sends its
right boundary to Q (for the right CSHIFT), Q re-
ceives and processes all of its messages, and begins
the next iteration. Q then sends another message to
P before P has processed the first. P must be able to
match each message with the proper iteration.

A Dagger program is completely data-driven-when
blocks are activated under certain conditions which
correspond to the computation of data values or the
arrival of messages. So we must construct a looping
mechanism which uses the correct values for each it-
eration using this framework. We must also have a
way for multiple independent execution paths to be
coordinated by a single control mechanism (i.e. the
loop condition) while honoring the loop-carried de-
pendences. These requirements are satisfied by lo-
cally synchronizing all threads through the loop after

each loop iteration.? This nullifies loop-carried depen-
dences but may miss some opportunities for overlap
across iterations. This is sufficient to coordinate con-
trol within a processor. To deal with the problem of
multiple messages arriving from different loop itera-
tions, we employ a Dagger mechanism called reference
numbers.

A reference number is a tag that may be attached
to a condition variable or message to enable Dagger
to group a set of condition variables and messages to-
gether. This enables Dagger to distinguish between
different instances of a computation (e.g. different
iterations of a loop). To use a when block that de-
pends on a set of such messages and condition vari-
ables, condition variables and entries are declared
with the MATCH option which tells Dagger to match
reference numbers when checking for fulfillment of a
when block’s dependences. A when block is not acti-
vated for execution until (a) a Ready statement (using
a reference number) is executed for each of its con-
dition variables cv;, (b) for each of its entries e; an
expect for the same reference number has been exe-
cuted, and (c) for each of its entries e;, a correspond-
ing message with the same reference number has been
received. The reader is referred to [5] for more details.
The details of the design of the Dagger code genera-
tion algorithm may be found in [8].

3 Performance

Using a synthetic program consisting of eight
WHERE statements separated by SUM calls, we con-
ducted some experiments to determine the potential
effectiveness of the scheduling method described here.
The characteristics of this example that make it useful
for our purposes are the following:

1. The eight WHERE statements are part of two main
“threads” of execution.

2. The four WHERE statements of each thread must
execute in succession.

3. Either thread is available to be started after some
initial computations are completed.

4. The amount of work performed on a processor in
each WHERE statement differs for each processor.

In this program, the workload is unbalanced
throughout the computation on nearly every proces-
sor. That imbalance is not going to be obvious to a

?Notice that we are not synchronizing across all the proces-
sors. We are only coordinating the when blocks within a loop,
on each processor separately.



compiler because it is a function of the data of the
program as well as the statements of the program.
However, in our compiler, that fact is not critical be-
cause the schedule is essentially created at run time
according to run-time conditions, one of those being
the program data.

We compared the multithreaded code generated
by the DP compiler to a single-threaded version of
the same program. The two versions of the program
were run on a 32-processor CM-5 and analyzed us-
ing Projections [14], a performance analysis tool for
Charm. Using this tool, we are able to clearly see
the performance characteristics of the two versions
of the program by looking at overall system utiliza-
tion. The single-threaded version (Figure 1), has eight
prominent spikes corresponding to the eight WHERE
statements in the program, with relatively long idle
times between each one. These idle times are due
to the load imbalances—as time progresses through a
WHERE statement, fewer processors are participat-
ing in the computation and overall system utiliza-
tion tails off slowly over a relatively long period of
time as processors wait to synchronize. In the multi-
threaded version on the other hand (Figure 2), the
eight spikes become four plateaus, corresponding to
pairs of WHERE statements that are scheduled to-
gether. Real programs won’t often fit our approach
so perfectly, but the principle is illustrated well by
this example.
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Figure 1: Single-threaded aggregate utilization

Charm Overhead

One obvious question that arises when comparing
any dynamic approach to static alternatives concerns
the run-time costs involved. In the context of this
work, there is run-time overhead involved every time
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Figure 2: Multi-threaded aggregate utilization

control is relinquished to the Charm run time system.
This will occur approximately once per when block.
Each when block will contain at least one DP state-
ment, often several. So we could estimate the number
of “calls” to Charm to be roughly equal to the num-
ber of DP statements. Obviously then, the amount
of user work done per statement will determine the
extent to which Charm overhead is amortized by the
user computations. 3

4 Project Status

Our DP compiler currently generates Dagger code
for an HPF subset language for all array distribu-
tions defined by HPF. We plan to use DP to handle
the regular, array-based computations in Charm ap-
plications. The Charm language itself is particularly
well-suited to irregular computations. DP subroutines
will be callable from Charm, Dagger, and other lan-
guages that we provide, giving the user the flexibility
to choose the appropriate tool for either regular or ir-
regular computations. Similarly, Charm routines will
be callable from DP. To that end, we have defined a
data interface between Charm and DP, and have de-
veloped some library routines that are callable from
either the DP environment or Charm. These include
array distribution and redistribution, reductions, ar-
ray and array section assignments, and dot product.

*We timed Dagger to get a concrete idea of the cost of its
overhead. The overhead for each when block was measured to
be about 27 microseconds per iteration on a Sun Sparcstation 1.
We can expect the computation in an array-based application
to overwhelm this overhead.



The method we describe leaves open many opti-
mizations that can be performed, including those to
reduce the scheduling overhead incurred. These in-
clude elimination of redundant dependences in certain
when blocks, a reduction in the number of condition
variables used, etc. We plan to explore these opportu-
nities as well as extend and improve the DP compiler
and further evaluate its performance. Details about
DP and its implementation will be found in [9].

5 Related Research

Numerous efforts have been undertaken in recent
years to compile languages based on data parallelism
to MIMD machines. Among these are numerous For-
tran variants [4, 15, 16, 2, 11]. Many of these efforts
explicitly address the problem of generating efficient
communication. What distinguishes our work is that
the order in which tasks are performed is determined
at run-time according to our adaptive schedule. We
know of no other machine-independent run-time sys-
tem that offers the asynchronous, message-driven vir-
tual machine to which we compile.

Some examples of recent Fortran projects in which
efforts are made to overlap communication and com-
putation and/or improve load balance include For-
tran D [15], Vienna Fortran [16], Fortran 90D/HPF
[2], Data Parallel Fortran [4], and the Crystallizing
Fortran Project [11]. To our knowledge, all of these
efforts rely on statically scheduling program tasks.

Finally, we note that previous work on dependence
analysis [10, 1, 12] and computing static single assign-
ment forms [3] has been helpful to our analysis.
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