A Load Balancing Strategy For Prioritized Execution of Tasks*

Amitabh B. Sinha
Department of Computer Science
University of Illinois

Urbana, IL 61801

email: sinha@cs.uiuc.edu

Abstract

Load balancing is a critical factor in achieving op-
timal performance in parallel applications where tasks
are created in a dynamic fashion. In many computa-
tions, such as state space search problems, tasks have
priorities, and solutions to the computation may be
achieved more efficiently if these priorities are adhered
to in the parallel ezecution of the tasks. For such tasks,
a load balancing scheme that only seeks to balance load,
without balancing high priority tasks over the entire
system, might result in the concentration of high pri-
ority tasks (even in a balanced-load environment) on
a few processors, thereby leading to low priority work
being done. In such situations a load balancing scheme
is desired which would balance both load and high pri-
ority tasks over the system. In this paper, we describe
the development of a more efficient prioritized load bal-
ancing strategy.

1 Introduction

Load balancing is a critical factor in achieving op-
timal performance in parallel applications where tasks
are created in a dynamic fashion. In many computa-
tions, tasks have priorities, and solutions to the com-
putation may be achieved more efficiently if these pri-
orities are adhered to in the parallel execution of the
tasks. This is particularly important for computations
with a speculative component, such as state space
search and branch&bound problems, where the order
of execution of the tasks can determine the amount
of computation that needs to be performed. In such
computations, a solution strategy provides a prioriti-
zation of tasks such that executing tasks in the order
of their priorities would minimize the amount of com-
putation. A load balancing scheme that only seeks
to balance load, without balancing high priority tasks
over the system, might result in the concentration of

*This research was supported in part by the National Science
Foundation grants CCR-90-07195 and CCR-91-06608.

Laxmikant V. Kalé
Department of Computer Science
University of Illinois

Urbana, IL 61801

email: kale@Qcs.uiuc.edu

high priority tasks (even in a balanced-load environ-
ment) on a few processors, thereby perhaps leading
to low priority (and hence wasteful) work being done.
This will lead to longer execution times and substan-
tially higher memory requirements. In such situations
a prioritized load balancing scheme is desired which
would balance both load and high priority tasks over
the system.

In this paper, we sketch the development of a load
balancing strategy for the execution of prioritized
tasks, particularly in the context where there are a
large number of processors and an unbounded number
of priority levels. This load balancing strategy is ap-
plicable to various applications such as branch&bound
and state space search problems. We chose to evalu-
ate the strategy with a branch&bound solution of the
Traveling Salesman Problem. The implementation of
the TSP application was carried out in a machine in-
dependent parallel programming system, Charm.

We describe Charm and the branch&bound TSP
implementation in Section 2 and Section 3, respec-
tively. In Section 4, we provide the motivation and
basis for a new prioritized load balancing strategy.
In Section 5, we describe the evolution of the load
balancing strategy along with the results of perfor-
mance evaluation experiments. Finally in Section 6,
we review previous work on prioritized load balancing
strategies and discuss future improvements to our load
balancing strategy.

2 Programming Environment

Charm [1] is a machine independent parallel pro-
gramming language. Programs written in Charm
run unchanged on shared memory machines including
Encore Multimax and Sequent Symmetry, nonshared
memory machines including Intel i860 and NCUBE/2,
UNIX based networks of workstations including a net-
work of IBM RISC workstations, and any UNIX based
uniprocessor machine.

The basic unit of computation in Charm is a chare.

A chare’s definition consists of a data area and en-
try functions that can access the data area. A chare
instance can be created dynamically using the Creat-
eChare system call. As a result of this system call, a
new-chare message is created. Each chare instance has
a unique address. Entry functions in a particular chare
instance can be executed by addressing a message to
the desired entry function of the chare. Messages can
be addressed to existing chares using the SendMsg sys-
tem call. This call generates for-chare messages.

In the Charm execution model, all new-chare and
for-chare messages are deposited in a message-pool
from where messages are picked up by processors
whenever they become free. In the shared memory im-
plementation of Charm, there is a single pool of mes-
sages shared by all processors; in the nonshared mem-
ory implementation, the message-pool is implemented
in a distributed fashion with each processor having its
own local message-pool. New-chare messages are the
only messages that don’t have a fixed destination, and
are therefore the only messages which can be load bal-
anced. In nonshared memory implementations, load
balancing strategies attempt to balance the sizes of
the local message-pools on each processor. New chare
messages may move among the available processors
under the control of a load balancing strategy till they
are picked up for execution. Once picked up, a new
chare message results in the creation of a new chare,
which is subsequently anchored to that processor.

Charm provides the flexibility of linking user code
with different load balancing and queuing strategies
without having to make any changes to the code.
Thus Charm provides a good test-bed for different
load balancing and queuing strategies. Charm also
provides a type of replicated process called a branch-
office chare, and five efficient data sharing abstrac-
tions called read-only, write-once, accumulator, mono-
tonic and dynamic tables. We refer the interested user
to [1, 2] for details of Charm.

3 Application: Traveling Salesman

Problem

The Traveling Salesman Problem (TSP) [3] is a typ-
ical example of an optimization problem solved using
branch&bound techniques. In this problem a salesman
must visit n cities, returning to the starting point, and
is required to minimize the total cost of the trip. Ev-
ery pair of cities < and j has a cost C;; associated with
them (if ¢ = j, then Cj; is assumed to be of infinite
cost).

We have implemented the branch&bound scheme
proposed by Little, et. al. [4]. More sophisticated
branch&bound schemes are available; since our focus

is not on the best branch&bound scheme, but rather
on an efficient prioritized load balancing strategy, Lit-
tle’s scheme is sufficient for our purpose. For a thor-
ough discussion on branch&bound schemes and their
parallelizations we refer you to [5, 6, 7, 8]. In Little’s
approach one starts with an initial partial solution, a
cost function (C) and an infinite upper bound. A par-
tial solution comprises a set of edges (pairs of cities)
that have been included in the circuit, and a set of
edges that have been excluded from the circuit. The
cost function provides for each partial solution a lower
bound on the cost of any solution found by extending
the partial solution. The cost function is monotonic,
i.e., if S; and S, are partial solutions and S, is ob-
tained by extending Si, then C(S1) <= C(S2). Two
new partial solutions are obtained from the current
partial solution by including and excluding the “best”
edge (determined using some selection criterion) not
in the partial solution. A partial solution is discarded
(pruned) if its lower bound is larger than the current
upper bound. The upper bound is updated whenever
a solution is reached.

Let all nodes with cost less than the cost of the best
solution be called useful nodes, and all nodes with cost
greater than the cost of the best solution be called use-
less nodes. In the execution of a branch&bound ap-
plication, useless nodes need not be examined because
such nodes cannot generate solutions better than the
best solution. Even though we do not know the cost
of the best solution at the outset, we can minimize
the number of useless nodes examined, and hence the
amount of wasteful (speculative) work, if we process
the nodes in the order of their costs.

In the Charm implementation of the branch&bound
solution of TSP, each partial solution is represented by
a chare and the cost of the partial solution is the pri-
ority of the new chare message. A monotonic variable
is used to maintain the upper bound.

4 The Basis for our Approach

In this section, we describe the basis for our ap-
proach towards the development of an efficient prior-
itized load balancing strategy. All speedups reported
in this paper are with respect to the execution time
needed to find the best solution on one processor.

Figure 1 shows results of execution runs of a 40-
city TSP on a shared memory machine, the Se-
quent Symmetry. The information is presented in
terms of speedups and the number of nodes (of the
branch&bound tree) that are generated during the
computation. A look at the figure shows that the num-
ber of branch&bound nodes generated remains almost
constant in all the runs, and the speedups are close to

linear.

32 17000

— speedup
----- number of nodes

24 | _| 14000

—l 11000

T CoOommT W
»wmooZ2

18000

| 5000
24 32

PROCESSORS

Figure 1: The figure shows the speedups and the
number of nodes generated for executions of an
asymmetric 40 city TSP on the Sequent Symmetry.

We have examined two existing load balancing
strategies, ACWN (adaptive contracting within a
neighborhood) and Random, to measure and under-
stand performance of fully distributed strategies for
prioritized execution of tasks. In the random load
balancing strategy, new work is sent out to a random
processor. In the ACWN strategy [9], newly gener-
ated work is required to travel between a minimum
distance, minHops, and a maximum distance, maz-
Hops. Work always travels to topologically adjacent
neighbors with the least load, but only if the differ-
ence in loads between the two neighbors is more than
some predefined quantity, loadDelta. The parameters,
minHops and mazHops, can be dynamically altered.
In addition ACWN does saturation control by classi-
fying the system as being either lightly, moderately or
heavily loaded.

Figures 2 and 3 show the results of the execution of
a 40-city asymmetric TSP problem on an NCUBE/2
with a random and ACWN load balancing strategy,
respectively.

Notice that we get nearly linear speedups in the
case of the shared memory machine runs, while in the
case of the nonshared memory machine runs (with ei-
ther load balancing strategy) the speedups seem to
saturate after 8 processors. With the aid of Projec-
tions [10], a performance tool developed for Charm,
we were able to determine that the average busy time
for each processor was 95% in the shared memory runs
and 80% in the nonshared memory runs.

Why are the speedups good in the shared memory

32 17000

— speedup

----- number of nodes
S 24 | 21 14000
P ‘ N
E (¢]
E L D
D| 16 | | 11000 | E
u ! S
P

8 | _| 8000

5000

PROCESSORS

Figure 2: The figure shows the speedups and num-
ber of nodes generated for a 40-city asymmetric
TSP problem on the NCUBE/2 using a random
load balancing strategy. New work is sent to a
randomly chosen processor in the system.

32 17000
speedup
= = = - number of nodes
S| 24 _ - 71 14000
P e - N
E a e o
E NS - D
D| 16| N A I _|_11000 | E
u K “eo s
P /
1
_| 8000
5000

PROCESSORS

Figure 3: The figure shows the speedups and num-
ber of nodes generated for an asymmetric TSP
problem on the NCUBE/2 using the ACWN load
balancing strategy.

implementation? In the shared memory implementa-
tion, all processors share one priority queue of tasks.
Therefore tasks are processed in the order of their pri-
orities; consequently very little useless work is done,
and the amount of speculative work is low. Since the
total amount of work remains fairly constant even as
the number of processors increase, and since all pro-
cessors are busy 95% of the time the completion time
is much faster.

Why are the speedups not good in the nonshared
memory implementation? Since the average busy time
for each processor is 80% we can eliminate longer idle
times (as the number of processors grow) as a reason
for poor speedups in the case of nonshared memory
runs. In the nonshared memory implementation, tasks
are distributed across all processors. Non-prioritized
load balancing strategies do not balance priorities so
that a lot of low priority messages (which may be
pruned in an optimal execution) may get processed on
some processors, while there are still high priority mes-
sages to be processed on other processors. This leads
to a great deal of speculative work which manifests
itself in the increase in the number of branch&bound
nodes. In the case of both the random and the ACWN
load balancing strategies, the number of nodes in-
creases by almost 300%, and speedups were not good
— even though there are more processors, there is
more work (indicated by increase in number of nodes)
to be done, hence the completion time does not de-
crease in proportion to the increase in the number of
Processors.

The above results indicate that in speculative com-
putations it is important that nodes be processed in
the order of their priorities. Any efficient prioritized
load balancing strategy should be able to ensure, as
far as possible, that the processing of tasks occurs in
the global order of their priorities. A simple measure
of how well the load balancing strategy follows the
above criterion is the variance in the number of nodes
created with the number of processors — the lesser
the variance, better is the criterion being adhered to,
and vice versa.

What should be the nature of a load balancing
strategy so that tasks are processed in their global or-
der of priorities? Our experience with the centralized
queue for tasks in the shared memory model versus the
completely distributed queues for tasks in the case of
nonshared memory models (using random and ACWN
load balancing strategies) suggests that a prioritized
load balancing strategy would perform better if it bal-
anced load and priorities between partially distributed
queues.

5 Development of a Prioritized Load
Balancing Strategy

In this section we outline the development of a pri-
oritized load balancing strategy. The first step to-
wards the development of a good prioritized load bal-
ancing scheme was a centralized load manager strat-
egy. Clearly this strategy would not scale well — the
load manager would be a bottleneck. However, imple-
menting and experimenting with this strategy allowed
us to confirm the validity of the criterion mentioned
earlier, and to determine the modes in which the bot-
tleneck occurs.

5.1 First Step: Load Manager Strategy

In this strategy one processor is chosen as the load
manager, the remaining processors are its managees.
Managees send all new work to the load manager.
The load manager is responsible for the buffering of
new work in a prioritized queue and assigning loads
to each of its managees. A managee keeps the load
manager informed about its load status in two ways
— first, by periodically sending load information to
the load manager, and second, by piggybacking load
information onto each piece of new work sent to the
load manager. The strategy that the load manager
adopts in distributing load among its managees is to
maintain the load on every managee within a mini-
mum and maximum allowable load range. Whenever
a load manager receives new load information about
a managee, it sends it work only if the current load
on the managee is less than the minimum load — we
define the minimum acceptable load on a processor as
the leash size. The leash is used to keep managees busy
with work, while the manager sends it more work. We
had expected that varying the leash size would make
a difference. However in all our experiments any leash
size of greater than 1 performed equally well. One of
the reasons for this might be that the average granu-
larity of work for the 40-city case is about 0.8 seconds,
and this might be sufficient for the manager to receive
a request for load and send work back to the managee.

Figure 4 shows the results of the execution of a
40-city TSP with the Load Manager strategy. Notice
that the number of nodes have remained fairly con-
stant, and the speedup is almost linear. The Load
Manager strategy works well upto 32 processors, but
its primary drawback is that it is not scalable to many
more processors. In fact, it failed to run for the prob-
lem at hand for 64 processors. The failures were due
to too many messages per unit time, which lead to an
overflow of the message buffer.

This motivated the next stage in the development
of a multi-level prioritized load balancing strategy:

32 17000

speedup
= = = - number of nodes

S | _| 14000
P N
E (¢]
E D
D | 11000 | E
U S
P

_| 8000

>
5000

32

PROCESSORS

Figure 4: The figure shows the speedups and the
number of nodes generated for executions of a 40
city asymmetric TSP on the NCUBE/2 using the
load manager strategy to balance load.

the multiple managers strategy. Multi-level strategies
have been studied before. Furuichi et. al. [11] present
a strategy to partition the search of an OR-parallel
graph in a distributed and hierarchical fashion among
various processors — some processors function as sub-
task generators and distribute the tasks among the re-
maining processors. One critical issue in their strategy
is the generation of sub-tasks of reasonable granular-
ity — if the grainsize is small, then the overheads of
distributing would be substantial, if the grainsize is
too large, then there might not be enough work to
distribute. The model of computation in [11] is differ-
ent from ours: in their model tasks are generated at
and divided by only the task-generators, while in ours
tasks can be generated at any managee. Ahmad and
Ghafoor [12] have presented a semi-distributed strat-
egy for task allocation for regular topologies, e.g., hy-
percubes as an alternative to completely centralized
and completely distributed task allocation strategies.
Neither of the above strategies take into account the
additional factor of balancing priorities of tasks over
processors.

5.2 Second Step:
Strategy

Multiple Managers

In the multiple managers strategy, the processors in
the system are partitioned into clusters. One proces-
sor in each cluster is chosen as the load manager, the
remaining processors in the cluster being its managees.
Managees send all new work created on themselves to
their corresponding load manager. Each load manager
has two responsibilities:

1. It must distribute the work among its managees.
As in the load manager strategy, the managees
inform their load managers of their current work
load by sending periodic load information and
piggybacking load information with every piece of
new work they send to the manager. The man-
ager uses load information from its managees to
maintain the load level within a certain range for
all its managees.

2. It must balance both load and priorities over all
the load managers in the system. This is accom-
plished by an exchange of high priority tasks be-
tween pairs of managers. Each manager commu-
nicates with a defined set of neighboring man-
agers — in our implementation the managers were
assigned positions in an n-dimensional cube, and
the neighbor relation was defined as neighbors in
the cube. An exchange of tasks between a pair of
managers occurs in two steps. In the first step,
the managers exchange their load information. In
the second step each manager sends over some
tasks to the other manager. Even if the loads are
balanced, the managers exchange a fixed number
of high priority tasks — this does the priority bal-
ancing. Further, if the loads are unbalanced, the
manager with greater load sends to the manger
with the lesser load additional tasks — this does
the task-load balancing. Note that the tasks ex-
changed are the highest priority tasks on each
manager. We have experimented with a strat-
egy in which one half of the top priority tasks
were exchanged, but this resulted in a degrada-
tion in performance, perhaps because of the cost
of determining the top half elements. We can in-
tuitively explain why exchanging the top priority
tasks might be sufficient: the managees of each
manager are already working on the top priority
elements on their load managers. Therefore an
exchange of work between managers causes a dis-
tribution of the top priorities between two man-
agers and their managees.

Figure 5 shows the results of runs of a 40-city
TSP with a multiple managers load balancing strat-
egy. The speedups were good for 128 processors, but
thereafter the number of nodes increased sharply, and
the speedup remained unchanged. One of the rea-
sons might be that there was not enough new work
at the managers. In that case the priority balancing
would not be effective causing expensive nodes to be
processed early. In the example in Figure 5 approxi-
mately 7500 nodes were expanded for 128 processors,

256 25000

speedup
= = = - number of nodes

192 1 ¥ 20000

nmoo2Zz

128 | | 15000

T CoOommTW®W

| |
| 64 | 128 | 192 256

PROCESSORS

Figure 5: The figure shows the speedups and the
number of nodes generated for executions of a 40
city asymmetric TSP on the NCUBE/2 using the
multiple managers strategy to balance load. In this
case the cluster size is 8 processors.

which works out to 50 nodes per processor for the 128
processor case and only 25 nodes per processor for
the 256 processor case for the entire duration of the
computation, which does seem to be a small number
of nodes on each processor. In order to confirm our
analysis we ran the TSP program for a larger problem
size. The results for the 50-city run of the TSP are
shown in Figure 6. Actual times are provided, instead
of speedups, because the program did not run on a sin-
gle processor due to insufficient memory. The results
show better speedups till 256 processors and confirm
our analysis.

The multiple managers strategy scales up reason-
ably well to 256 processors. Could we have used larger
problems and obtained speed-ups for even more pro-
cessors? Probably, yes. However, we ran out of mem-
ory for larger problem sizes. The reason for this is that
there is an imbalance in the memory requirements of
the load managers and the managees in the multiple
managers strategy. The imbalance arises because all
newly created work is queued up at the load managers.
This poses problems because the amount of new work
that can be created becomes limited by the number
of managers and their available memory, even though
there is a larger amount of memory available on the
managees (assuming all processors in the system have
equal amount of memory, and that there is more than
one managee for each manager). Our final load bal-
ancing strategy attempts to balance the memory re-
quirements of the load manager and the managees.

20000. 60000
time (milliseconds) 7
.
- == - number of nodes L,
T 150001 | 45000
| N
M (0]
E D
(ms)| 10000_] | 30000 | E
S
5000_| | 15000
| | | °
128 256 384 512

PROCESSORS

Figure 6: The figure shows the speedups and the
number of nodes generated for executions of a 50
city asymmetric TSP on the NCUBE/2 using the
multiple managers strategy to balance load. In this
case the cluster size is 16 processors.

5.3 Third Step: Token Strategy

The token strategy is very similar to the multiple
managers strategy. The processing elements in the
system are split up into clusters — one processor in
each cluster is chosen as the load manager, the remain-
ing processors are its managees. New work created on
managees is stored in hash-tables on the processor it-
self, while a token containing the priority of the new
work is sent to the load managers. The load managers
balance tokens and priorities among themselves by ex-
changing their high priority tokens — a fixed number
of tokens is always exchanged to accomplish priority
balancing, while some more tokens may by exchanged
to balance the number of tokens on the load man-
agers. Each managee informs its manager of its load
by (1) piggybacking load information with each token
it sends to the manager, and (2) periodically send-
ing load information. When a manager decides that
one of its managees (say M) needs work, it selects the
highest priority token on it, and sends a request to the
processor storing the work corresponding to the token
asking for the work to be sent to M.

There were two problems that we anticipated with
the token strategy:

1. In the manager and the multiple managers strate-
gies, new work traveled two hops — one hop for
the work to be sent to the manager and another
hop for the work to be sent from the manager to
a managee (ignoring the number of hops a mes-
sage might take because of load balancing). In

the token strategy, each piece of new work causes
three hops — one hop for the token to be sent
to the manager, one hop for the manager to send
managee a request to send work, and a third hop
for the work to be sent.

2. There may be a delay in a processor responding
to a request to forward work it owns because it
may be busy processing itself.

We had hoped that the second problem could be mit-
igated if we managed the leash size so that the man-
agees had some work to do, while work was being sent
to them — however, experimental results indicate that
any leash size of greater than 1 performed equally well.

Figure 7 shows the execution times and the num-
ber of nodes generated for runs of a 50-city asymmet-
ric TSP on the NCUBE/2 with the token strategy.
The results are comparable to those obtained with
the multiple managers strategy, though the multiple
managers strategy performed better than the token
strategy. The reason for the better performance of
the multiple managers strategy is that each message
can cause atleast three hops in the case of the token
strategy compared to two hops for the multiple man-
agers strategy. The token strategy, however, is supe-
rior when it comes to solving larger problems because
it utilizes the available memory much more efficiently.
In Section 6, we discuss future improvements to the
token strategy.

20000, 60000
time (milliseconds) <~
= = = - number of nodes ///
T | 15000 _ _|_ 45000
| N
M (o)
E D
(ms)| 10000_| _| 30000 | E
s
5000_| _| 15000
| | | °
128 256 384 512

PROCESSORS

Figure 7: The figure shows the execution times and
the number of nodes generated for executions of a
50 city asymmetric TSP on the NCUBE/2 using
the tokens strategy to balance load. In this case
the cluster size is 16 processors.

Figure 8 shows the execution times and the num-

ber of nodes generated for runs of a 60-city asymmetric
TSP on the NCUBE/2 with the token strategy. No-
tice that the number of nodes generated in this case
are fairly constant for up to 512 processors and the
speedups are good.

300000 100000
L e
T | 225000 | | 75000
| N
o
M time (milliseconds)
E D
- - = - number of nod
(ms)| 150000 _| numberotnodes | 50000 | E
s
75000_| | 25000
| | | °
128 256 384 512

PROCESSORS

Figure 8: The figure shows the execution times and
the number of nodes generated for executions of a
60 city asymmetric TSP on the NCUBE/2 using
the tokens strategy to balance load. In this case
the cluster size is 16 processors.

How good is the token strategy? The results of
execution runs of the 60 city asymmetric TSP seem
to indicate that the number of nodes created remains
nearly constant with the number of processors. Is
there any room for further improvement? In order
to answer these questions we need to examine two
quantities: the amount of wasteful work done and the
fraction of time spent waiting for new work by each
processor.

We have attempted to estimate the amount of
wasteful work done by determining the distribution
of nodes in terms of cost over time of the nodes cre-
ated and processed in the execution runs of the 60-city
TSP problem. Table 1 shows the number of useful and
useless nodes created and processed for various stages
of the program execution for two separate runs of the
60 city asymmetric TSP. In the first run, A, the ini-
tial upper bound is selected to be infinite, while in the
second run, B, the initial upper bound is selected to
be one unit greater than the cost of the best solution.
In our implementation, we prune at creation all nodes
with cost greater than the current upper bound. Since
the initial upper bound is one unit greater than the
cost of the best solution, no useless nodes are created
in run B. Note that in Table 1 the number of useless

nodes created in Run B are more than zero. This is
because we have counted nodes whose cost equals the
cost of the best solution as useless nodes.

An examination of the distribution of the number
of nodes processed before the best solution in case of
Run A shows that the number of useless nodes pro-
cessed are very few, and the number of useful nodes
are substantially more. This means that very little
wasteful work is done before the best solution is found.
However, the number of useless nodes processed after
the best solution is found is considerable — is this
wasteful work? The answer is no, because these nodes
were created before the solution was found when the
upper bound in this case was infinite, and they are
simply being picked up and discarded after the best
solution was found. This analysis is confirmed if we re-
peat the above run with an initial upper bound which
is one greater than the cost of the best solution. In
this case (Run B), the distribution of costs of nodes
processed before the solution was found look very sim-
ilar to the results in Run A. However, the number of
useless nodes processed after the solution was found
are substantially less than the corresponding number
in Run A — much fewer useless nodes are created in
Run B, because our implementation prunes all useless
nodes at creation time. This reduction manifests itself
in a faster finish time, though the time to find the first
solution remains virtually unchanged. The time spent
in wasteful work before the best solution is found is
a small fraction (< 1%) of the time spent in doing
useful work. The finish time could be improved with
more efficient methods to discard useless nodes, but
the strategy itself need not be changed.

The next quantity — fraction of time spent in wait-
ing for work by processors — was determined to be an
average of less than 6% for each one of the managees.

These two quantities indicate that the token strat-
egy performs fairly well, though some small improve-
ment might be possible.

6 Conclusions & Future Work

The execution of prioritized tasks in parallel
presents unique load balancing problems — in addi-
tion to balancing the tasks amongst processors, it is
also essential to balance priorities. Executions of a
branch&bound application on a shared machine and
with existing load balancing strategies helped us es-
tablish that efficiency was critically dependent on the
order of execution of the prioritized tasks — the more
closely it followed the global order of priorities, the
lesser the wasteful work done, and hence the better
the performance. This motivated the development of
a prioritized load balancing strategy. We have devel-

oped a token load balancing strategy that takes care of
(1) load imbalances, (2) balances priorities by central-
izing queues, and (3) balances memory requirements
of processors by using tokens.

The work in this paper is an extension of a paper
presented at a workshop on dynamic object placement
and load balancing at ECOOP’92 [13]. A recent paper
by Saletore [14] present strategies similar to the man-
ager and the multiple manager strategies presented in
this paper. However they present results for upto 32
processors only, for which we have found the manager
scheme to be sufficient. Prioritized ACWN schemes
have been discussed in [15]. However the results are
available only till 16 processors, and hence a compar-
ison with our strategy was not possible.

In Section 5.3 we saw that the multiple managers
strategy out-performs the token strategy for certain
problems. We attribute the superior performance of
the multiple managers strategy to the fewer hops taken
by each message. Some of the delays due to extra
message hop in the token strategy can be reduced by
caching work corresponding to the best tokens on the
managers. We would to like to investigate the effect
of caching high priority nodes on the managers on the
performance of the token strategy.

7 Acknowledgements

We would like to thank the Sandia National Labo-
ratories for use of their NCUBE. We would also like
to thank the referees for useful comments.

References
[1] L. V. Kale. The Chare Kernel Parallel Program-
ming System. In International Conference on
Parallel Processing, August 1990.

[2] L. V.Kale et. al. The Chare Kernel Programming
Language Manual (Internal Report).

[3] Edward W. Reingold, Jurg Nievergelt, and Nars-
ingh Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1977.

[4] J. D. C. Little, K. G. Murty, D. W. Sweeney, and
C. Karel. An algorithm for the traveling salesman

problem. Operations Research, 11:972-989, 1963.

[5] M. Bellmore and G. Nemhauser. The travel-
ing salesman problem: a survey. Operations Re-

search, 16:538-558, 1968.

[6] M. Held and R. Karp. The traveling salesman
problem and minimum spanning trees. Opera-

tions Research, 18:1138-1162, 1970.

Nodes Created

Nodes Processed

Before Soln.

After Soln.

Before Soln.

After Soln.

Useful | Useless

Useful | Useless

Useful | Useless

Useful | Useless

43259 | 40659 |

546 | 1236 |

41788 | 141

2004 | 41748 |

Initial Upper Bound: INFINITY (999999)
Time first solution was found: 118424 ms

Time finished: 155809 ms
(A)

Nodes Created

Nodes Processed

Before Soln.

After Soln.

Before Soln.

After Soln.

Useful | Useless

Useful | Useless

Useful | Useless

Useful | Useless

43585 |

6025

371 |

242 |

42081 |

3

1880 |

6260 |

Initial Upper Bound: 826

Time first solution was found: 117806 ms

Time finished: 124831 ms
(B)

Table 1: This table shows the number of useful/useless nodes created/processed, before/after the best
solution was found. In Run A, the initial upper bound is infinite, while in Run B the initial upper bound
is one unit greater than the cost of the best solution. In our solution, we prune at creation all nodes with
cost greater than the current upper bound. Hence, no useless nodes are created in Run B.

[7]

B. W. Wah, G. Li, and C. Yu. Multiprocessing
of combinatorial search problems. In V. Kumar,
P. S. Gopalakrishnan, and L. N. Kamal, editors,
Parallel Algorithms for Machine Intelligence and
Vision. Springer-Verlag, 1990.

B. Monien and O. Vornberger. Parallel process-
ing of combinatorial search trees. Proceedings In-
ternational Workshop on Parallel Algorithms and
Architectures, Math. Research Nr. 38, Akadmie-
Verlag, Berlin, 1987.

W. Shu and L. V. Kale. Dynamic scheduling
of medium-grained processes on multicomputers.
Technical report, University of Illinois, Urbana,

1989.

L. V. Kale and A. B. Sinha. Projections: a scal-
able performance tool. In International Parallel
Processing Symposium, April 1993.

M. Furuichi, K. Taki, and N. Ichiyoshi. A multi-
level load balancing scheme for or-parallel ex-
haustive search programs on the multi-psi. Sec-
ond ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 1990.

[12]

[13]

[14]

[15]

I. Ahmad and A. Ghafoor. A semi distributed al-
location strategy for large hypercube supercom-
puters. Supercomputing, 1990.

A. B. Sinha and L. V. Kale. A load balanc-
ing strategy for prioritized execution of tasks.
In Workshop on Dynamic Object Placement and
Load Balancing in Parallel and Distributed Sys-
tems (in co-operation with ECOOP ’92), June
1992.

Vikram A. Saletore and Mannan A. Mohammed.
Hierarchical load balancing schemes for branch-
and-bound computations on distributed memory
machines. In Hawaii International Conference on
System Software, January 1993.

V. Saletore . Machine Independent Parallel Eze-
cution of Speculative Computations. PhD thesis,
University of Illinois, Urbana, September, 1990.

