A dynamic and adaptive quiescence detection algorithm

Amitabh B. Sinha Laxmikant V. Kalé
Department of Computer Science
University of Illinois
Urbana, Illinois 61801
email: {sinha,kale}@cs.uiuc.edu

Balkrishna Ramkumar
Department of Electrical and Computer Engineering
University of Iowa
Iowa City, Iowa 52242
email: ramkumar@hitchcock.eng.uiowa.edu

Abstract

A large number of quiescence detection algorithms with good theoretical upper-bounds have been
proposed before. However the metric used to measure the performance of these algorithms is not suit-
able. We propose a new metric for measuring the performance of a quiescence detection algorithm. We
also present an algorithm to detect quiescence in an asynchronous and dynamic model of parallel compu-
tation. The algorithm has been implemented for a machine independent parallel programming system,
Charm. Quiescence detection is provided as a feature in Charm to conduct a variety of operations like

collecting statistics about user computation, initiating new phases of computation, or just terminating
the user computation.

1 Introduction

Parallel and distributed computing has sparked off the development of new algorithms in which many
computing elements interacting synchronously or asynchronously attempt to solve problems. In such
algorithms one key issue is to decide when the algorithm has become quiescent. Quiescence detection has
been extensively studied; the computational models used have been either synchronous' or asynchronous?.

In this paper, we deal with the problem of detecting quiescence in an asynchronous model of computation.

Our model of execution is distributed and asynchronous. Initially only one process, the main process,
exists. Further activity is generated by creating activation messages. An aclivalion message can be either
a message to create a new process (creation message) or a message to an existing process (response message).
A process is said to be active when it is processing an activation message addressed to it. At all other
times a process is passive. An aclive process can generate new activation messages during its execution.
A passive process can be transformed into an active process only by an activation message addressed to
it. Activation messages are not generated spontaneously, i.e., activation messages cannot be created on a
processor where all processes are passive.

In addition to activation messages, which are generated by the application program in a dynamic fashion,
the system uses control messages which are interleaved with the activation messages. Control messages can
be used by the system and cannot generate user activity, i.e., control messages can neither activate passive
user processes nor create new activation messages. Control messages are used for system related activities
like dynamic load balancing and the detection of system properties, such as quiescence.

In our model of parallel execution, we define a user computation to be quiescent, when the following
conditions are met simultaneously:

1. All processes are passive.

2. There are no activation messages in the system, i.e., there are no activation messages in transit or
buffered in system queues. This does not preclude the existence of control messages in the system.

Quiescence detection, then, is the process by which the system detects quiescence in the user computation.
The problem of quiescence detection in distributed systems becomes interesting because the two conditions
for quiescence must be met simultaneously.

Much work has been done before on quiescence detection [1, 2, 3, 4, 5, 6, 7, 8], both for synchronous and
asynchronous systems. We shall briefly discuss some previous work on quiescence detection in asynchronous
computational models.

Lai [8] and Huang [7] present schemes which use distributed snapshots to detect quiescence in asynchronous
distributed systems. In Lai’s approach, a predefined process combines local snapshots (taken spontaneously
by processes) into a global snapshot, which it then uses to determine if quiescence has occurred. Huang’s
method is essentially similar, the only difference being that any processor can initiate the collection of the
global snapshot. Lai and Huang use different techniques to ensure that the global snapshot is feasible, i.e.,
it does not contain processing of messages if the corresponding creation is not also part of the snapshot.
One drawback of both their schemes is that they do not extend to systems where processes can be created
dynamically. In addition, Huang’s scheme can become very expensive because each processor can initiate a

' A send event in a process is synchronized with the corresponding receive event in another process, e.g., in CSP a send
blocks till the corresponding receive is executed, and vice versa.

2A sendevent in a process can happen without the corresponding receive event being executed on another process. However,
the receive event does not occur unless the corresponding send event has occurred.

global snapshot if it is idle. In the worst case, when all processes go idle everyone will initiate a broadcast.
Lai’s scheme does not suffer from this drawback, however the lack of coordination between the collection
of local snapshots means that a considerable number of global snapshots may be collected.

Mattern[6] presents an elegant credit based scheme to detect quiescence in dynamic, asynchronous, dis-
tributed systems. In the worst case, the number of control messages needed by Mattern’s algorithm is
the number of activation messages. The scheme works by distributing one unit of credit amongst active
processes and activation messages. When a process creates an activation message, it divides its credits
equally between itself and the message. A process returns its credits to the monitoring process (the qui-
escence detection algorithm) when it becomes passive. An activation messages’ credit is passed on to its
receiving process if the receiving process is passive; otherwise (if the receiving process is active) the credit
is returned to the monitoring process. When the monitoring process has received the original one unit of
credit, it reports quiescence.

Whenever processes split up their credits between themselves and activation messages they create, fractions
are generated. Fractions cannot be accurately computed with the current representation of floating point
numbers. Mattern presents an approach wherein fractions need not be explicitly computed. Notice that
all fractions are of the form 27", and hence can be represented by the negative of the logarithm (called
credits), i.e., n. The scheme that Mattern outlines to solve the problem of having to compute fractions
exactly involves computing the set of missing credits (credits possessed by activation messages, active
processes and control messages at that time). The set is updated whenever credits are returned to the
monitoring process. The set of missing credits is maintained by the monitoring process, which is a single
process running on one processor. The cardinality of this set is bounded by the sum of the number of
activation messages, active processes and control messages over the entire system. Assuming that the
memory requirements of each activation message is constant, it would mean that the memory requirements
of the monitoring process to maintain the set of missing credits is of the same order as that of the memory
requirements of all the messages in the entire system. In addition, the monitoring process becomes a
bottleneck in bigger distributed systems, since all credits are being returned to the one processor on which
the monitoring process is located.

Chandy and Misra [9] have proved that given any quiescence detection algorithm for an asynchronous
system in the worst case the number of control messages needed cannot be less than the number of
activation messages in the user computation. Chandrasekaran and Venkatesan [10] extended this result
and proved that the number of control messages needed in the worst case by any quiescence detection
algorithm for asynchronous systems is also bounded below by the number of communication links. The
proof, however, is incorrect. The proof relies on the fact that for the algorithm to know that a message is in
transit through a link it is necessary to send a control message through that link. However, the knowledge
that a message has been sent, and not yet received is suflicient to know that a message is still in transit in
the communication link, and this information may be/is often available without having to send a message
through that particular communication link.

In the above papers, the number of control messages used by an algorithm has been identified as an
indication of the performance of a quiescence detection algorithm. However, the true metric for performance
of a quiescence detection algorithm depends on two factors. First, it depends on the extent to which a
quiescence detection algorithm interferes with (and slows down) the user computation. The absolute
number of control messages is not an accurate characterization of this quantity, for control messages
processed and/or sent by idle processors do not adversely affect the performance of the user computation,
and are not overheads in terms of computational performance. We can identify the performance of a
quiescence detection algorithm by observing the following quantities:

e the increase in the execution time of a program when it is run without and then with the quiescence
detection algorithm.

o the time it takes for the algorithm to report quiescence, once the system is actually quiescent.

In Section 2, we present a two-phase distributed quiescence detection algorithm called Counting. Our
quiescence detection algorithm is unique in two significant ways:

e Our quiescence detection algorithm does not distinguish between the two types of activation messages.
Neither does it depend on knowledge about the placement of processes or how they communicate.
Hence it will work in a dynamic and asynchronous model of computation.

e The algorithm automatically adapts to system loads — it generates very few control messages when
the system is busy, and more control messages when the system is lightly loaded. Control messages
generated in the latter case do not adversely affect system performance, because they only occupy
computational resources of idling processors. In most cases the algorithm needs much fewer control
messages than the lower bound presented by Chandy and Misra; in the worst case the number of
messages may be higher, but these are sent/received by idle processors, thus contributing little to
the overhead.

In Section 3, we describe the implementation of the algorithm for a machine independent parallel program-
ming system called Charm. In Charm, quiescence detection is provided as a feature to conduct a variety of
operations like collecting statistics about user computation, initiating new phases of computation, or just
terminating the user computation. Finally, in Section 4, we summarize our work and discuss other future
applications of the Counting algorithm.

2 The Counting algorithm

The Counting algorithm is a two-phase distributed algorithm; a copy of the algorithm, or component, runs
on each processor. Figure 1 shows a model of the activity on each processor. Each processor has a collection
of passive processes and a pool of messages for these processes. There is a scheduler that decides which
message should be processed next, and activates the necessary process. Each component interacts with the
scheduler and the user processes running on that processor. All communication between the components
occur along a spanning tree covering the processors. In the description below all references to the parent,
the children, the root, or the sub-tree of a processor are with respect to the corresponding entities in the
spanning tree on all the processors.

We denote the first and second phases of the Counting algorithm as Phase 1 and Phase 2, respectively.
The Counting algorithm use three kinds of control messages:

1. initialization: these are broadcast to all components, and result in the initialization of Phase 1 or
Phase 2 on all the components.

2. idle: these messages are sent up to the parent during Phase 1. An idle message signifies that each
processor in the sub-tree below has been idle at least once since the last idle message. It does not
mean that all the processors were idle simultaneously.

3. activity: these messages are sent up to the parent during Phase 2 and contain a report of activity
(creation and processing) in the sub-tree rooted at the sending processing element.

Processes
passive active

create a new
activation message

schedule a passive process
for execution by picking a
message intended for it

Scheduler

a message has
been processed

Create Message

a message has
been created

| Quiescence detection component |

Figure 1: The figure shows the interactions between a component, the processes on that processor, the
scheduler and the part of the run-time system responsible for creating new messages.

We use the construct — wait until (condn) — in the description of our algorithm. The process executing
the wait until is suspended till such time as the condn becomes true. In the Counting algorithm, each
component maintains the following counts:

o n.: this is the sum of the number of activation messages created on this processor.

e 7, this is the sum of the number of activation messages processed on this processor.

FEach component also has two other counts N. and N, — they are used to estimate the number of messages
created and processed, respectively, in the sub-tree rooted at itself. These are initialized to zero at the
beginning of Phase 1 and Phase 2, and are sent up with idle and activily messages.

The Counting algorithm appears in Figure 2. Phase 1 is called on each processor immediately before the
user computation begins. Only one phase of the quiescence detection algorithm will be active at any time.

In Phase 1, each leaf component waits until its processor is idle and then sends an idle message to its parent
with the counts N. and N, initialized to n. and n,, respectively. All other components wait until they
receive one idle message from each child, adding the values of N. and N, in these idle messages to their
local values. Having received idle messages from all its children, the component waits until its processor
is idle, and then it sends an idle message to its parent. The idle message contains the values of the counts
N, and N, which have been incremented with the values of n. and n,, respectively, on that component.
When the root has received idle messages from all its children components, it decides whether the system
can be idle by comparing the values of N, and N,. If they are equal then there’s a high probability (but
not a certainty; see explanation of Figure 3 below) that all activation messages have been processed in the
system. If the two counts are not equal then the root initiates Phase 1 again, otherwise the root initiates
Phase 2 on all the components.

In Phase 2, the components send up their activity report messages containing the new values of N, and N,,.
Activity messages from components are combined in the same way as in the first phase of the Counting
algorithm. When the root component has received one activity message from each of its children, it
compares the old and the new values of N. and N,. If these values are the same it implies that there has
been no new activity in the system, and the root reports quiescence; otherwise the root initiates Phase 1

Phase 1()

{
N.=0; N, =0;
wait until (RecdMsgsFromChildren()); /* wait until messages have */
/* been received from all children */
add to local N, and N, the values recd. from children;
wait until (Idle()); /* wait until this processor has no activation messages */
N, =N, + n.; Np:Np‘i‘np;
if (RootSpanTree()) /* check if this processor is the root of the spanning tree */
if (N. # Np)
Broadcast message to begin Phase 1
else
NOId:Nc /* N, == Np */
Broadcast message to begin Phase 2
else
Send message with N. and N, to Parent in Spanning Tree
}
Phase 2()
{
N.=0; N, =0;
wait until (RecdMsgsFromChildren()); /* wait until messages have */
/* been received from all children */
add to local N, and N, the values recd. from children;
wait until (Idle());
N, =N, 4+ n.; Np:Np‘i‘np;
if (RootSpanTree()) /* check if this processor is the root of the spanning tree */
if (NOld == N,)
Report Quiescence
else
Broadcast message to begin Phase 1
else
Send message with N, and N, to Parent in Spanning Tree
}

CreateMessage() { n.++ }
ProcessMessage() { n, ++ }

Figure 2: The Counting Algorithm

again.

Note that a single phase is not sufficient to guarantee that the system was quiescent, because the counts
N, and N, might match at the end of Phase 1 even though all messages were not processed. Figure 3
shows the ‘wave’ of idle messages being passed up the spanning tree in Phase 1 — the processors below
the wave have already sent out their ¢dle messages, while the processors above the wave haven’t yet sent
out their idle messages. Consider the following scenario in Figure 3: message m; is created on a processor
above the wave of Phase 1 messages and sent to a processor below it, while message my is created on a
processor below the wave of Phase 1 messages and sent to a processor above it. Further, assume that the
processing of my did not create new activation messages. In this case, when the wave reaches the root, the
following is true:

root

my

my

wave of idle msgs

processor s below wave

Figure 3: The Wave of idle messages in Phase 1

Creation of m; is counted.

Processing of m; is not counted.

Creation of my is not counted.

Processing of my is counted.

At the end of Phase 1, the counts may® match even though m; was processed after the idle message was
sent. The processing of message m could have generated more new activity, and therefore it is incorrect
to infer from the counts matching at the end of Phase 1 that the system is quiescent.

3 Quiescence Detection in Charm

We have implemented the Counting algorithm discussed above for Charm [11]. Charm is a machine inde-
pendent parallel programming language. Programs written in Charm run unchanged on shared memory
machines including Encore Multimax and Sequent Symmetry, nonshared memory machines including In-
tel iPSC/860 and NCUBE/2, UNIX based networks of workstations including a network of IBM RISC
workstations, and any UNIX based uniprocessor machine.

The basic unit of computation in Charm is a chare. A chare is created dynamically, and has associated
with it a data area, and a set of entry functions that can access this data area. The entry functions can
be executed by addressing a message to an entry function of a particular chare instance, which can be
uniquely identified with its identifier.

In terms of our execution model, chares are processes, and messages to create new chares or to send
messages to existing chares are activation messages. In the shared memory implementation of Charm,
activation messages are delivered by enqueuing them directly into shared queues. On nonshared memory
machines, messages are delivered across processors using the native communication primitives available
on the machine. After delivery, messages are queued up in local queues. In both the shared and the
distributed memory machine implementations, a scheduler picks up messages from the queue and either
creates a new chare, or activates the chare to which it is addressed.

There is another type of process in Charm called a branch office chare. A branch office chare is similar to a
chare, except that an identical version (branch) of the chare executes on each processor. In the quiescence

If we assume that no other activity is occurring in the system then the counts will match; however if there is other activity
in the system the counts may still match because there are more than one pair such as m; and ma.

detection algorithm, a message to create a branch offlice chare is treated as p messages to create chares,
where p is the number of processors being used. The Counting algorithm itself has been implemented as
a branch office chare — a branch corresponds to a component.

The quiescence detection feature in Charm has been used in the implementation of a wide variety of
real-life applications including parallel algorithms for logic synthesis [12] and for test pattern generation
of sequential circuits[13]. In order to measure the performance of the quiescence detection algorithm in
varying program contexts, we tested its performance for the following four synthetic benchmark problems®
on a nonshared memory machine:

1. Problem A is a parallel divide and conquer application. Computation starts with an initial problem,
which is recursively divided to create sub-problems which are executed in parallel. The solutions
from sub-problems are then combined. In the initial phases of the computation when sub-problems
are being created there isn’t enough work for all processors. The situation is similar at the very end
when solutions are being combined and sub-problems finish executing.

2. Problem B is a multi-phase application, where each phase is itself a divide and conquer application.
There are six phases of the divide and conquer application. Parallelism and processor utilization
varies between near-idleness to total-utilization several times before termination. Thus, Problem B
is good benchmark to test the efficacy and correctness of the quiescence detection algorithm.

3. The task graph for Problem C is a finite length chain of processes with the property that each process
in the chain is created by the process preceding it in the chain (the first process in the chain is created
by the main process), and only one process in the chain is active at any instant of time. Each new
process is created on a randomly chosen processor.

4. In Problem D, each processor has one process, and the processes communicate along a directed cycle
on the processes. The computation consists of a pre-determined number of iterations of sends and
receives. In an iteration each process sends a message to the next process in the cycle, and receives
a message from the previous process in the cycle.

Table 1 shows the performance results of the Counting quiescence detection algorithm for program runs
on the NCUBE/2, a nonshared memory machine. A comparison of the number of control messages needed
to detect quiescence with the number of activation messages in that execution run shows that in all
cases, except Problem C, the number of control messages used are substantially lower than the number
of activation messages. Problem C is a ‘hard’ problem for the Counting algorithm, for there is only one
active process on one processor at any time, and all other processors are idle. The number of control
messages generated and processed in Problem C occupy computational resources of idle processors, and
they shouldn’t be considered as an indication of the overhead of the quiescence detection algorithm. This
claim is substantiated by the results in Table 2. For Problem C, the number of control messages used by
the quiescence detection algorithm is substantially more than the number of activation messages (in most
cases); however the average overhead of the quiescence detection algorithm for Problem C is only about
12%.

Table 2 shows the execution times for Problems A, B, C and D with and without the (Counting) quiescence
detection algorithm on a nonshared memory machine, NCUBE/2. For problems A and B, the application
performs better in some cases with the quiescence detection algorithm running than without it. This
is not as surprising as it may seem, because Charm provides dynamic load balancing strategies whose

*We do not need to use a quiescence detection algorithm to detect quiescence for any one of the benchmark problems; the
problems are only used as a controlled experiment, where the onset of quiescence can be independently ascertained.

#PE | Control Iterations Time #PE | Control Iterations Time
Msgs | Phasel+Phase2 | (ms) Msgs | Phasel4+Phase2 | (ms)
2 20 842 5 2 90 44+1 8
4 40 941 6 4 172 42+1 16
8 88 10+1 7 8 264 3241 20
16 144 8+1 11 16 416 25+1 62
32 256 7+1 16 32 608 1742 23
64 384 5+1 25 64 1024 1541 30
128 996 6+1 41 128 2304 1642 23
256 1992 6+1 73 256 3328 12+1 29
Problem A Problem B

Activation Msgs: 6389 # Activation Msgs: 9036
#PE | Control Iterations Time #PE | Control Iterations Time
Msgs | Phasel+Phase2 | (ms) Msgs | Phasel4+Phase2 | (ms)
2 26 1241 14 2 6 2+1 15
4 92 2141 15 4 12 241 16
8 232 28+1 17 8 24 2+1 18
16 496 30+1 28 16 48 241 24
32 960 29+1 23 32 96 241 32
64 2112 3241 20 64 192 241 30
128 2688 20+1 29 128 384 241 29
256 4096 15+1 45 256 768 2+1 30

Problem C Problem D
Activation Msgs: 42 # Activation Msgs: 2000/processor

Table 1: The tables show performance results of the Counting algorithm for four problems A-D, on the
NCUBE/2, a nonshared memory machine. Column 1 shows number of processors. Column 2 shows the
number of control messages that were used to detect quiescence. Column 3 shows the number of iterations
of Phase 1 and Phase 2 performed by the algorithm for that execution run. Column 4 shows the time in
milliseconds that elapsed between the onset and detection of quiescence by the algorithm. In Problem D
the number of activation messages varies with the number of processors used — there are 2000 activation
messages per processor.

behavior may change because of minor delays in processing other messages due to the quiescence detection
messages. For Problem C, the overhead of the quiescence detection algorithm ranges from 10% to 17%.
For Problem D, the overhead of the quiescence detection algorithm ranges from 3% to 4%.

Our quiescence detection algorithm adapt automatically to system loads. When the system is heavily
loaded very few control messages are generated thus not interfering with the user computation. More
control messages are generated and processed when the system is lightly loaded, but this time there isn’t
enough user work with which the control messages can interfere.

#PE 2 4 8 16 32 64 128
Problem A | 8982/9128 | 4775/4861 | 2547/2618 | 1452/1417 | 889/861 | 593/646 | 5117429
Problem B | 55234/53293 | 29618/27068 | 16850/16173 | 9512/9689 | 5758/5731 | 3732/3610 | 2710/2525
Problem C 43739 56/51 57/53 68/61 73/67 84/75 108/91
Problem D 983/944 984/945 088/948 | 9937954 | 1007/967 | 10347995 | 1088/1048

Table 2: The table shows the execution times for Problems A, B, C and D with/without the Counting
quiescence detection algorithm on a nonshared memory machine, NCUBE/2. All the times are in milli-
seconds.

4 Summary and Discussion

In this paper, we have presented an algorithm that detects quiescence — a condition when all the processes
are idle and there are no messages in transit. This algorithm works with dynamic creation of processes,
and allows multiple processes on each processor. The salient features of the algorithm, called Counting,
are:

1. It maintains separate counts of messages sent and messages processed.
2. The counts are collected along a spanning tree.

3. The algorithm is intentionally slowed down by stopping its progress through each processor until that
processor becomes idle, thus making the algorithm adaptive to the load conditions.

The algorithm detects and reports quiescence very quickly after the onset of quiescence, and does not cost a
significant overhead. It is implemented in the Charm parallel programming system, and was used effectively
in many application programs, including many state-space search programs. Although the algorithm was
presented as a two-phase one, it is possible to formulate it with just one recurring phase. The two-phase
formulation was chosen for the ease of presentation.

The Counting algorithm was motivated by an earlier quiescence detection algorithm [14]. In Shu’s method,
quiescence was reported if the system was in a state of idleness for some specified interval é¢. The choice of
the time interval was critical — é¢ had to be greater than the worst case delivery time of a message. The
primary drawback of Shu’s algorithm was that it was not easy to estimate the worst case message delivery
time and hence 61.

The basic ideas in our algorithm can be applied to other situations involving distributed information
gathering. In particular, we are interested in pursuing its application to distributed garbage collection.

A Correctness proof for Counting algorithm

In this section, we offer an informal proof that the Counting algorithm will correctly detect quiescence.
The proof is in two parts: first, we prove that if the system is quiescent the algorithm will detect it, and,
next we prove that the algorithm detects quiescence only when the system is indeed quiescent.

Theorem 1 If quiescence has occurred then the Counting Algorithm will report it.

Proof: If quiescence has occurred, then there are no activation messages remaining to be processed. Since
messages are not created spontaneously or lost, the counts for the creations and processings of activation
messages must match, and the algorithm will detect quiescence in at most two iterations of Phase 1 followed
by one iteration of Phase 2. O

Theorem 2 The Counting Algorithm will not report quiescence unless the system has been quiescent.

Proof: The proof is by contradiction. Assume that even though the Counting algorithm has reported
quiescence, the system is not quiescent. Since the system is not quiescent, atleast one of the following must
be true (from the conditions for quiescence) : there are unprocessed activation messages or there is atleast
one busy processor.

We introduce some notation first. Let 7; and v; denote the time at which the last instances of Phase 1 and
Phase 2, respectively, were completed on processor z. Let T denote the time at which processor 0 made
the broadcast to initiate Phase 2. And for a message m, let ¢, denote its time of creation and p,, its time
of processing. Since the broadcast to begin Phase 2 occurred after all processors had completed Phase 1
and before any processor began Phase 2, therefore:

(Ve,7)(m < T < vy) (1)

Can there be any unprocessed activation messages in the system after Phase 1 if quiescence has been
reported? Let us assume that there are unprocessed messages in the system after Phase 1. Since each
processor was idle at the end of Phase 1 on that processor, and no messages can be created spontaneously,
atleast one of the unprocessed messages, say a, would have to have been created before Phase 1 on some
processor. At the end of Phase 1 the counts for number of messages created and processed were the same
(otherwise Phase 2 would not have been started). Therefore, for every message whose creation, but not
processing, occurred before Phase 1, there would be a corresponding message for which the processing,
but not the creation, occurred before Phase 1; otherwise the counts would not match. Let b be a message
whose processing, but not creation, occurred before Phase 1. Then the following is true:

2
3
4

(
(
(
(5

)
)
)
)

At the end of Phase 2, the counts for total number of messages created and processed in the system, N. and
N,, have the same values as they had after the last iteration of Phase 1. Since n. and n, are monotonically
non-decreasing, their values must have remained unchanged on each processor, implying that no messages
were created or processed on any processor between Phase 1 and Phase 2. Therefore ¢ and b must have
been created and processed, respectively, after Phase 2.

(3i)(vs <) (6)

But b could not have been created after Phase 2, for by combining Equations 1, 4, and 6, we get:

(Hi,j)(pb <7< T < v; < Cb) (7)

10

Since a message could not have been created after it had been processed, no message such as b could exist.
But the messages a and b exist in pairs; therefore there can be no messages which are unprocessed after
Phase 1 if quiescence has been reported.

Can any processor be busy after Phase 1?7 The end of Phase 1 on a processor implies that the processor is
idle (and has received messages from its children), therefore if it is busy after that it must be because it
created or processed some activation message. However no messages could have been created or processed
after Phase 1, otherwise there would have been an increase in the counts n. or n,, and quiescence would
not have been detected. Therefore no processor could have been busy after Phase 1.

We have proved that after quiescence has been reported there are no unprocessed activation messages and
no busy processors in the system. Therefore when quiescence is reported, the system is indeed quiescent.
O

References

[1] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations. Information
Processing Lelters, 11, 1, August 1980.

[2] N. Francez. Distributed termination. ACM TOPLAS, pages 42-55, Vol. 2, No. 1, January 1980.

[3] J. Misra and K. M. Chandy. Termination detection of diffusing computations in communicating
sequential processes. ACM TOPLAS, pages 37-34, Vol. 4, No. 1, January 1982.

[4] C. Hazari and H. Zedan. A distributed algorithm for distributed termination. Information Processing
Letters, pages 293-297, 24, 1987.

[5] S. P. Rana. A distributed solution of the distributed termination problem. Information Processing
Letters, pages 43-46, 17, 1 (July 1983).

[6] F. Mattern. Global quiescence detection based on credit distribution and recovery. Information
Processing Letters, pages 195200, 30, 1989.

[7] S. T. Huang. Termination detection by using distributed snapshots. Information Processing Letters,
pages 113-119, 32, 1989.

[8] T. H. Lai and T. H. Yang. On distrbuted snapshots. Information Processing Letters, pages 153-158,
25 (1987).

[9] K. M. Chandy and J. Misra. How processes learn. Distributed Computing, pages 40-52, 1, 1(1986).

[10] S. Chandrasekharan and S. Venkatesan. A message-optimal algorithm for distributed termination
detection. Journal of Parallel and Distributed Computing, pages 245-252, 8, 1990.

[11] L. V. Kale. The Chare Kernel Parallel Programming System Programming System. In International
Conference on Parallel Processing, August 1990.

[12] K. De and B. Ramkumar and P. Banerjee. ProperSYN: A Portable Parallel Algorithm for Logic
Synthesis. In Proceedings of the International Conference on Computer-Aided Design, November
1992.

[13] B. Ramkumar and P. Banerjee. Portable Parallel Test Generation for Sequential Circuits. In Proceed-
ings of the International Conference on Compuler-Aided Design, November 1992.

11

[14] W. Shu. Chare Kernel and its implementation on multicomputers. PhD thesis, Department of Com-
puter Science, University of Illinois, Urbana-Champaign, 1990.

12

