APPLICATION ORIENTED AND COMPUTER SCIENCE
CENTERED HPCC RESEARCH

Laxmikant V. Kalé
Department of Computer Science
University of Illinois
Urbana, IL 61801

E-mail: kale@cs.uiuc.edu

Abstract

At this time, there is a perception of a backlash against
the HPCC program, and even the idea of massively parallel
computing itself. In preparation to defining an agenda for
HPCC, this paper first analyzes the reasons for this back-
lash. Although beset with unrealistic ezpectations, parallel
processing will be a beneficial technology with a broad im-
pact, beyond applications in science. However, this will re-
quire significant advances and work in computer science in
addition to parallel hardware and end-applications which are
emphasized currently. The paper presents a possible agenda
that could lead to a successful HPCC program in the future.

1 Introduction

It is clear that amid the excitement about the emerging
high performance computing technology, a backlash of sorts
is developing. This backlash is against the HPCC program
as well as the idea of massively parallel computing itself. Ken
Kennedy, a leading researcher in parallel computing, wrote
an article recently, titled “High Performance Computing in
Trouble” [6] in which he alluded to the funding difficulties
of the HPCC program, the skepticism about its goals in the
Senate and Congress, the critical and negative report by the
Congressional Budget Office, etc. An article by Fred Wein-
garten [8] discusses this report as well as the report by GAO
on ARPA’s management of the HPC architecture research.
All of these indicate the backlash against the HPCC pro-
gram. The backlash against parallel computing itself comes
in part from users who have tried to use these computers,
and find that the continually improving uniprocessor work-
stations give them a better return on their investment at the
moment.

*The author’s research was supported in part by the National
Institute of Health PHF-2-P41-RR-05969-03 and National Sci-
ence Foundation grants ASC-181593, CCR-91-06608, and CCR-
90-07195.

To formulate an agenda for HPCC in this context, one
must first understand the reasons for this backlash, assess
the current status of the technology, and understand trends
in the base technologies — computer architecture and hard-
ware. Section 2 and 3 of this paper elaborate our view on
this. Next, a possible agenda for the HPCC program is de-
scribed in Section 4. The suggested agenda is divided in two
parts: strategic and technical.

The strategic agenda suggests:

1. The HPCC community, including vendors, must project
realistic expectations of the benefits this exciting and
important technology.

2. The HPCC program currently emphasizes development
and deployment of massively parallel machines on one
hand, and specialized end-user applications on the
other. If the HPCC program is to enable the adop-
tion of the parallel technology across a broad range of
applications, and thus help the national economy and
competitiveness, it is necessary to equally emphasize the
middle layers that include research on languages, tools,
environments, algorithms, and libraries.

3. The parallel machines provide a potential for high per-
formance, but it remains difficult to realize this poten-
tial for a wide variety of applications. As the principles
in harnessing this technology are better understood,
they must be taught via a strong educational initiative
to the next generation of researchers and developers
who must develop inter-disciplinary skills.

The technical agenda presents our view of what research
directions should be pursued to effectively harness the power
of parallel computers. The directions include efficient porta-
bility, message driven execution (as distinct from “mes-
sage passing”), specific parallel programming abstractions
and constructs, and intelligent performance analysis. This
agenda underscores a meta-point: Although I am convinced
of the validity and significance of this approach, it is clearly
not a mainstream approach. As the parallel technology is
quite immature, and has not been explored for many classes
of potential applications yet, it is important that we avoid
standardizing and committing too early. A diverse set of
approaches need to be supported at this stage, as long as
they stay relevant to applications.

2 Current Status

The current state of affairs can be characterized by an
artificially heightened set of expectations from the potential
users of parallel computing, coupled with the reality of the
difficulty of obtaining good performance on a wide range
of applications. These difficulties present opportunities for
computer science (CS) research, yet the participation of the
CS community in the HPCC program remains low.

2.1 Heightened Expectations

It must be admitted that the expectations of the user
community for performance of parallel machines on real
programs have been elevated to unrealistic levels in recent
years. The reasons for these heightened expectations in-
clude vendors overselling the capabilities of their machines,
unwarranted extrapolation of some impressive-looking per-
formance results achieved on regular computations to appli-
cations in general, and the availability of MPP machines at
federally funded centers.

Vendors raise unrealistic expectations by using raw per-
formance figures to describe the capabilities of their ma-
chines. The typical approach is to multiply “guaranteed-
not-to-exceed” performance figures for a single processor by
the number of processors to yield a “peak performance” rate
for their machine. However, these figures are difficult to ap-
proach with even the most carefully selected benchmarks be-
cause their achievement depends on sustaining a fortuitous
combination of operations which match the characteristics
of the hardware throughout most of the execution of the
program. A vendor can then compound the misconceptions
that result by insinuating that these numbers might apply
to ordinary applications. A person might thereby be com-
pletely misled by such figures unless they are aware of the
nature of these claims or have noticed the pervasive cynicism
toward vendor specifications that exists among experienced
users.

Similar misconceptions might stem from early reports
of results obtained on MPP machines. Since performance
is often measured in MFLOPS or MIPS, the higher num-
ber the better, it is natural to mistake better numbers for
more important results. The fallacy once again is that the
higher numbers that are reported tend to represent the “low-
hanging fruit” of parallel computing. As an example, the
Gordon Bell Award for high performance on a real appli-
cation was awarded a couple of years ago to a very regular
stencil-oriented program which achieved remarkable perfor-
mance but on a computation unusually well-suited to paral-
lelization. We would not dispute the worthiness of this effort
or the importance of the application. But it certainly seems
to be the case that these figures are not being repeated for
a wide range of applications. Yet the widespread publicity
surrounding this award naturally catalyzes hopes that such
performance is at last within reach for many applications.

Federally funded centers with MPP machines have also
contributed to heighten expectations among users. When
MPP machines were first becoming available, the users of
those machines tended to be persons experienced in high-
performance computing and willing to expend the resources
to achieve high performance in their applications. And
again, these early applications were often based on regular
computations that were relatively easy to execute in paral-

lel. As parallel machines began to proliferate, especially as
they found homes in federally funded centers, the user base
expanded to include many users less experienced with par-
allelizing programs and not especially interested in diverting
resources from development of their applications to coping
with new programming paradigms. Furthermore, these new
users brought a wider variety of applications, including many
irregular computations, for which the commonly-used par-
allelization approaches might not apply. The availability of
parallel machines to this broad set of new users brought the
heightened expectation in contact with the reality.

2.2 Difficulty of Efficient Parallelism

It is difficult to get good performance on complete ap-
plications using parallel computers, except for a small class
of regular applications. The difficulties of writing parallel
programs are not just due to the amount of inter-processor
communication, but include :

e Asynchrony : MIMD parallel computers have indepen-
dently running processes, and events in the parallel pro-
gram can potentially occur in different orders on differ-
ent executions. Moreover, communication latencies can
vary widely, and most message passing systems do not
even ensure in-order message delivery. Ensuring cor-
rectness in the face of this non-determinism is a difficult
problem.

o Complexity : exploiting parallelism efficiently requires
consideration of partitioning (how to split the compu-
tation into parallel parts), mapping (how to assign the
parallel parts to processors) and scheduling (in what
order to execute the parallel parts of a computation on
a processor).

e Idle time : causes wasted processing resources, and
should be minimized. Idle time is caused by re-
mote communication network latency, remote process-
ing time (delays because the remote processor does not
process the request immediately), transient load imbal-
ances, and long critical paths.

e Smarter algorithms tend to be more irregular. E.g.,
for n-body problems arising in molecular dynamics and
stellar dynamics applications, the simplest algorithm
having an O(nz) complexity for n particles is regular
and can be easily parallelized. However, the fast mul-
tipole algorithm having O(n) complexity has highly ir-
regular patterns of communication.

o Irregular applications are difficult to parallelize because
they aggravate all the problems due to load imbalance,
latency, and scheduling.

While massively parallel machines were being deployed at
supercomputer centers across the country, single-processor
workstations were gaining in performance in spurts. Cur-
rently, workstations in excess of 100 MFLOPS are readily
available. What is more, one can achieve a significant frac-
tion of this peak performance in a sustained manner on real
applications. The performance of these workstations almost
equals that of supercomputers which application scientists
used to employ only a few years ago, and it is immediately
available on their desktops.

In the face of the problems of parallelization and the avail-
ability of workstation networks, why do we need parallel ma-
chines? First, we must recognize that simple-minded paral-
lelization often gets bad results in terms of speedups and
other performance metrics. We should not blame or give up
the technology of massively parallel computing. Instead, we
must try to appreciate the complexities of obtaining effective
parallelization. Second, the potential of massively parallel
computers is enormous, if we can solve the parallelization
problem. Third, the trends in microprocessor technology
suggest that desktop workstations will have between 8 and
64 processors in them within the next three to five years.
This is partly because because microprocessors, which are a
commodity product, constitute a small fraction of the cost of
a workstation. Therefore, widespread availability of parallel
computing technology is inevitable and must be dealt with.

This motivates research in techniques and algorithms to
exploit parallelism effectively.

2.3 Role of Computer Science

What role are computer science and computer scientists
playing in the HPCC program? Obviously, computer science
played an important role in enabling the technology that is
at the base of the HPCC program itself. Advancements in
the microprocessor technology via the RISC methodology,
interconnection networks (such as the fat-trees used in the
CM-5), switching technology (e.g. wormhole routing), com-
pilers, parallel algorithms, and portability libraries have all
contributed to making fast parallel computers possible and
usable. Yet, one finds that the participation of the computer
science research community, as measured by the number of
faculty, graduate students, and postdoctoral associates sup-
ported directly by the HPCC program, is quite low. [was
unable to obtain objective data to support this belief, but
many of my colleagues in computer science have expressed it.
They do not see a significant increase in the human-resource
budgets within their CS departments that can be attributed
to the HPCC program. (This should be a number that the
federal agencies could identify and monitor.)

What are the reasons for this lower-than-expected par-
ticipation? It is sometimes said that computer science has
become quite an inward-focussed discipline. Indeed, this is
a danger the computer science community must avoid, al-
though some fraction of the research must be devoted to ba-
sic research directions that may not appear relevant from the
outside, to maintain the vitality of the field. However, this
is not the reason for the low participation. There are many
computer scientists who see their discipline as an engineering
one, and are eager to contribute in an application-oriented
direction. The reason is more likely to be the funding pat-
terns that have emerged, by conscious design or otherwise,
in the HPCC program. The program has supported de-
velopment of parallel machines, their deployment, and end-
application development projects, but has not supported ef-
forts on languages, systems, compilers, generic algorithms
and their implementation with equal emphasis. For exam-
ple, the recent report by the NSF Blue Ribbon Panel on
HPC [1] states the following in justifying its Recommenda-
tion B-1 for a challenge program in computer science within

CISE:

There is a consensus that the absence of sufficient

funding for systems and algorithms work which
is not mission-oriented is the primary barrier to
lower cost, more widely accessible, and more us-
able massively parallel systems.

What role should computer science and computer scien-
tists play in the HPCC program?

When I asked this question to an eminent physical scien-
tist recently, he told me that he takes a dim view of the role
of computer scientists. The computer scientists have their
own agenda, he said, and they tend to take off on work tan-
gential to the development of application programs. I believe
we computer scientists should have our agendas, because we
would like the principles and techniques we develop to be
applicable to a broad variety of applications, rather than
only the one at hand. However, we need to stay application
oriented, to avoid the danger of developing techniques that
are irrelevant to any significant class of applications.

But the broader question of our role is answered by the
difficulty (and importance) of effective parallel programming
discussed above. A computer scientist’s knowledge of algo-
rithms, architectures, compilers, analysis techniques, soft-
ware engineering concepts, etc. is important to obtain good
performance and productivity on parallel machines. We
must contribute by studying individual applications, devel-
oping core techniques, and tools, and testing their applica-
bility to many applications.

3 Answers to Focal Questions

The organizers of the workshop on HPCC agendas posed
three specific questions to the contributors of position pa-
pers, which will be briefly addressed now.

Transition to parallel computation: Overall, I expect the
transition to be gradual, as individual applications face com-
petitive challenges based on speeds, and migrate to parallel
machines. Availability of desktop parallelism will acceler-
ate the transition considerably. However, if we are able to
develop tools that can simplify development of parallel pro-
grams, provide efficient portability, allow reuse of parallel
modules without sacrificing efficiency, and thereby protect
the investment of independent software developers in writ-
ing parallel applications, it would provide a catalyst that can
lead to explosive growth.

Parallel Machines: strategically planned progression to-
ward the “ultimate” machine, or a series of attempts? As
the trends in technology and the utility of machine features
cannot be effectively predicted for the long-term future, I
expect machines to be designed to be the best ones at the
moment, as they should be. However, the strategic plans,
such as the Touchstone project at Intel SSD, have their value
and should be pursued to jump-start technological develop-
ment.

Is High Performance computing a means to an end or
end in itself? It clearly is a means to an end — actually to
many “ends”. However, to enable all these end applications,
one must develop the core technology in a “non mission-
oriented” manner. This point is further elaborated in the
next section.

4 Suggestions for an Agenda
My suggestions for the future of the HPCC program are
divided in two parts: the strategic agenda and the technical

agenda.

4.1 Strategic Agenda

The broad policy and emphasis I would like to see fol-
lowed by the policy-makers and the HPCC community in-
clude an attempt to project realistic expectations about the
new technology, to emphasize “middle layers” of computer
science based research equally with the end-layers of paral-
lel machine development, and end-user applications, and to
invest in education for training a new generation of parallel
programmers.

4.1.1 Project Realistic Expectations

The promise of high performance computing is exhilarating.
The ability to compute at a teraflops rate routinely will open
up application areas not imagined yet. Thus it is no won-
der that the HPCC community, including the researchers,
vendors, and the funding agencies are enthusiastic about it.
But the community, and the vendors especially, must act
responsibly, and project realistic expectations. In particu-
lar, the complexities of parallel programming and hurdles in
getting good performance should be readily acknowledged.
Support for the HPCC program should be sought because
it is a promising and important agenda, not because it is an
easy problem to solve.

4.1.2 Computer Science Based Research

The efforts required to enable the use of parallel com-
puting for end-applications can be stratified into layers that
build upon each other as shown in Figure 1. At the base
of the hierarchy are the different parallel machines. Par-
allel programming languages allow one to abstract away
the machine details. Different families of languages distin-
guish themselves by their application areas, and program-
ming paradigms they support. Hoping for a single (or even
a few) language standards at this stage is not realistic for
two reasons:

1. Different computations need different languages. E.g.,
HPF is better suited for data parallel computations,
whereas MPI or PVM are more general purpose.

2. There isn’t an agreement on what a good parallel lan-
guage should be like. Some of us believe in object-based
message driven languages, others in a generic message
passing language, such as PVM or MPI, functional lan-
guages, logic languages, coordination languages such as
Linda, or shared memory languages. Each approach
has its merit, and it is probably too early to decide
which one is “right”, if such a decision is possible. It is
also likely that multiple paradigms and languages will
have to survive and co-exist in single applications, due
to the merits of each in individual situations.

First, to develop programs effectively using these languages,
tools for debugging and performance analysis are needed
which must be integrated into programming environments.
To be effective, the tools (such as performance analysis
tools) must exploit the information provided by the language
rather than just the underlying machine, and so will have to
be language specific.

Pragmatic parallel algorithms represent the next layer in
the hierarchy. For sequential programming, a wide body of
knowledge, accumulated over several decades, is available in
the literature. Such is not the case in parallel programming.
Given a particular problem and context (such as machine
characteristics, size of the problem, performance criteria),
one should be able select an algorithm from the many avail-
able. To bring this about, extensive research on algorithmic
development is needed. Deciding when a parallel algorithm
is better than another is more difficult than in the sequential
case—where a comparison of operation counts suffices. Also,
asymptotic analysis, which is a very effective tool for sequen-
tial algorithm analysis, is less effective for parallel algorithm
analysis which involves a “game of constants”. Therefore,
empirical studies are needed to map beneficial regions for
each algorithm. The resultant algorithms should be embod-
ied in generic libraries whenever possible.

Individual application domains may require development
of specialized libraries. These may be specialized versions
of the generic algorithms, or new special purpose algorithms
that happen to be relevant in a particular field only. An
interesting possibility here is that of customizable modules:
Many parallel algorithms have variants that are better in dif-
ferent circumstances. They may also have subcomponents
where alternative algorithms can be used. Today such vari-
ants are often dealt with by rewriting the programs from
scratch. A customizable module allows the user to select
the variants and the subcomponents. For example, a CFD
researcher may use such a module for a 3-D grid based calcu-
lation of turbulent flow. They can then specify what linear
system solvers to use in its various phases, and what data
decomposition to use.

The next layer in the hierarchy is that of end-user ap-
plication programs. If the HPCC technology is to have a
broad impact on society, a broad spectrum of application
areas must be addressed. In particular, scientific applica-
tions which will enable discoveries and help fight diseases,
for example, are important but so are applications in the
manufacturing area (in engineering and operations research,
for example). The end users in the layer above these are
the ones who will utilize the parallel computing cycles to
run the application programs, and who need the application
programs as well large-time access to parallel machines.

In the context of theses layers, the current HPCC pro-
gram as implemented appears to focus at the bottom and
top extremes of the picture: development and deployment
of parallel machines, availability to some end users, and de-
velopment of a few specialized end-user applications. The
middle layers have received some attention, but it is clearly
not on par with these. This is a dangerous situation. If
this perception is accurate, the HPCC program may end
up producing a collection of highly specialized application
programs, without advancing the state of the art of parallel
programming significantly. This will not help the program-
mers from industry who will follow to use this new technol-
ogy. What technology can we transfer to them? Support
for the middle layers is crucial to the adoption of the HPC
technology to a broad class of applications.

The ASTA (Advanced Software Technology and Algo-
rithms) component of the HPCC program, as articulated

Broad based applications

Application level libraries and customizable modules

Generic libraries, algorithm development, and empirical studies

Parallel
Debugging Performance Progra_m development tools
analysis environments
HPF MPI/PVM Message driven Coordination Parallel
languages languages | languages
Parallel
Paragon CM-5 T3D | e NCUBE :
machines

Figure 1: Hierarchy of research efforts in parallel processing.

since its beginning, seemed to address these middle layers;
yet its implementation seems to have de-emphasized them.
call for a reassessment of the roles of various components, al-
location of resources to individual layers, and objective and
public monitoring of the support levels.

Fortunately, the research on the middle layers isn’t
resource-intensive. Developing parallel software, languages,
and tools does not require extensive production runs on mas-
sively parallel supercomputers. Access provided through na-
tional centers is probably adequate for this purpose, along
with a few inexpensive workstations. It mainly requires ex-
penditures on human resources. One needs to support many
teams with a faculty member, one or more postdoctoral re-
searchers or research programmers, and several graduate re-
search assistants. This will also have a positive impact on
the human resource development for this crucial area.

There may be a concern that supporting only mid-layer
work may generate irrelevant systems. This is a real danger
that must be avoided. However, this can be accomplished
by requiring demonstrations of the work using a few sample
end-applications or their components.

My suggestion here is fully consistent with recommenda-
tion B-1 of the Branscomb report [1], which recommends
establishing a number of major projects in computational
science and mathematics.

4.1.3 CSE Education

As parallel computers, massive or otherwise, become com-
monly available, there will be a need to train or retrain a

large community of programmers to use them. The cur-
rent generation of parallel programmers learned by doing,
in an ad-hoc manner. For the broader audience, the train-
ing must be systematized. Techniques and algorithms must
be collected, categorized, and pedagogically organized into
textbooks. Appropriate courses must be developed at the
universities. For applications in science and engineering,
interdisciplinary academic programs need to be developed.
Although this is an obvious item for the agenda, it requires
consolidation of knowledge in parallel programming, and one
may have to wait a while for the dust to settle before the
proper teaching (and programming) paradigms emerge.

4.2 Technical Agenda: Personal View

For widespread use of parallel computing, it is necessary
to design programming systems that will allow programmers
to:

1. Port their program from one machine to another with-
out change, and without a significant performance
penalty.

2. Obtain good performance even on irregular classes of
applications

3. Simplify the process of developing parallel programs

4. Reuse parallel modules in different applications.

These objectives motivate the agenda pursued by my re-
search group at the University of Illinois. The approach
involves an object-based language that encourages locality
for efficient portability, message driven execution, dynamic

load balancing for dealing with irregular computations, de-
sign of parallel abstractions and implementation of tools to
simplify programming, and explicit support for modularity.
Some aspects of this agenda are described below.

4.2.1 Message Driven Execution

The predominant paradigm used for programming parallel
machines is provided by the traditional SPMD model, which
is supported by vendors of parallel machines in their oper-
ating systems. Even data parallel and functional languages
are often implemented using the traditional SPMD model as
their back end.

The SPMD — single program multiple data — model
simplifies program development by using a simple model
for internal synchronization and scheduling. In the SPMD
model, as used in this paper, there is one process per proces-
sor (usually all processes are executing the same program).
Communication among processes (hence processors) is usu-
ally accomplished with blocking primitives. Messages have
tags, and the receive primitive blocks the processor until a
message with a specified tag arrives (of course, it is possible
to use non-blocking communication occasionally if it does
not complicate the code). Moreover, we use “traditional
SPMD model” to mean strict use of blocking receives.

A single thread of control and blocking receives makes the
programming of these machines relatively easy. The simplic-
ity of the flow-of-control attained in SPMD is at the expense
of idling processors. After issuing a blocking receive, the pro-
cessor must wait idly for the specified message to arrive. This
wait may not always be dictated by the algorithm, i.e., the
algorithm may have more relaxed synchronization require-
ments. Yet the use of blocking primitives forces unnecessary
synchronization and may cause idle time.

This idle time can be decreased by rearranging the send
and receive operations. This involves moving the sends ear-
lier and postponing the receives as much as possible in the
code. Such local rearrangement of communication can in
many cases achieve the desired objective—increasing the uti-
lization of processors. However, this strategy cannot handle
cases with more complex dependences and unpredictable la-
tencies.

Further, even though the SPMD model can achieve lim-
ited performance improvements as discussed before, it can-
not overlap computation and communication across mod-
ules and libraries. In the SPMD style, invocation of another
module passes the flow of control to that module. Until
that module returns control, the calling program cannot do
anything. Therefore, the idle times that a module experi-
ences cannot be overlapped with computation from another
module.

Message-driven execution, in contrast to the SPMD
model, supports many small processes (or objects) per pro-
cessor. These processes are activated by the availability of
messages that are directed to them. At this level of descrip-
tion, it suffices to say that each process has a state and a
set of functions (methods) for dealing with incoming mes-
sages. When a message arrives for a particular process, the
system eventually activates the process. Then the process,
depending on the content and type of the message, executes
the appropriate method.

Message-driven execution overcomes the two difficulties
experienced by the SPMD model. It can effectively overlap
latency with useful computation adaptively:

e within a module
e across modules

Message-driven execution could process whichever message
arrived first (or whichever message is made available for pro-
cessing by the message-scheduler), hence, adapting itself to
the runtime conditions. This permits greater latency toler-
ance within a module.

In addition, the message-driven paradigm allows different
modules that might have some concurrent computations to
share processor time. Consider the computation shown in
Figure 2 (figures taken from a recent Ph.D. thesis of my
student Attila Gursoy): module A invokes two other modules
B and C. In the SPMD model, module A cannot activate B
and C concurrently even if the computations in B and C are
independent of each other. As a result, the processor time
is not fully utilized, as illustrated in the same figure. In a
message-driven paradigm, the idle times on a processor can
be utilized by another module if it has some work to do.
Such a scenario is illustrated in Figure 3. Module C gets
processor time (by virtue of having its message selected by
the scheduler) while B waits for some data, and vice versa,
thus achieving a better overlap than the SPMD program.

Libraries constitute an important part of the software
development process. They provide reusable, portable code,
and they hide details from application programmers. There
are many SPMD parallel libraries for commonly used kernel
operations, such as numerical solvers, FFT, etc. The SPMD
style does not encourage use of multiple concurrent libraries.
When faced with performance loss in a situation, such as in
Figure 2, an SPMD programmer typically breaks the library
abstraction, combines modules B and C with A, and then
tries to achieve better overlap by static movement of code.
On the other hand, message-driven style encourages creation
of smaller and more reusable modules. Therefore, we expect
libraries to be a major strength of message-driven systems
in the future.

However, developing message-driven libraries requires a
different set of assumptions. The organization of the code
and the nature of the interfaces across modules is different.
The issues involved in message-driven inter-module inter-
faces must therefore be understood before one can undertake
development of large sets of message-driven libraries. The
main reason why message-driven libraries have to be treated
differently from SPMD libraries is the split-phase nature of
inter-module exchanges. When a module calls another mod-
ule, it must simply deposit the data it wishes to deposit, and
then continue or suspend. Eventually, the other module will
return data and control to the calling module in the form of
a message. Substantial research on message driven protocols
for exchange of data among modules and on development of
message-driven libraries is still needed.

4.2.2 Charm

Charm [5] is a portable, object-based, and message-driven
parallel programming language developed at the Paral-
lel Programming Laboratory at the University of Illinois.

busy EH

Ej““'hm

ide (]

Figure 2: SPMD modules cannot share the processor time.

A

T

4

busy EH

B__ BN BN BN
c_ N TN B9

ide []

Figure 3: Message-driven modules share the processor time.

Charm programs run unchanged on a variety of shared and
private memory parallel machines. The basic unit of com-
putation in Charm is a chare (which is a concurrent object).
A chare’s definition consists of an encapsulated data area
and entry functions that can access the data area. Chare
instances can be created dynamically, such that each chare
instance has a unique address. Charm provides a second
type of process called a branch office chare. A copy (branch)
of the chare executes on each processor. Branch office chares
provide a convenient abstraction for the implementation of
various distributed strategies, such as load balancing, quies-
cence detection, and distributed data structures.

4.2.3 Information Sharing Abstractions

A parallel computation can be characterized as a collection
of processes running on multiple processors. Depending on
the programming model and language, it may have just one
or many processes on each processor. As the processes are
part of a single computation, they often have to exchange
data with each other.

One of the most popular information sharing mechanisms
is a shared variable. Two or more processes may exchange
information by setting and reading the same shared vari-
able. This model offers great simplicity as it appears to ex-
tend the sequential programming model in a natural manner.
However information exchange through shared variables suf-
fers from one major drawback: the difficulty of efficient im-
plementation on large parallel machines. Shared variables
can be implemented efficiently on small parallel machines,
which physically share memory across a bus and can provide
hardware support for a single global address space. How-
ever, many large-scale machines available today, such as In-

tel iPSC/860 and Paragon, NCUBE/2, and CM-5, include

hundreds of processors. Implementing shared variables on
such machines is difficult and inefficient.

Messages provide another important means of exchanging
information between processes in systems such as PVM [7],
Express [3], and Actors [4]. Messages containing necessary
information can be sent from a “sender” process to a known
“receiver” process'. Most commercial distributed memory
machines provide hardware support for message passing, so
this mechanism to exchange information can be easily im-
plemented. However message passing as the sole means of
exchanging information may not be adequate, or may not be
expressive enough to easily represent many different modes
of information exchange. For example, in order to send a
message, the sending process must know the identity of the
receiving process. In many applications, such information
may not be easily available. Message passing can also prove
to be a cumbersome, if not an inefficient, mechanism to ex-
press information sharing between multiple processes. For
example, read-only information® can be exchanged via mes-
sages in a language with message passing as the universal
information sharing mechanism. But the cost of accessing
the information is substantial. Access to the information
can be optimized by replicating the read-only information
on each processor. However the user needs to go to consid-
erable effort in order to implement (with messages) a repli-
cated variable, which is accessed through a unique identifier.

There exist other mechanisms to exchange information
among parallel processes. The information sharing mecha-

1In most current message-passing models, information can be
exchanged only on a point-to-point basis. However, collective
communication primitives are being designed by the message pass-
ing interface (MPI) standardization committee [2].

2Read-only information is data that is initialized once and not
altered thereafter.

nisms provided by Linda and Strand suffer from the same
problem: each provides only a single information exchange
mechanism. Compilers for languages with a universal infor-
mation sharing mechanism often attempt to detect various
modes of information sharing in order to produce more ef-
ficient object code. However the detection of a particular
mode of information sharing can be imperfect and conserva-
tive at best. It would be more intuitive and convenient for
the programmer to specify a mode of information exchange,
rather than trying to fit all information sharing modes into
the single mode of information exchange.

The problems with a single universal sharing mecha-
nism suggest that a parallel language must provide multi-
ple mechanisms to share information. Also, for portability,
there must be a separation between the implementation of
a particular mode of information sharing and its abstrac-
tion available to the user. Empirical observation of parallel
programs suggests that processes share data in a few dis-
tinct and specific modes. We argue that such modes should
be identified and explicitly supported in parallel languages
and their associated models. We have identified and imple-
mented some of these specific modes of information exchange
in Charm: readonly, accumulator, monotonic, write-once,
and distributed table. These abstractions lead to improved
clarity and expressiveness of user programs. The abstrac-
tions have been implemented in the most efficient manner
on the underlying architectures.

4.2.4 “Intelligent” Performance Analysis

There exist a large and diverse collection of parallel pro-
gramming tools. The primary emphasis of these tools has
been to present generic information about the execution of
the program. The analysis of the information about a pro-
gram’s execution has been left largely to the user. Automatic
performance analysis of a program’s execution is possible if
sufficient information about the characteristic behavior of
a parallel program is available to the performance analysis
tool. In most parallel languages, such information is not
easily available. However, for Charm, based on the stratifi-
cation provided by objects and specificity provided by multi-
ple information sharing abstractions, a performance analysis
system can combine run-time traces with compile-time infor-
mation to provide intelligent performance analysis. In fact,
we are pursuing development of an analysis system that goes
further in exploiting this information, and will provide the
user with suggestions on improving the performance.

4.2.5 Under-represented Application Areas

Application areas, such as computational biology and com-
putational fluid dynamics, are quite important and are being
addressed by the HPCC program. However there are other
areas, which I expect to benefit significantly from parallel
computing and to have a significant impact on society, that
are currently under-represented. These include operations
research for industry, discrete event simulation for electron-
ics and defense applications, combinatorial search and Al for
its future application potential.

4.3 Technical Agenda: Broader View

We believe that message driven execution, for the rea-
sons outlined above, will be the “right” way of writing par-
allel programs. Yet, the currently dominant paradigm is the
SPMD based message passing one. In addition, other com-
peting approaches, with their own merits, are also being pur-
sued — such as functional languages, Linda, etc. Our views
on specific information sharing abstractions compete with
those that believe message passing, or shared variables, or
tuple spaces, or weak models of consistency, provide an ad-
equate and appropriate abstraction. This is symptomatic of
the diverse needs of different applications, different machine
characteristics, and the need for further experimentation. A
danger to avoid, then, is that of early standardization, which
might stunt creativity and progress on the “right” paths.

Acknowledgements: | am grateful to Attila Gursoy, Ed
Kornkven, Sanjeev Krishnan, and Amitabh Sinha for their
help in preparing this manuscript.

References

[1] L. Branscomb, T. Belytschko, P. Bridenbaugh, T. Chay,
J. Dozier, G. S. Grest, E. F. Hayes, B. Honig, N. Lane,
J. W. Lester, G. J. McRae, J. A. Sethian, B. Smith, and
M. Vernon. Recommendations to implement this goal.
From Desktop to teraflop: ezploiting the U.S. lead in high
performance computing, pages 13—14, August 1993.

[2] J. Dongarra, M. Snir, W. Gropp, E. Lusk, A. Geist, and
et. al. Document for a standard message-passing inter-
face. 1993.

[3] J. Flower, A. Kolawa, and S. Bharadwaj. The Express
way to distributed processing. In Supercomputing Re-
view, pages 54-55, May 1991.

[4] G. A. Agha. Actors: A Model of Concurrent Computa-
tion in Distributed Systems. MIT press, 1986.

[5] L. V. Kale. Parallel programming with Charm: an
overview. Parallel Programming Laboratory, Techni-
cal Report PPL-TR-93-8, University of Illinois, Urbana-
Champaign, Department of Computer Science, July
1993.

[6] K. Kennedy. High performance computing in trouble.
Parallel computing research, 1(4):2, October 1993.

[7] V. S. Sunderam. PVM: A framework for parallel dis-
tributed computing. Concurrency: Practice & Ezperi-
ence, 2, 4:315-339, December 1990.

[8] F. W. Weingarten. HPCC research questioned. Commu-
nications of the ACM, 36(11):27-29, November 1993.

