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Abstract

We describe a parallel programming system for developing machine independent programs
for all MIMD machines. Many useful approaches to this problem are seen to require a common
base of support, which can be encapsulated in a language that abstracts over resource man-
agement decisions and machine specific details. This language can be used for implementing
other high level approaches as well as for efficient application programming. The requirements
for such a language are defined, and the language supported by the Charm system is described,
and illustrated with examples. Charm is one of the first languages to support message driven
execution, and embodies unique abstractions such as branch office chares and specifically shared
variables. In Part II of this paper, we talk about the runtime support system for Charm. The
system thus provides ease of programming on MIMD platforms without sacrificing performance.
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1 Introduction

Many parallel machines are commercially available. These include shared memory machines such as
the Sequent Symmetry, Encore Multimax, and the KSR-1, and distributed memory machines such
as the IBM SP-1, NCUBE-II, Intel iPSC/860 and Paragon, Convex Exemplar, and TMC CM-5.
Many of these machines include hundreds of processors, each of which is a powerful microprocessor
with performance of the order of tens of MFLOPs.

At the same time, there are many computation intensive applications that can benefit from parallel
processing. These include applications in computational biology, computational fluid dynamics,
design automation, weather prediction, various calculations/simulations in physics, discrete opti-
mization, and many Al computations such as heuristic search, problem-solving, and planning.

However, programming these parallel machines remains a challenging and difficult task, except for
a few highly regular kernels. The complexity of parallel programming arises from the inherent
asynchrony of computational agents, with the concomitant correctness issues, and the need to con-
sider performance issues beyond those in sequential programming, such as load balancing, network
contention, and communication latencies.

In addition, different machines have different primitives, modes of operations, and cost tradeoffs.
Even among MIMD! architectures, the programming environment supported on a machine is sig-
nificantly affected by the characteristics exhibited by the architecture. For example, the memory
organization of a machine often determines the support for inter-process communication on the
machine. Shared memory machines, like the Sequent Symmetry, tend to support communication
through shared variables whose access is controlled using mutual exclusion primitives. On dis-
tributed memory machines supporting a global address space like the KSR-1, communication is
also supported through shared variables. However, a significant difference exists between the cost
of accessing local memory and non-local memory. As a result, they are also called NUMA (Non-
Uniform Memory Access) machines. Nonshared memory machines, like the Intel Paragon, support
a significantly different style of inter-process communication — message passing using sends and
receives. This form of communication isn’t directly compatible with the shared variable approach.
As a result of the differences in memory organization, programmers need to develop different ver-
sions of the same parallel program for different target architectures. This lack of portability is
exacerbated by the rapid evolution of parallel machines, due to which even machines from the
same vendor may not be directly compatible with their earlier machines. So, porting a parallel
application written for one machine to another is expensive, thus adding to the development and
maintenance costs of parallel software.

The complexity of parallel programming, exacerbated by the issue of portability, constitute hurdles
that must be overcome before one can bring the substantial power of parallel processing to bear upon
the broad class of significant applications. This paper describes Charm, a parallel programming
language and its associated runtime system that is aimed at controlling the complexity of parallel
programming. Charm was developed at the University of Illinois over the last several years, and
is aimed at providing productive and effective parallel programming support for MIMD parallel
machines. The targeted machines include both shared memory and distributed memory machines.

!Parallel algorithms for SIMD parallel machines are quite different from algorithms developed for MIMD parallel
architectures. Since this difference is irreconcilable, except for data parallel languages, we restrict our attention to
MIMD parallel machines. We believe that portability across SIMD and MIMD machines can be accomplished by
implementing a common data parallel language such as High Performance Fortran [1, 2, 3] on SIMD machines using
native machine primitives and on MIMD machines using a system such as Charm.



1.1

Requirements of a parallel programming system

A general technique for dealing with complexity involves employing a hierarchical structure. In
order to identify the appropriate hierarchy to deal with the conceptual complexity of parallel
programming, we note that the task of writing a parallel program for a specific machine involves:

1.

Ll

deciding how to decompose the computation into parallel sub-computations,
deciding the mapping (assignment) of these computational actions to specific processors,
deciding when to schedule them, and

expressing these decisions using the machine dependent primitives

The highest level of hierarchy is then identified with the techniques which provide automatic de-
composition, mapping, scheduling, and machine independent expression. The techniques at the
lowest level provide only primitives to express the program in a portable manner, thus automating
the task of machine independent expression. Various approaches can then be calibrated on this
progression from high-level to low-level. In addition, approaches can also be distinguished by their
generality or specialization. An approach may become specialized either by limiting itself to spe-
cific application domains, or to narrow parallel programming paradigms. We will examine extant

classes of approaches with this hierarchy in mind, to motivate our approach.

1.

One class of such approaches involves machine independent communication mechanisms. A
programming system in this class allows users to express their parallel programs using generic
communication primitives, which are abstracted from the primitives of the supported ma-
chines. The approaches in this class are characterized by their generality. Any computation
that can be expressed on a MIMD machine can be expressed directly, with similar primi-
tives. In Express [4] and in PVM [5, 6, 7], they are the primitives of a non-shared memory
computer. These approaches are very useful toward achieving portability, and their utility is
demonstrated by the popularity of systems such as PVM, and by the emergence of a evolv-
ing message passing interface standard (MPI) [8, 9, 10]. However, beyond portability, such
approaches do little to control the complexity of parallel programming.

The next class of approaches define their own communication and synchronization mecha-
nisms, which are independent of the machine primitives. Linda [11, 12] is an example of such
a system — here processes communicate by depositing, fetching, or copying tuples from a
common tuple space. In Strand [13] and Concurrent Prolog [14], processes, expressed as re-
cursive clauses of a logic program, communicate by setting values to, and blocking for values
of shared variables in a stream (represented as a list) of logic variables. The utility of such
approaches depends on the appropriateness of the specific set of mechanisms for the particular
parallel programming task. If the mechanisms are well-matched for the application at hand,
and if the programmer is experienced in using them, they work very well.

. In both of the above approaches, the programmer specifies the decomposition, the mapping,

and scheduling. The High Performance Fortran [1, 2] standard is an example of approaches
which free the programmer from the task of scheduling. The programmer still specifies the
decomposition (via array distribution primitives) and mapping (implicitly, via the “owner
computes” rule, which specifies that a computation is carried out on the processor that stores
the variable or portion of the array being computed). Because it applies only to data parallel
computations, this approach is not as “general-purpose” as the ones above. Another example
of this class is Hudak’s explicitly parallel functional programming [15, 16], where each function
call can be mapped to specific processor under the programmer’s control.



4. Systems such as Multilisp [17] and QLISP [18, 19, 20] allow programmers to explicitly specify
the decompositions, while taking over both the tasks of mapping and scheduling. In Multilisp,
for example, a computation may fork off a subcomputation to compute a value to be stored in
a structure called a future. The parent computation proceeds as if the “future” already holds
the value to be computed, while the system schedules the subcomputation on some available
processor when possible. The parent may pass the future to other functions or even to other
subcomputations. As soon as a process touches a future (i.e. needs the value of its content),
it blocks to be awakened when the value in the future is computed. These approaches are not
“general-purpose” because of the specialization induced by the computational paradigm of
their base languages (LISP and functional programming in the case of the above examples)
and the limited patterns of communication supported, e.g. communication occurs only via
futures in Multilisp, and only via function call/return values in QLISP.

5. Parallelizing compilers, such as those for Fortran [21, 22, 23] aim at a very high level in
the hierarchy: they attempt to take over the task of decomposition, mapping, scheduling, as
well as machine dependent expression. They let the programmers write programs in their
usual sequential languages (such as Fortran). A parallelizing compiler is used to detect the
parallelism, and transform the program to a parallel program, which is then translated further
for specific target machines. This approach has its obvious attractions: there is almost no
additional parallel programming complexity. The pioneering work done at the University
of Illinois [21, 22] and Rice [23] has demonstrated the viability of this approach for specific
machines. However, this approach often fails to achieve the best possible results from a
parallel machine for particular problems because the parallelizing compiler is often unable to
specify the most efficient decomposition of a computation into parallel actions.

6. A related category of approaches involves languages such as Id [24, 25] and Sisal [26, 27], which
can be thought of as providing sequentializing compilers for implicitly parallel languages. Pro-
grams specify potential decompositions of computations into parallel subcomputations, while
the compiler choses which decompositions to ignore, and keeps track of data and control de-
pendences to generate parallel tasks from the chosen decompositions. Fine-grained concurrent
languages, such as Concurrent Aggregates [28, 29] and ABCL [30] also fall in this category.

7. Finally, domain specific packages allow the users to specify their problems, and possibly se-
lect solution strategies from the system’s repertoire. These are also as high in the hierarchy
as the automatic parallelizing compilers. However, they are obviously not general purpose
programming systems — they trade off generality for feasibility, ease of development, and
potentially higher efficiency. Examples in this class are rare, but we expect them to prolifer-
ate as parallel processing becomes more widespread. They may include packages for Finite
Element computations, Computational Fluid Dynamics, Combinatorial Optimization, state-
space search, etc. In addition to the data specifying the problem itself, the user of a CFD
package may specify a differencing scheme, a numerical method, a strategy for solving the
particular linear-system that may arise, and output options. The “system” would then link
together different modules to satisfy the runtime choices made by the user.

The seven classes and their relative positions along the spectrum of low-level to high-level and
(orthogonally) from general-purpose to specialized, is shown in Figure 1. Looking at this spectrum
of approaches, it seemed apparent to us early in our research that there was a need for a general
purpose language at a higher level in the hierarchy [31]. We need a language and system that
satisfies the following requirements:

R1 General purpose: The system shouldn’t be restricted to narrow classes of application domains,
or to narrow parallel programming paradigms. It must be encapsulated in a language that
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Figure 1: The spectrum of approaches to parallel programming.

can be used uniformly by implementors of individual schemes, or by end users. The set of
primitives of the language must be rich enough to specify any computation that can be carried
out on a MIMD machine with comparable efficiency (this is a “completeness” or “generality”
requirement). The abstraction layer needed is a minimal explicitly parallel language that
abstracts over the abilities of all current and foreseeable MIMD machines, and over resource
management policies, and no more. The minimality is a concrete criteria: the compiler for
this language should not make any “optimizing decisions” and so should not require any
significant static analysis.

R2 High-level: The system, in addition to providing portability, should also take over the jobs
of scheduling and mapping from the user, whenever possible. We have excluded automatic
decomposition from the high-level requirements because the state of art in automatic de-
composition (or its counterpart, automatic composition and automatic granularity control
from implicitly parallel programs), including static analysis and compiler restructuring, is
not adequate at this point. In addition, it is unclear if it would ever be feasible to produce
a system that will automatically produce near an optimal decomposition. In some cases this
may depend on new languages, which may face difficulty in being accepted by the user com-
munity. In future, if such automatic decomposition technology becomes available, it can be
well supported by a system that automatically handles the task of scheduling and mapping.

A high-level, yet general purpose, approach has a further advantage. In the absence of domain
specific knowledge, it provides an appropriate division of labor between the programmer and the
system: the programmer specifies the decomposition of the computation into parallel actions, while
the system can implement resource management and scheduling effectively.

Charm was designed to fit this niche. It provides more substantial support for parallel programming
than the simple “portable mechanism” oriented systems. In addition, as shown in Figure 2, it can be
used as a common base language for implementing other specialized high level languages, systems
and packages, simplifying the task of developing them. Note that in order to support classes of
approaches numbered 2 and 3, such a system must allow the programmer to over-ride its automatic



Application Programs

Domain-Specific
Packages
B 2 A
Implicitly Parallel Parallelizing
HLLs Compilers
Explicitly Parallel
Languages
Charm
_Intel Sequent ... Machine Specific Mechanisms ... 27
1860 Symmetry

Figure 2: Intended uses of the Charm parallel programming system.

mapping and/or scheduling functions. Such an over-ride is also necessary to give the programmer
the upper hand in cases when they can do a better job of mapping/scheduling based on their
knowledge of the application.

A general-purpose, high-level parallel language should also satisfy the following requirements:

R3 Efficiency: The system must allow for the design and implementation of efficient parallel
programs. There are two important efficiency considerations that the language must address:
latency of communication and efficient portability.

The latency of communication — the fact that remote data will take longer to access than
local data — is, and is likely to remain, a constant part of parallel processing hardware.
Moreover, responses from a remote processor may encounter unpredictable delays due to
ongoing computation on that processor. The language must provide features so that users
can write programs which tolerate or hide such communication latencies.

For efficient portability, the primitives in the language should have a well defined cost model.
Only with such a cost model can a programmer hope to write efficient and portable pro-
grams. So, the cost of the system primitives should not vary significantly from machine to
machine. Nor should the compiler restructure the user code for optimization, making the cost
of primitives unpredictable and requiring the user to second-guess the compiler?.

Since the system is meant to abstract over shared memory and distributed memory machine
capabilities, it should provide mechanisms that ensure efficient implementation of algorithms
on both kinds of machines. An algorithm expressed in this language must run without change
on both kinds of machines, yet be competitive with any implementation of the algorithm that
directly uses the machine’s capabilities.

?Note that we are not arguing against various structuring compilers for high-level languages.



R4 FEzxpressiveness: A parallel computation consists of many asynchronous computational tasks
that produce and share information with each other, and create new computational tasks.
There are two aspects to expressiveness of a parallel programming system: the ability to
express task decompositions and the ability to express information sharing between tasks.

The language we define must allow specification of such computational tasks, and allow for
their dynamic creation. The mapping of these actions to processors and their scheduling
should be automatically handled by the system, unless the user specifies otherwise.

Many explicitly parallel languages are based on a universal information sharing mechanism:
a single mechanism that is deemed appropriate for various modes of information sharing.
It is much more intuitive for the programmer to specify a particular information sharing
mode, than to fit it into the single abstraction provided by such a “universal” mechanism
based language. The language must provide specific abstractions to support various modes
of information sharing.

R5 Modularity and reusability: Reusability is of special concern in parallel programming because
of the variety of context assumptions that may be built into modules, particularly regarding
data distributions. A matrix multiplication module written with the assumption that both
matrices are replicated on every processor will not be usable in a context where they are
distributed by rows, for example. The system must support features that permit writing
of context independent modules. It should be possible to link together separately compiled
modules, which are available in binary form only. Finally, to protect the investment in existing
software (and sequential compilation technology), the system must support direct reuse of
sequential subroutines.

The Charm language described below is designed to satisfy these requirements. The basic features of
the language, including chares (tasks or objects) and messages, are described in Section 2. Chares
are dynamically created and allow for expressing computations where dynamic task creation is
necessary. They can be automatically mapped and scheduled, thereby providing the user with high-
level capabilities. The message driven execution model of Charm and the rationale is described in
Section 3. Section b discusses how specific information sharing mechanisms in Charm provide more
expressive and efficient ways of sharing information across a multitude of parallel programming
architectures. An additional kind of Charm process, called branch office chare, aimed at satisfying
generality and modularity requirements, is described in Section 6. Section 7 provides a discussion
on how Charm supports modularity. Additional features of Charm, such as conditional packing,
quiescence detection, and prioritization, are discussed in Sections 8, 9, and 10. Section 11 describes
the cost model for the different system primitives. The paper concludes with Section 12, which
includes a comparison with some other systems, including those that occupy the same niche as

Charm.

2 The Charm Base Language: Chares and Messages

A parallel program includes many sub-computations that are sequential in nature. There is no
reason to invent a new language for expressing these sub-computations. We chose to employ C as
the base language for Charm?®. As a consequence, a Charm program may include function and type
definitions as in C. In addition, any sequential threads of control in the parallel constructs must
be expressible in C. With this decision, it becomes possible to retain large portions of sequential

3A C++ based version of Charm, called Charm++, was recently designed and implemented by Krishnan and
Kale [32].



application code while parallelizing them. C is also a pragmatic choice as it is available on all
parallel machines, and has an acceptable performance.

Next, we must define the parallel constructs in the language. Parallelism entails the existence of
multiple focii of control. So we need a construct that captures the notion of a focus of control. One
possibility is to associate each processor with one focus of control. This leads to the “one process
per processor” view which is supported by most vendor supplied software. However this conflicts
with requirement R4, which stipulates that dynamic creation of work be allowed. In addition, as
stipulated by requirement R2, the user need not have to specify mapping of work to processors.
Therefore we choose to separate the notion of a processor from the construct that encapsulates a
focus of control. We call this construct, which specifies data and computation that will be mapped
as a unit to a single processor, a chare — for chore or a small task. There may exist zero, one or
more chares per processor at one time.

The chares will need to exchange information with other chares. A common mode of information
exchange occurs when a chare produces data that is needed by another chare. This mode is
supported by the notion of a message, which is a directed communication from one chare to another.
Syntactically, a message is defined to be a collection of data, and in Charm it has the same syntax
as that of a C structure declaration (see Figure 7).

A chare is allowed to handle multiple messages addressed to it: a separate section of code within a
chare handles each incoming message. One possible way of specifying such sections is to require the
programmer to provide a single function for handling each type of incoming message. However in
different contexts and in different phases of its lifetime, a chare may have to deal with messages of
the same type in very different manners. So we provide the notion of a named entry-point function.
An entry-point has a single message type and an arbitrary C-code block associated with it. With
this it is possible to have a single message type associated with many distinct entry-points. Note
that this is directly analogous to the notion of methods in object-oriented programming.

When a chare sends a message to another chare it directs the message to a specific entry-point.
The code in the entry-point function, which is triggered by the message, may access the fields
of the message and the local variables of the function. Each chare instance may also have local
variables that can be accessed from all of its entry points. The code at different entry-points may
need to execute similar or identical computations. Such computations can be expressed as private
functions. Private functions can be called only from within a chare, and they, like entry-points,
can access the local variables of the chare. A chare is very similar to an object. It provides
data encapsulation. However, chares in Charm*, do not provide other object attributes, such as
inheritance and polymorphism.

An example of the syntax of a chare definition appears in Figure 7. A chare definition includes the
declaration of its data area (local variables), followed by declaration of a sequence of entry-point
definitions. Each entry-point definition consists of an entry-point name, followed by a declaration
of a message associated with it, and a block of C code. This block may contain arbitrary C code,
including function calls. In addition, it may contain calls to Charm primitives, such as those
described in Section 2.1.

2.1 Basic system calls

A Charm program, as defined so far, is a collection of chare definitions. At runtime, a single
instance of a special chare, called main, exists. Execution of a Charm program begins with the

*Therefore, following Peter Wegner’s [33] terminology, Charm can be thought of as an object-based system. Note
that Charm++, the C++ based version supports inheritance and virtual functions.



creation of an instance of the main chare and the execution of a special entry function in the main
chare called CharmInit. Other new chare instances can be created (from inside the main chare or
other subsequently created chares) using the CreateChare call. It takes as parameters the name of
the chare that is to be created, the entry-point to which the message is addressed, and a pointer
to a message of the type associated with the entry-point. An entry-point is a variable of type
EntryPointType. It can be specified as chare_name@entry, which refers to the entry-point entry in
the chare chare_name. If the CreateChare call is made inside chare_name, then the entry-point could
just be specified as entry. Note that an entry-point is a first class object. One can set a variable,
say entry_name, of system defined type EntryPointType as: entry_name = chare_name@entry.

The CreateChare primitive, like all other Charm primitives, is non-blocking. From the programmer’s
viewpoint, the call deposits a nmew-chare message in a pool of such messages, and immediately
returns. Eventually, a chare instance is created on some processor under the control of the runtime
system of Charm (called the Chare Kernel). As soon as the chare is created, it executes the message
using the code at the entry-point named in the creation call.

When a chare instance is created, it is identified by a unique chare-id. This address® of a chare
instance may be obtained by the system call MyCharelD(&chare_id), where chare_id is a variable of
type CharelDType. The addresses of chare instances can be then sent as fields in messages to other
chares, which can pass them along to other chares, and so on. A message can be sent from one
chare instance to another using the SendMsg call. It takes as parameters a pointer to a message,
the address of the destination chare, and an entry point where the message needs to go.

3 The Message Driven Programming Model

In traditional message passing, a processor, after issuing a request for a receive, must idle until
the specified message arrives. This waiting may not always be dictated by the algorithm, z.e.,
the algorithm may have more relaxed synchronization requirements. This is particularly true
for global operations, such as reductions. Yet the use of blocking primitives forces unnecessary
synchronization and may cause idle time. This idle time can be decreased by moving the sends
earlier and postponing the receives as much as possible in the code. In many cases, such local
rearrangement of communication can increase the utilization of processors. However, this strategy
cannot handle cases with more complex dependences and unpredictable latencies, nor can it handle
global operations [34].

In accordance with our latency tolerance requirement (R3), we want to avoid the idling of processors
under this condition. This is accomplished in Charm by allowing multiple chares to exist on each
processor and by employing a message driven & execution model. In this model:

1. A chare is scheduled for execution only when there is a message available for it. Unlike
processes, chares are neither perpetually executing, nor is their execution time-sliced on pro-
cessors. A chare is always ready to execute any available message directed to it. Now, the
likelihood of unnecessary processor idling is minimized: as long as there is a message available,
a processor will schedule the execution of the chare for which the message is intended.

2. The execution of an entry-point code is atomic: it completes without interruption on the
scheduled processor — there is no time-slicing, interrupt, or preemption.

5We use the term address in this paper to denote an abstraction of the notion of a reference, pointer, or a chare
identifier. It does not denote the physical memory address of the chare.

6 Active Messages represents a more recent effort for supporting message driven execution model; a comparison is
provided in Section 12.



chare Client { chare Server {

entry MakeRequest: (message MSG1 *m) { _ == entry Request: (message MSG1 *m) {
MyCharelD(&(m->reply_id)); LT T MSG2 *m2 = (MSG2 *) CkAllocMsg(MSG2);
m->ep = ProcessReply; | .-~ m2->data = data;
SendMsg(Request, m, &chareB); - .

1 9(Requ ) _ -~ SendMsg(m->ep, m2, &(m->reply_id));

entry ProcessReply: (message MSG2 *m) { <=r-"- }

CkPrintf("%s\n", m->data);

}
}

Figure 3: This figure illustrates the split-phase programming style.

3. No two entry-points of the same chare instance can execute concurrently.

Conceptually, one can think of the system operating with a pool of messages”, a collection of passive
chares, and a collection of active processors. Each processor may pick a message from the message
pool, identify the chare that it is meant for, and schedule the execution of the code at the entry-
point designated by the message. Note that there is no receive call, synchronous or asynchronous,
in Charm. In fact, there are no calls that allow chares to interact synchronously with chares on
remote processors. For efficiency and convenience, Charm does provide local synchronous calls
between chares through public function calls.

The message driven programming model and the absence of any non-local synchronous primi-
tives, such as receive, in Charm leads to a unique style of programming called “split-phase” or
“continuation-passing”. In this style, a synchronous request must be split over into two code
blocks: the first block issues the request and provides the servicer of the request with the address
of the second block of code to which the reply must be sent. The second block of code is activated
whenever the reply arrives and must therefore be capable of processing the reply. A simple example
in Figure 3 illustrates the split-phase programming style. Let A and B be instances of the client
and the server chares, respectively. Chare A needs some data from Chare B, so it sends Chare B a
request message for the data, along with the address to which the data must be returned: in this
case it is another entry point (ProcessReply) in Chare A. Chare B, on receiving the request, sends
back the data to Chare A at the specified entry point, which is invoked and handles the data when
the message arrives. Notice that Chare A suspends after the entry point MakeRequest is executed,
and is reactivated with the arrival of the reply from Chare B. The request is therefore split across
two phases: make request and receive data.

A message-driven execution model allows one to adaptively schedule computations within and
across modules as illustrated below. A more detailed exposition of the advantages of message
driven execution can be found in [34].

3.1 Latency tolerance within a module

Consider the following example abstracted and modified from a real application — a core routine
in parallelized version of a molecular mechanics code, CHARMM. Each processor has an array A of
size n. The computation requires each processor to compute the values of the elements of the array
and to compute the global sum of the array across all processors. Thus, the i*" element of A on
every processor after the operation is the sum of the i** elements computed by all the processors.

In the SPMD model, this computation can be expressed with a single call to the system reduction

"In reality, an implementation may maintain multiple pools, segregated by the type of message or the processors
on which they may execute.
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Figure 4: Concurrent Reductions, k=160,n=40960

library (e.g., gssum, on an Intel machine) preceded by the computation of the array on every
processor. Alternatively, one can divide the array A into k parts, and in a loop, compute each
partition and call the reduction library for each segment separately. Each call to the reduction
library is a blocking one, i.e. the code cannot initiate the local computation belonging to the block
before receiving the result of the current reduction.

However, the computations for each partition are completely independent. In particular, computa-
tion of the next k items (i.e., the next partitions) are not dependent on the result of the reduction,
and so could be started even before the reduction results from the previous partitions are available.
With this (message driven) strategy, a process that has just finished computing a partition is willing
to either process the result of the reduction of any previous partition or compute the next partition.

This computation was programmed in C (using the Intel supplied native reduction library) for the
blocking SPMD version and in Charm for the message driven version, and run on an Intel/Paragon
machine. Figure 4-(a) shows the performance results of the case k=160, n = 40960, and up to 64
processors. The effect of pipelining of reductions in Charm is apparent from the flattening of the
curve beyond eight processors. The increase up to eight processors with Charm can be attributed
to the increase in the branching factor of the spanning tree used by the reduction library.

Each processor in the above experiment did a fixed amount of computation per element of the array
before calling the reduction. In real applications, this computation is likely to vary from processor
to processor. Figure 4-(b) shows results of the computation for the same parameters but with a
random amount of computation added to each partition. The performance benefits of message
driven execution become more significant when there exist irregularities in the computation. The
blocking version makes every processor wait at a barrier for the last processor to arrive at the
barrier, thus making the completion time the sum of mazima (for all partitions) as opposed to the
mazimum of the sum for the message driven version.

3.2 Latency tolerance across modules

The message-driven paradigm allows different modules that might have some concurrent computa-
tions to share processor time. Consider the computation (taken from Figure [34]) shown in Figure 5:
module A invokes two other modules B and C. In the SPMD model, module A cannot activate B and
C concurrently even if the computations in B and C are independent of each other. As a result, the
processor time is not fully utilized, as illustrated in the same figure. In a message-driven paradigm,
the idle times on a processor can be utilized by another module if it has some work to do. Such
a scenario is illustrated in Figure 6 (taken from [34]). Module C gets processor time (by virtue
of having its message selected by the scheduler) while B waits for some data, and vice versa, thus
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Figure 6: Message-driven modules share the processor time.

achieving a better overlap than the SPMD program.

Libraries constitute an important part of the software development process. They provide reusable,
portable code, and they hide details from application programmers. There are many SPMD parallel
libraries for commonly used kernel operations, such as numerical solvers, FFT, etc. The SPMD
style does not encourage use of multiple concurrent libraries. When faced with performance loss
in a situation, such as in Figure 5, an SPMD programmer typically breaks the library abstraction,
combines modules B and C with A, and then tries to achieve better overlap by static movement
of code augmented by “wild-card” receives. On the other hand, message-driven style encourages
creation of smaller and more reusable modules. Therefore, we expect libraries to be a major strength
of message-driven systems in the future.

4 Example Program 1

A simple Charm program is shown in Figure 7. In this program, a number of new chares are created
in Charmlnit. The user input is read using the CkScanf call, which is similar to scanf of C. The
message that is sent to each chare is allocated using the CkAllocMsg system call, and contains the
value of the seed, the address of the main chare, and some user-defined common data.

Each new chare is eventually mapped and scheduled by the runtime system on some processor
selected by it. Thereafter, upon creation, each chare instance calculates, in the Start entry-point, a
value which depends on the seed and the common data. This value is returned in a message to the
Return entry-point of the main chare, where the values calculated by all chare instances are added.
Messages are deallocated using the CkFreeMsg system call. The ChareExit call is used to signal to
the system that a chare has completed execution. This call results in the de-allocation of memory
occupied by the chare.

Once all chares have returned their computed values to the main chare, the aggregate value is printed
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message { int seed; ChareIDType parent; DataType data[SIZE];} DownMsg;
message { int value;} UpMsg;

chare main {
int i, j, n, total; DataType data[SIZE];
entry Charminit: {
DownMsg *m;
CkScanf(” %d” ,&n);
read_in_data(&data);
for(i=0; i<n; i++) {
m = CkAllocMsg(DownMsg);
m—seed = i;
for (j=0; j<SIZE; j++) m—data[j] = data[j];
MyCharelD(&(m—parent));
CreateChare(compute, compute@start, m); }

}

entry Result: (message UpMsg *result) {
total 4+ = result—value;
CkFreeMsg(result);
if (——n ==0) { CkPrintf(" The final Total is: %d”, total); CkExit();} }

}

chare compute {
entry Start: (message DownMsg *m) {
UpMsg *up = CkAllocMsg(UpMsg);
up—value = calculate(m—seed, m—data);
SendMsg(m— parent, main@Result, up);
CkFreeMsg(m);
ChareExit(); }

Figure 7: A Simple Charm Program.

out using the CkPrintf system call. This call is similar to the printf call, except it is guaranteed to
be atomic, i.e., multiple CkPrintf calls from different chares will not be garbled together. The main
chare signals that the program has completed execution by calling the CkExit system call. This call
results in the termination of all Charm processes, and the collection of performance and debugging
data that the user might have requested.

5 Information Sharing Abstractions

The primitives described in Section 2 permit two forms of information sharing;:

e An entry-point may use information generated by another entry-point belonging to the same
chare, via the local variables of that chare.

e Information produced by one chare can be sent to another in a message.

In principle, these mechanisms are sufficient to express any information sharing needs. However,
a single mechanism to share information is not sufficiently expressive (see requirement R4). It is
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much more intuitive for the programmer to specify a particular information sharing mode, than
to fit it into the single abstraction provided by such a “universal” mechanism based language. A
pure actor program allows messages as its only information sharing mechanism. Therefore one
must use another actor to implement read-only sharing. A C-Linda program must use shared tuple
space to send data created by a computational action to another. Of course, a good actor compiler
may detect such “read-only” use of an actor and optimize it with a “read-only variable”, but that
depends on how good the compiler is, and it may not even be possible in some cases to detect it.
Linda’s tuple analysis faces similar hurdles. More important, such “universal” primitives prevent
the programmer from providing this information, which they could have easily given.

Charm supports five specific modes in which information can be shared by chares. Each mode is
provided as an abstract data type (ADT). Variables of each such type can be created statically
(by initializing them inside the Charmlnit entry-point of the main chare) or dynamically (any
time during the execution of the program), and can be accessed and mutated only via the defined
functions of the corresponding ADTs. Each of the ADTs may then be implemented by the runtime
system differently on different machine architectures, thereby ensuring that the abstractions provide
efficient portability.

ReadOnly variables: In some computations, many chares need read access to values that are created
at the beginning of the computation (but are not known at compile time), and are not altered
thereafter. Such information sharing can be specified by declaring a variable to be readonly in the
declaration section. of the program. These variables can be assigned values only in the CharmlInit
entry-point of the main chare. They can be accessed from any chare using the ReadValue(variable_id)
system call, which simply returns the value of the variable.

In the sample program in Figure 7, the data needed to calculate the value (in compute) was
initialized in the Charmlnit entry point. This data was passed to all the chare instances in the
message; a more efficient implementation would be possible with the readonly abstraction. The
common data could be declared as a readonly variable, initialized using the ReadInit(data) call, and
accessed using the ReadValue(data) call. Messages would no longer carry the data for every chare
that is created. Write-once variables are the dynamic counterpart of readonly variable; they can be
initialized from anywhere in the program.

Distributed table: A distributed table is a set of entries, where each entry is a “record” with an integer
key, and an arbitrary (untyped) data field. A special data-type called table is defined by Charm.
One may declare many different tables of this type in a program. Distributed tables are accessed
and modified only via the three calls: Insert, Delete, and Find. Unlike read-only and write-once
variables, for which the access is synchronous, and immediate, accesses to the entries in the table
are all asynchronous. Thus a call to find the data corresponding to a given key does not return with
the data. Instead, it deposits a request to send the data to a given chare at a given entry-point.

Accumulators: Consider a computation in which many dynamically mapped chares are sending
messages to each other, and we would like to count the total number of messages generated during
the entire computation (or during a particular phase of the computation). Of course, each chare
could store its own count, and send this count to a counter chare before it terminates. However,
this method is not desirable because it is not scalable — with a large number of chares running
on many processors, the “counter” chare will become a bottleneck. As this type of information
sharing requirement is quite common, Charm provides the accumulator abstraction. More generally,
an accumulator object has a commutative-associative operator as the sole mutator, and an identity
element with respect to this operator.

We define the data associated with the accumulator as a message (this also facilitates conditional
packing of the data; see Section 8). In addition to the data, the definition of an accumulator requires
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three user defined functions: one for initializing the accumulator data (initfn, one for “adding” to the
accumulator (addfn, and one for combining two copies of the accumulator (combinefn, if needed.
The accumulator abstraction is defined by three calls: CreateAcc, Accumulate, and CollectValue.
The accumulator may be created in the CharmlInit entry-point of the main chare by using the call:
CreateAcc(ACC_TYPE, msg). This call creates an instance of the accumulator, and initializes it by
calling the initfn with the given message as a parameter. The call returns a unique address (of type
AccIDType) for the accumulator. This address can be used to access and modify the accumulator
in the rest of the program. The address can be sent in messages to other chares, or it can be
assigned to a readonly variable, so all chares can use it. The accumulator may also be created
dynamically from any chare using the variant of the call CreateAcc(ACC_TYPE, message, entry,
chare_id), which signals the runtime system to send the address of the new accumulator instance to
the named entry-point (entry) of the designated chare (with the chare_id), after it has been created.

Any chare which knows the address of an accumulator instance (say accid) may “add” to it by using
the call: Accumulate(accid, addfn(..)). The final value of an accumulator can be read by calling
CollectValue(accid, entry, chare_id), which returns immediately without any value, but a message
is eventually sent to the entry-point entry of the chare instance designated by chare_id, containing
the final value of the accumulator. The CollectValue call results in destruction of the accumulator
variable. Hence the call should be used only once, and only when one is sure there are no more
Accumulate operations possible on that variable.

The user program never calls the combineFn() function explicitly. It is used by the runtime system
in case it has made multiple copies of the accumulator for efficiency on the target architecture, e.g.
in a non-shared memory machine implementation. (See part II of this paper.)

Monotonics: Sometimes many chares need to read and update a shared variable, but the update
operation is idempotent (i.e. repeated application of the same update operation are equivalent
to one update operation) as well as commutative-associative, and the variable successively takes
on monotonically “decreasing” values in some metric. In branch-and-bound computations, such
a variable is needed to store the cost of best solution known so far. Every chare needs to know
what the current best bound is, and when someone finds a new solution, the best bound may have
to change to a smaller value, if the new value is smaller. Such information sharing is specified by
declaring the variable as a monotonic variable.

The monotonic data abstraction is defined by three calls: CreateMono, NewValue, and MonoValue.
The CreateMono call has the same set of parameters as the CreateAcc call, and works in an iden-
tical manner. A new value can be deposited into a monotonic variable by using the call: New-
Value(monolD, updateFn(args..)). An upper bound of the current value of a monotonic variable can
be obtained by the call: MonoValue(monolD). The value returned by the MonoValue call will be
either the value assigned during initialization, or provided thereafter by some NewValue call, and
be better than or equal to the best value provided by a NewValue call by the same process. In
addition, the system will make efforts to provide the best value of the monotonic variable supplied
by any NewValue call until that point in time.

6 Branch Office Chares: Replication and Sequential Interface

The programmer’s model of a Charm computation, as described so far, includes chares that may
dynamically create other chares, send messages to each other, and share information via other
specifically shared “global” variables. Note that the “processor” is not a part of the ontology so
far. We now introduce a construct that brings in the notion of processors.
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Figure 8: This figure shows two instances of a branch office chare, and how different branches can
interact with others using public function calls if they are on the same processor or messages if
they are on distinct processors.

In many parallel applications, similar work is done by each processor. Such an application could be
programmed using chares, where one chare is created on each processor. However substantial initial
bookkeeping is required to make sure that each chare knows the address of a chare on a particular
processor. As this is a common case, we prefer to have more convenient way of expressing it using
a new construct: branch office chare (BOC), which is a replicated process. A branch chare of the
BOC exists on every processor. However all the branches of an instance of a branch-office chare
can be referenced by one name.

A chare and a branch of a BOC on the same processor, or branches of two BOCs on the same
processor could interact with each other using messages. However messages have overheads of
creation and scheduling. Such overheads can be eliminated with a synchronous, sequential function
call interface between the local “branches” of the application and other chares. Therefore, in
addition to receiving messages at entry-points like chares, BOCs also provide public functions. A
chare (which happens to be running on some processor under the control of the dynamic load
balancing strategy) may interact with the local branch of a BOC via a sequential public function
call. This combination of features makes the branch office chare a versatile and useful abstraction.
Figure 8 shows two branch office chares, and how different branches can interact with others using
public function calls if they are on the same processor or messages if they are on distinct processors.

The syntax of a branch-office chare is similar to that of a chare, and an example is shown in
Figure 9. A BOC declaration consists of its data area (local variables), entry point definitions, and
definition of private and public function calls (identical to those of a chare).

The CreateBoc system call is used to create an instance of a branch office chare. It takes as
parameters the name of the BOC to be created, a creation message, and the entry point to which
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the message is addressed. BOCs can be created statically from the Charmlnit entry-point in the
main chare. In this case, the call returns the address of the new branch-office chare. BOCs can
also be created dynamically in the middle of a computation from any chare. In this case, the last
two parameters are required, and the address of the BOC is sent to the chare identified by chare_id,
at the specified entry-point entry2.

In the following discussion, the address of a new branch-office chare instance is denoted by the
variable boc. Different branches of the same or different BOCs can communicate with each other
using the SendMsgBranch call. A branch can send a message to all other branches using the
BroadcastMsgBranch call. Chares and other BOC branches on a processor may call a public function
fn of a BOC identified by boc, which is an instance of a BOC named boc_name, using the BranchCall
system function.

Branch-office chares can be used in a variety of contexts:

1. Static Load Balancing: Even without its public functions, the fact that the BOCs are repli-
cated processes allows them to be used for simple statically mapped SPMD style program-
ming. In comparison with the traditional mechanisms for supporting SPMD style program-
ming, such as Express [4] or the send/receive primitives of the native operating systems on
the distributed memory machines, BOCs provide the advantages of message-driven execution.
Also, one may have as many BOC instances in a single program as needed. This separates
and simplifies the flow of control in many programs.

2. One can build new dynamic (i.e. time varying) and distributed data structures using the
BOCs. The public functions provide a sequential function-call interface to such a data struc-
ture, while messages between branches are used to coordinate the distributed data structure.

3. BOCs can be used to implement and provide local “services” of various kinds. For example,
the memory manager in the Chare Kernel (the runtime support system for Charm) is written
as a BOC, and so is the message-receptionist in the parallel implementation of Actors reported
by Agha and Houck [35]. In this use, the BOC does not send any messages to other branches,
but simply acts as a local sequential object, with a globally unique instance address.

4. BOCs can also be used to implement services that require communication. For example,
various dynamic load balancing strategies and the quiescence detection algorithm, provided
in the chare kernel are written as BOCs. Also, Charm libraries, such as the library for
various reductions, are written as BOCs. Again, the BOC uses the sequential interface via
functions to deposit local information, and communication with other branches to implement
the functionality of the services.

Figure 9 shows a simple program written using a BOC: a message is sent around in a ring on the
available processors starting at processor 0. The BOC is created using the CreateBoc call in the
main chare.

7 Modularity and Reuse

Supporting modularity and reuse is more difficult in a parallel context than in a sequential context.
First, there are a seemingly mundane set of issues that need to be addressed, such as the fact
that pointers are not valid across address space boundaries. So, for example, one cannot pass
a function-pointer to another module directly. Second, a reusable module must be able to work
with a large variety of ways in which the input data is distributed among processors. Third, for
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chare main {
entry CharmlInit: {
MSG1 *msg; ChareNumType boc;
msg = (MSG *) CkAllocMsg(MSG);
boc = CreateBoc(Ring, Ring@Start, msg); }

BranchOffice Ring {
int right;
entry Start: (message MSG *msg) {
right = (CkMyPeNum()+1) % CkMaxPeNum();
if (CkMyPeNum()==0) SendMsgBranch(msg, Ring@Pass, right); }

entry Pass: (message MSG *msg) {
if (CkMyPeNum()==0) CkExit();
else {
PrivateCall(print());
SendMsgBranch(msg, Ring@Pass, right); }
}

private print()
{ CkPrintf(” Sending message to right neighbor %d”, right); } }

Figure 9: A ring program.

scalability, modules should be able to exchange or pass data in a fully distributed fashion. When
a module with entities spread over hundreds of processors, wishes to pass data to another module
spread over hundreds of processors, one must ensure that the data exchange is not centralized.
In this section, we describe the features in Charm that support modularity and reuse, and briefly
discuss how these features achieve the objectives.

A Charm program is written as a set of modules. Charm supports separate compilation of modules.
A module can contain names of chares, BOCs, C functions, messages, C type definitions, and
specifically shared variables. These names are internal to the module. Modules can interact with
each other by referencing ezternal names (defined in other modules). An ezternal name is referred
to by specifying the module and the name being referenced. E.g., accesses to a function F, or a
chare C, or an entry point F inside chare C which are defined in a module M would be made as
M::F, M::C, M::C@E, respectively.

Each module has an interface statement that includes prototypes of all the names in the module
that may be referenced by other modules. A module includes the interface statement of each
module with which it interacts, as well as its own interface statement.

Names, external and internal, can be passed in messages or via functions to other modules. This
mechanism can be used by a client to request a certain service from a server process defined in
another module, such that the result of the server’s computation is sent to a specified chare at a
specified entry-point. This is very useful, because the server might have been written separately
without any knowledge of the static entities or the names of possible clients. Similarly, consider
a situation when a module M1 invokes M2, and wishes to have M2 call a function F defined in
M1 possibly at some other processor than the one where the invocation occurred. Assume again
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that M2 was written independently of M1 (and so cannot contain an interface statement for M1).
M1 cannot pass a pointer to the function F, because it will not be valid on the processor where
F is to be invoked. Charm provides a mechanism for converting locally valid function pointers to
globally valid function references for this purpose. Such references can be propagated in messages,
and dereferenced via another system call when the function is to be invoked.

Charm supports distributed exchange of data among modules via BOCs (Section 6) and distributed
tables (Section 5). A module may send data to another via a BranchCall carried out on all the
processors. Alternatively, two modules may exchange data via a distributed table, thus obviating
the need for either module to know where the particular data items are located. Thus, BOCs and
tables act as a “glue” to interconnect modules through distributed interfaces. Finally, as illustrated
in Section 3.2, message-driven execution also allows Charm modules to be composed efficiently.

8 Conditional Packing

The data structure to be passed in messages may sometimes be large and complex. Consider an
array being passed in a CreateChare message. On a shared memory system, the message need
only store a pointer to the base of the array and its size. However, on nonshared memory systems,
a pointer is not valid across processors. So the whole array must be copied in each message. A
chare may also want to send a dynamically created data-structure, such as a graph or a tree, which
uses pointers. Again, the data structure must be copied (or “packed”) into a contiguous structure
without pointers before it can be sent in a message.

Charm encourages a programming style that counters the unpredictability of available work by
creating many small chares in the hope of being able to distribute them as needed. So in a message
passing system, each processor, typically, creates many chares that are not actually sent out to
any other processor, but executed locally. When the system is in saturation (all the processors
have sufficient work), this happens to most chares. This state of affairs is desirable because it
offers the flexibility of responding to load fluctuations as they arise. Now, however, packing each
message in a format suitable for across-processor transmission seems quite wasteful. Also, such
packing is unnecessary and wasteful on shared memory machines. It would be better to pack only
those messages that actually leave address-space boundaries, leaving other messages free to contain
pointers. However, the programmer doesn’t know which one of the created chares (or messages)
will end up going to another processor, as it is the decision of the dynamic load balancing strategy.
Charm, on the other hand, cannot know how to pack messages since their structure is known only
to the corresponding application code.

Charm provides an interesting solution to this problem. It allows messages to contain pointers.
However, if a message needs to move across address space boundaries, the kernel calls the appro-
priate code in the user program for packing the message into a contiguous space and eliminating
explicit pointers. Conversely, before a message received from outside the address space is scheduled
for execution, the system calls another entry-point to unpack the message. The functions for pack-
ing and unpacking are provided by the programmer along with the definition of the message-type.

Thus, only those messages that are actually sent out are packed, and the rest of the computation can
proceed as it would on a uni-processor or a shared memory machine, using pointers to represent data
structures efficiently. This feature is instrumental in satisfying the requirement R3 about ensuring
competitive efficiency on shared memory machines. As experimental evidence, conditional packing
led to three-fold improvements in speed on iPSC/2 for a parallel prolog interpreter [36] implemented
using Charm.
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message { int a; varSize float b[]; } MSG;

MSG *msg; int i, n, sizes[1];

CkScanf(” %d”, &n);

sizes[0] = n;

msg = (MSG *) CkAllocMsg(MSG, sizes);

for (i=0; i<n; i++) CkScanf(” %f’, &(msg—bli]));
}

Figure 10: The declaration and allocation of a variable size message.

The special case of variable size arrays occurs very frequently in many applications. Charm provides
a varSize array field in message definitions for this special case. When a message with varSize
fields is allocated, the user must specify the sizes of all the varSize array fields in the message.
The system then handles the packing and unpacking of this messages automatically. Figure 10
shows the declaration of variable sized message-type MSG. The CkAllocMsgcall takes an additional
parameter (sizes), which is an array whose elements are the sizes of the variable sized arrays in the
message.

9 Quiescence Detection

In some computations, it is useful to know when there are no more messages in the system. Charm
allows a user to specify an entry function of a chare with address to which a message is sent when
the system becomes quiescent. The user-defined code at that entry-point then decides the course
of action. In simple cases, the action may be just to terminate the execution by calling CkExit().
However, other interesting uses are also possible. For example, a read-eval loop for languages such
Prolog can be written by having the code at the quiescence entry-point read the next query and
start its execution. In general, quiescence detection can be used to detect the end of a phase of
computation which involves arbitrary and unpredictable amount of communication per processor.
Quiescence detection has been efficiently implemented [37], so that (a) the condition is detected
very quickly after it occurs, and (b) the overhead of the algorithm is very small.

10 Prioritized Execution and load balancing

In many computations, the order in which available tasks are selected for execution [38] can affect
various performance metrics. In Charm, the programmer can assign priorities to messages; the
message-queuing strategy chosen by the user will then schedule the highest priority member of the
queue. The priority can be an integer, or an arbitrarily long bit-vector, depending on the queuing
strategy option chosen. Bit-vector priorities are especially useful for obtaining good and consistent
speedups in state-space search and related problems [39, 40] which involve speculative work. Integer
priorities are useful in many seemingly regular computations which may have critical paths [41]
that must be prioritized, particularly in the presence of message-driven execution.

Charm has many different load balancing strategies for message passing machines. Different
strategies may be effective in different application-specific and sometime machine-specific contexts.
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Therefore, Charm allows the user to link any one of the available strategies from its library, and to
specify parameters for the strategy to tune it further.

Typically, for reasons of scalability and to avoid bottlenecks, it is desirable that load balancing
strategies be distributed in nature. However, experimental results [42] have shown that existing fully
distributed load balancing strategies do not balance priorities well resulting in the concentrations of
low and high priority work neighborhoods. Therefore, in addition to distributed strategies, Charm
also provides fully and partly centralized load balancing strategies. These load balancing strategies
fare much better in balancing priorities than fully distributed strategies.

11 The Cost Model

Charm provides a relatively simple cost model to the programmer. The cost of various operations
can be understood in terms of the cost of a message and the cost of a function call. The cost
of a message has two components, one fixed and one a linear function of the message size, the
proportionality constants vary somewhat from machine to machine.

The cost of BranchCall and PrivateCall is that of a sequential function call, and so is the cost of
the following calls for accessing and updating specifically shared variables: Readlnit, ReadValue,
DerefWriteOnce, Accumulate, MonoValue, and NewValue. The cost of the following calls is that of
a single message: CreateChare, SendMsg, and SendMsgBranch. The cost of the distributed table
operations Insert, Find, and Delete is that of two messages. There are a set of calls whose cost to
the overall system is that of a single message per processor; in terms of critical path (i.e., the time
between the call and the completion of the action) the cost can be considered to be log p messages,
where p is a number of processors. The calls in this category are: BroadcastMsgBranch, CreateBOC,
WriteOnce, and CollectValue.

It might be argued that the cost model is inadequate because it does not account for interconnection
topologies, and the variation in communication latencies and processor speeds across machines.
Clearly, for portable design of parallel programs, it is desirable to be able to ignore these machine-
dependent features. But more important, with the current generation of parallel computers, it is
becoming clear that the interconnection topology is not a significant determinant of performance.
The end-to-end message delays on machines with advanced routing networks (such as wormhole
routing) vary very little with the inter-processor distance. The network bandwidth is affected by
the average communication distance, and for the rare set of problems where the communication
bandwidth is a significant issue (over-riding processor utilization, say), the user may indeed have
to refine the cost model to include the interconnection topology. The relative communication
latencies are rendered unimportant due to the message-driven execution in Charm — as long as
there is sufficient work on each processor, the actual network latency of messages does not affect
the performance of an application. The only overhead the programmer needs to be concerned with
is the per-message overhead incurred by Charm and the underlying operating system overheads
while sending and receiving a message. This is a software overhead, and it scales at the same rate
as the application code with variation in CPU speed. So, the user’s cost model doesn’t have to
change due to variation in latencies and processor speeds, for most applications.

12 Discussion

One of the initial motivations we gave for developing Charm was to fill the niche identified in the
spectrum of approaches to parallel programming shown in Figure 1. Charm certainly accomplishes
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this objective, as chares are dynamically load balanced, their execution is scheduled automatically
with the arrival of messages, and Charm programs run portably and efficiently across a range of
MIMD machines. How this efficient implementation is accomplished is described in part II of this
paper. In addition to filling this niche, Charm provides a new parallel programming paradigm.
This paradigm:

e Uses message-driven execution as its basic scheduling mechanism, to efficiently deal with
communication latencies and delays in remote responses.

e Recognizes that information is shared in many specific modes in parallel programs, and em-
ploys several information sharing abstractions for this purpose.

e Employs multiple replicated “processes” with sequential as well as parallel interfaces — as
embodied in the branch-office chares of Charm — as an important and useful program struc-
turing device.

e Demands that different modules in a parallel program should be separately compilable, and
that one should be able to compose them into large modules or applications without hindering
performance, and in particular, without having to give up the performance advantages of
message-driven execution.

Charm was intended as as a general-purpose high-level language, which could be used to support
other language design efforts, as shown in Figure 2. This objective has also been attained as is
substantiated by the fact that Charm has been used as a back-end for a data parallel language called
DP [43], a parallel Prolog compiler [44], a high-level synchronization language called Dagger [45],
a domain specific language called Divide-and-conquer [46], and an Actor language called Hal [35].

Charm is one of the first languages to employ message-driven execution in stock multi-computers [31].
The idea of message-driven execution is clearly implicit in earlier work on Data Flow machines,
which depended on special-purpose hardware to support it. Special purpose hardware for message-
driven execution was also the focus of projects such as the J-Machine [47] and Mosaic [48]. The
work on macro data flow [49] has focussed on bringing these concepts on general purpose hardware
(stock multicomputers).

The work on Active Messages [50] is more recent than Charm. In this model, a message interrupts
the recipient process, and invokes the handler rountine specified in the message. Active messages
only provides a low-level mechanism for writing message driven programs. For example, if a second
message arrives while the first one is being processed, the user’s handler code must handle it ex-
plicitly, possibly by buffering it. In contrast, in Charm, the runtime system buffers and schedules
the messages automatically. Active Messages is a single-process based model, unlike Charm which
supports multiple objects per processor. Active messages implementations carried out at the op-
erating system level can deliver messages even faster than the vendor’s send-receive primitives on
some machines. In fact, the communication layer of Charm has recently been implemented on the
CM-5 using Active Messages.

Split-C [51] is a programming language that provides a global data space, where accesses to global
data are through unique split-phase operators, which separates the request for data from its use
(this aspect is similar to “futures”). The primary differences with Charm are that it is also a
single-process model and that it provides a global address space, and its primitives do not permit
an adaptive overlap of computation and communication.

The observation that information is shared in many specific modes was also made independently
in [52]. However, they used it for annotations and optimizations in a parallelizing compiler. The
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dataflow community also developed similar notions — often called “sideways” communication prim-
itives — in the context of functional programs. In particular, their notion of accumulator is very
similar to that in Charm with an important difference. In a functional program, it is trivial to
ensure the safety of the read operation, whereas in a Charm program, the user must make sure
that all potential operations that can add to the accumulator have terminated before accessing the
final value of the accumulator. Distributed tables have similarities with the I-structures in dataflow
to some extent, as also with the tuple spaces of Linda. In Linda, the accesses to tuples are block-
ing whereas in Charm an entry from a distributed table is accessed in a non-blocking split-phase
manner. Moreover, tuples are the only information sharing mechanism in Linda, whereas tables
are one of many in Charm.

Actors [53] , a construct proposed by Hewitt and developed by Gul Agha, embodied one of the early
proposals for message driven execution. Each actor has a behavior associated with it. Actors do not
issue “receive” statements, but execute only when triggered by a message. Thus the basic notion
of chares has much similarity with Actors. Actors, however, permit further concurrency within a
single actor, while Charm uses chares to define a boundary between parallel and sequential — only
one method within a chare may execute at a time. The branch-office chare construct, and the use
of information sharing abstractions other than messages further distinguish Charm from Actors.
The Actor model provides a theoretical background that is applicable to a system such as Charm.
One of the first implementations of the Actor model on stock multicomputers was carried out using

Charm by Houck and Agha [35].

The notion of concurrent aggregates was developed at MIT by Chien and Dally [28, 29] at the
same time that the branch-office chares were implemented in Charm [54]. Concurrent aggregates
were designed for fine-grained machines, and were implemented in a simulator. The members of
a concurrent aggregate are analogous to a branch of a branch-office chare, except that they do
not necessarily have a member on every processor. So, calls to a concurrent aggregate may go
to a remote processor. The BOCs, on the other hand, are explicitly designed to provide a local,
sequential access to branches.

One of the important attributes of Charm is the richness and specificity of the constructs it provides.
As a result, the Charm run-time system has a clear understanding of the events in the application
program, at a level much closer to the application than the machine. For example, whereas a
traditional SPMD system will be able to note that a message went from processor X to processor
Y (along with its message type), the Charm run-time system can discern between messages for
creation of new chares, messages to existing chares, messages for requesting and fetching data from
distributed tables, along with information about the entry-points and chare instances at which a
message is directed. This specificity can be exploited in a variety of ways for supporting parallel
programming with Charm. In particular, performance feedback and debugging tools can be built
that provide the user with application-level feedback allowing them to home onto the trouble-spots
in their source program easily. A preliminary step in this direction is represented by Projections [41],
a graphical performance display tool, which exploits the specificity only minimally by distinguishing
between different kinds of messages.

The extensive support for modularity in Charm, the ability to compose modules without losing the
efficiency of message-driven execution, and the mechanisms for distributed data-exchange across
modules (provided by branch-office chares and distributed tables) makes Charm an excellent frame-
work for developing flexible and reusable parallel libraries. We expect that this capability of Charm
will be leveraged by us and others for developing libraries for various application areas in compu-
tational science and engineering.
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