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Abstract

We present a fast comparison based parallel sorting algo-
rithm that can handle arbitrary key types. Data movement
18 the major portion of sorting time for most algorithms
in the literature. Our algorithm is parameterized so that it
can be tuned to control data movement time, especially for
large data sets. Parallel histograms are used to partition the
key set exactly. The algorithm s architecture independent,
and has been implemented in the CHARM portable paral-
lel programming system, allowing it to be efficiently run
on virtually any MIMD computer. Performance results for
sorting different data sets are presented.

1 Introduction

Sorting is one of the most basic algorithms in computer
science. As a parallel application, sorting it is challenging
because of the extent of communication it requires. Essen-
tially, almost all data items must move from the processor
they were originally on to some other processor. Moreover,
in a network of processors, the average number of hops
travelled by each data item is of the order of the network
diameter.

The input to a sorting algorithm is a collection of
records. Each record has a designated key field and possi-
bly multiple data fields. Applications of sorting in different
contexts may involve a variety of data types as keys. The
keys may be integers, floating point number, long strings
of characters, or records of arbitrary structure. Compar-
ison based sorting methods only assume the existence of
an operation which compares two keys and determines if
one is smaller, larger or equal to the other, in some metric.
Thus they are more general than methods such as radix
sort which depend on knowledge of internal structure of
the keys and its relationship with the underlying ordering.

In this paper we present a new comparison based paral-
lel sorting algorithm, analyze its complexity, present per-
formance results, and compare it with previous work.

2  The algorithm

We assume that there are initially n keys distributed
among p processors such that each processor has approxi-

*This research was supported in part by the National Science
Foundation grants CCR-~90-07195 and CCR-91-06608.

Sanjeev Krishnan
Department of Computer Science
University of Illinois

Urbana, IL 61801

E-mail: sanjeev@Qcs.uiuc.edu

mately n/p keys'. At the end of sorting, the data must be
approximately equally distributed among the processors,
and for 2 =1 to n — 1, all keys on processor 1 — 1 should
be less than any key on processor :. In other words, pro-
cessor 0 must have the smallest n/p keys, processor 1 must
have the next n/p keys, and so on. The data within each
processor must be in sorted order.
2.1 Overview of algorithm

The basic structure of the algorithm is similar to sample
sort [4, 5, 6], load balanced sort [1], hyperquicksort [10] and
binsort [11], in that in each phase, it finds k — 1 “splitter”
keys that partition the linear order of keys into k equal
partitions. These keys are found by an initial local sort
on each processor followed by repeated iterations of global
histogramming (Section 2.2). Each of the k partitions is
then sent to the appropriate set of p/k processors such
that the i'® processor partition gets the 1** data partition
(Section 2.3). The next recursive phase of the algorithm
can then run independently in all £ processor partitions.
Figure 1 gives a high level view of the algorithm.

k is the parameter that controls data movement. When
k is equal to p, there is only one phase, and every key
moves exactly once. At the other extreme, when k is 2,
the algorithm essentially finds the median of the key set,
then each processor sends all keys less than the median
to the first p/2 processors and all keys greater than the
median to the last p/2 processors, thus resulting in logx(p)
phases of data movement.
2.2 Data Partitioning with Histograms

The object of this step is to find the k — 1 splitter keys,
(partition boundaries) defined as the keys having ranks
n/k, 2xn/k ... (k—1)*n/k in the global order of keys.
This step of the algorithm consists of a series of iterations
consisting of upward passes (called reductions) and broad-
casts along a logarithmic spanning tree. Starting with an
initial set of splitter keys, each iteration refines the splitter
keys till all partitions (as defined by the splitter keys) have
approximately equal number of keys.

At the beginning of this step, each processor has a sorted
key set. The first set of splitter keys can be found in var-

1If the initial load distribution is unbalanced, the perfor-
mance of the algorithm may degrade in proportion to the degree
of imbalance. If so, we can use a load distribution phase similar
to that in Section 2.3.



Perform Local Sort on each processor.

for ( phase = 1 to log,p )

do /* This is the Histogramming step */
Generate histogram probes and broadcast them.
On each processor find key counts for probes.
Send counts up spanning tree to root.
At root processor, use new set of counts to refine

current best values of partition boundaries.
while ( key counts for each partition are unequal )

At root, generate k quintuples per subtree (section 2.3).
Send quintuples down spanning tree. At each internal

node, split each quintuple among subtrees.

On each processor, use k quintuples to find what data

to send to which processors.

On each processor, send keys to other processors,

then merge keys received from other processors.

Reconfigure tree into k separate spanning trees,

one for each partition.
endfor

Figure 1: High level description of algorithm. n is the
total number of keys, p is the number of processors, k
is the number of partitions

ious ways (see Section 6). In our current implementation
we find the keys that equally divide the key set of the
processor at the spanning tree root. If the root processor’s
distribution is representative of the global distribution, the
splitter keys found by considering only the root would be
reasonably good.

The number of probes (histogram boundaries) m may
be more than the number of partition boundaries (number
of splitter keys) (k—1). Making m larger helps us refine the
splitter keys faster, but increases the size of messages going
up and down the spanning tree. We use m = 3 % (k — 1)
as a heuristic, with £ — 1 of the m values being the best
guesses for the splitter keys, another &k — 1 being slightly
lesser than each of the first k — 1, and the last £ — 1 being
slightly greater than each of the first & — 1.

The m probes are arranged in sorted order in a single
message and broadcast to all processors using the spanning
tree. Each processor then counts the number of keys less
than or equal to each of the m probes. (A simple binary
search is used). The array of m counts is sent up to the
root by a reduction pass, with combining at internal nodes
of the spanning tree, so that all message sizes are m. At
internal nodes the counts received from subtrees are stored
for use later during the data movement step.

The root maintains the current best known lower and
higher values for each of the splitter keys. These values are
updated using the new set of probes and their correspond-
ing counts as follows : if any of the counts that came up
the tree is nearer to the desired partition boundary ( e.g.

n/2 for the median ) than the current best known count,
then that count is replaced with this new count and its cor-
responding probe value. If the partition counts as specified
by the current splitter keys are not equal (within some user
specified tolerance factor), the root calculates a new set of
splitter keys. Each of the £ — 1 splitter key values is found
by proportional linear interpolation? between the current
best lower and higher values and their corresponding cur-
rent best lower and higher counts, using the count for the
desired partition boundary.

The root then starts the next histogram refinement it-
eration. If the partition counts are equal, the splitter keys
have been successfully found, and the data movement step
can be started.

2.3 Data Movement

Once the root has determined the splitter keys that par-
tition the key set, we can efficiently move keys to their
destination partitions as described below.

We initially have n/k keys in each partition distributed
(possibly unequally) among p processors, which have to be
transferred to a set of p/k processors such that each of
the p/k processors ends up with approximately the same
number of keys. Thus each processor must know whom to
send to, as well as how many keys to send. We also want to
ensure that each key moves exactly once per phase, hence
it is not acceptable for a representative processor in each
partition to collect all the keys for that partition and then
distribute it among the processors of that partition.

The root knows at the beginning how many keys each
partition has, but does not know which processors have
those keys. However, this information is available at the
internal nodes of the spanning tree. Hence in one down-
ward pass, it is possible to tell each processor how many
keys to send to which processors.

The entities being passed down the spanning tree are
constant sized (5 integers) quintuplesof the form (startproc,
startdata, middledata, endproc, enddata) which indicates
that processor startproc is supposed to receive startdata
keys, processor endproc receives enddata keys, and the pro-
cessors in between receive middledata keys each. There is
a quintuple for each partition, hence the messages consist
of k quintuples.

When a processor ¢ at an internal node of the spanning
tree receives a quintuple for a particular partition z, it
means that all the keys in the subtree rooted at : belonging
to partition z must be sent to the processors specified in the
quintuple. Processor ¢ has the latest histogram counts for
its subtrees (which came from each of its subtrees during
the last histogram refinement), hence it has information
about how many keys each subtree has in each partition.
This information is used to derive the quintuples for the
subtrees from the quintuple that came from the parent.

2Interpolation is not strictly a comparison operation. How-
ever, an interpolation function can be provided for many cases
where a comparison function is available. In Section 3 we prove
that this step can be accomplished solely with a comparison
function



At the root the global quintuple for the first partition
would be (0,n/p,n/p,p/k—1,n/p). This is divided among
its subtrees depending on how many keys each subtree has
in that partition. Thus each internal node of the spanning
tree receives a quintuple per partition from its parent and
divides it among its children.

Finally, each processor has a quintuple per partition,
indicating how many keys it has to send to which other
processors for that partition. Now all sends and receives
of keys for all partitions occur in parallel. Each processor
sends the part of its local key set belonging to a parti-
tion to one or more processors in the set of p/k processors
corresponding to the destination of that partition.

Note that in both data partitioning and data movement
steps, the upward and downward passes along the spanning
tree involve constant sized messages ( i.e. the size is inde-
pendent of the number of keys or number of processors) at
all heights in the spanning tree, because of combining at
internal nodes.

3 Complexity Analysis

We prove a bound on the number of histogramming it-
erations required, assuming no interpolation function is
available. This bound is independent of the number of
partitions because histogramming for all partitions is done
together.

We consider the case where the number of partitions
k is 2 , which means that we want to find the median of
the key set. We maintain an upper and a lower bound on
the value of the median. One of these bounds is refined
in each histogramming iteration. We first prove that each
refinement iteration decreases the number of keys between
the bounds by a constant multiplicative factor c¢. Let n; be
the number of keys between the bounds at the i‘" iteration.
Let m; be the value to be guessed for the median at the
it" iteration. Let j be the processor that has the most
number of keys between the bounds. Processor j must
have at least n! = % keys between the bounds. We choose

m; as the median of these nf keys. Now after we get a
global histogram, m; may turn out to be either lesser or
greater than the median we seek, so m; becomes the new
lower or upper bound, respectively. In either case, we have
decreased the keys between the bounds by at least 2’1;
Thus in the worst case,

nl
2%p
nit1 = n;/c where ¢ > 1.

Ni+1 = Ng —

Using this result we can prove a bound on the number
of refinements. Let ng = n be the initial number of keys,
then

n; =ng/ ¢t .

If t is the total number of iterations required, then at
the end of t iterations, the number of keys between the
upper and lower bounds is 1, hence n; = 1. Thus

1=mno/c’, hence

t = O(log(n)).

It must be emphasized, however, that in practice, the

number of histogram iterations required is much smaller
than this worst case (depending on the data distribution,
see Table 2). This is because we have an interpolation
function, and we have more than one probe point, which
allows us to converge towards the median much faster.

Using the above result, the total time taken by the al-
gorithm is :

local sort time + [logx(p)]{O(log(n))(time per his-
togram) + data movement and merging time }

4 Implementation and results

We have implemented our algorithm in the CHARM
portable parallel programming system [7]. CHARM sup-
ports C with a few extensions for creation of tasks and
message passing. CHARM has a message driven model of
execution, allowing overlap of computation and communi-
cation. Owur implementation can run without change on
nonshared as well as shared memory machines.

4.1 Basic results

Table 1 gives performance results for the nCUBE/2 and
Intel iPSC/860 systems. The data set consists of 2% inte-
gers formed by averaging four sets of random numbers as in
the NAS Integer Sort Benchmark [3]. All random numbers
for these measurements were generated using the C library
function 1rand48. Measurements for this table were taken
with £ = 8 and the tolerance factor as 1% ( which means
that the final counts of keys per processor can differ by only
1% of the total number of keys). The timings in all tables
do not include startup, data generation and correctness
checking times. From the table we can see good speedups
as the number of processors increases. The results for the
iPSC/860 compare well with other results reported in the
literature [3, 2]. Considering the fact that parallel sorting
is inherently a communication intensive application, these
results demonstrate that our algorithm successfully reduces
communication.

Table 1: Histogram Sort Basic Timings on the
nCUBE/2 and iPSC/860. The keys are integers ob-

tained by averaging 4 sets of random integers.

Number of | Number | nCUBE/2 | iPSC/860
Processors | of Keys (s) (s)
64 223 12.30 3.87

128 223 6.87 2.66

128 924 - 5.04

256 223 3.93 -

512 223 2.46 -

1024 223 2.00 -

1024 926 9.14 -

4.2 Effect of data distribution

The performance of our algorithm depends, to some ex-
tent on the probability distribution of data in the space of
possible key values. In general, uniform, random distribu-
tions are easier to sort as compared to non-uniform distri-



butions having significant amounts of data concentrated in
small value ranges.

Entropy [9, 8] has been suggested as a metric of distri-
bution. Informally, the entropy of a key set corresponds to
the number of “unique” bits in the key. However, entropy
suffers from the drawback that low entropies (which mean
that some bits are effectively unused) need not necessarily
mean non-uniform distributions, and conversely, uniform
distributions need not have high entropies. Consider a dis-
tribution consisting of equal numbers of all integers whose
least significant 16 bits are 0. This distribution is uniform,
but has entropy of 16 bits. Consider another distribution
consisting of all integers whose most significant 16 bits are
0. This also has an entropy of 16 bits, but is highly nonuni-
form, in that all the data is concentrated in 1/2'®th of
the data space. For most algorithms, this non-uniformity
makes a difference in performance, still entropy usually will
not distinguish between these distributions. Thus data dis-
tribution cannot be characterized by a single metric such
as entropy.

Table 2 gives performance results for different distribu-
tions. These timings were taken on the nCUBE/2 with
256 processors, with number of partitions ( k ) as 8, tol-
erance factor 1% and a data set of 22 integers. Distribu-
tion D1 is a uniform random distribution. Distribution D2
was generated by averaging four sets of random numbers.
Distribution D3 has entropy 25.95 and was generated by
performing a bitwise AND operation on two sets of random
integers [9]. Distribution D4 has only 4 distinct values for
the most significant 16 bits, while the least significant 16
bits have uniformly distributed random values. Distribu-
tion D4 has entropy 10.78 and was generated by doing an
AND on four sets of random integers.

Although the table shows widely differing distributions,
(from uniform, random to highly non-uniform), the his-
togramming time increases only slightly, from about 4 %
to 10 % of the total execution time. This demonstrates
that histogramming is an efficient method for obtaining
the pattern of data distribution. This is because algorithm
makes effective use of short, constant sized messages mov-
ing along the spanning tree.

Table 2: Timings as a function of distribution for sort-
ing 2% integers on the nCUBE/2 with 256 processors.
There are 3 phases, because k = 8.

Distri- | Histogram | Histogram- | Total
bution iterations | ming Time | Time
per phase (%) (s)

D1 34342 4.4 4.00

D2 44342 5.0 3.93

D3 114843 10.1 4.23

D4 124542 10.4 4.28

D5 154341 8.2 5.20

Table 3 gives a breakup of the times among the various
steps. These timings were taken on the nCUBE/2, with

a data distribution as for Table 1. It can be seen that
the time spent in communication, which is included com-
pletely in the sum of the histogramming and data move-
ment times, (15 % on the average for the nCUBE), is not
the major portion of the total execution time. (For the
iPSC/860 about 45 % of the time was spent in commu-
nication). Moreover, data movement time decreases as a
fraction of total time when k increases. In general, the op-
timum value of k£ depends on the number of processors. For
small k, each data movement step takes less time because
there are fewer messages, but there more phases. The op-
posite happens for large k. For 1024 processors, k = 8 was
observed to be optimal.

Table 3: Breakup of timings for sorting 222 integers
on the nCUBE/2. Hist and Move are the times for
histogramming and data movement, respectively.

Processors, | Local | Hist | Move | Total
Partitions, Sort Time
Phases (%) | (%) (%) (s)
128, 4, 43.8 2.2 12.6 7.27

4
128,8, 3 46.4 2.1 10.4 6.87
128, 16, 2 49.5 2.7 8.1 6.44
128, 128, 1 46.8 7.9 7.9 6.81

5 Previous work

The fast parallel sorting algorithms reported in the
literature have been mostly non comparison-based ones,
such as those based on radix-sort [2, 9]. Even with
lexicographically-ordered data (such as names), radix sort
based methods are inefficient or impossible to use, if the
length of the keys is large and variable (and possibly un-
bounded). In addition, for non lexicographically-ordered
data, such methods cannot be used at all.

For example, consider a set of customer records main-
tained by a consumer-service company. They wish to sort
such records in decreasing order of importance/attention
the company wishes to accord to customers (for a sophis-
ticated mass mailing, say). Given two customer records,
one can use a subroutine based on heuristics that decides
which customer is worthy of more attention. However, the
heuristic knowledge embodied in such a routine cannot al-
ways be extracted and quantified to yield a single numeric
metric of importance. In such a situation, a comparison
based sort can be used, while a radix sort cannot be used.

Moreover, for large data sets, most of the time for radix
sort is taken up by data movement. For 32 bit keys, it
is infeasible to use a 32 bit radix (that would involve 222
buckets), hence at least two data moves involving all pro-
cessors are required. In our algorithm, we can set k equal
to p, so that only one move of data is required. Even if
we set k = ,/p so that two moves are required, the second
move involves only ,/p processors, hence will have less cost.

Load balanced sort [1] has the same high level steps
as our algorithm. However, our data partitioning step
avoids the transpose operation, and moreover, can use



more probes than partitions, for faster convergence. Load
balanced sort is a special case of our algorithm, with k = p,
hence our algorithm has more flexibility in face of differing
communication parameters. Finally, our algorithm does
not depend on the topology of the underlying machine.

Our algorithm has the same high level steps as sample
sort [4, 5, 6], with some important differences :

e Data Partitioning in our algorithm is exact; the time
(number of histogram iterations) taken depends on
the input distribution : for uniform distributions, one

or two iterations are enough, hence an almost exact

partition can be found quickly. For non-uniform cases
the time taken depends on the tolerance (deviation
from exact partitioning) specified by the user. Sample

sort does not optimize the uniform case.

e Sample sort is not scalable, because the size of
the messages that need to be communicated is
samplesize x O(p), which is usually 64 x p keys that
could be large [4]. In our algorithm, all messages going
up and down the spanning tree have size O(k), which
in the worst case is 5xk integers, and the height of the
spanning tree is O(log(p)). No keys are moved except
in the actual data movement step.

The other salient features of our algorithm that differ-
entiate it from most, if not all of the algorithms reported
in the literature are :

- The number of partitions may be less than the number
of processors, allowing the algorithm to run in more than
one recursive phase, if that is faster.

- A novel method using histograms is used to find the par-
titions.

- All messages except those actually carrying keys are con-
stant sized (independent of number of processors). Thus
reductions take very little time.

- Key movement is reduced by requiring keys to move ex-
actly once per phase.

- The algorithm does not depend on any particular archi-
tecture.

6 Discussion and Conclusions

We have described a comparison-based parallel sorting
algorithm, and demonstrated its performance on a large
parallel machine. The algorithm can be tuned to widely
varying combinations of number of processors, data-sizes,
and machine communication parameters by varying k, the
number of partitions in each phase (and thus, the number
of phases).

Further refinements to the sorting algorithm that we
believe will improve its performance include
- A possible trade off involves doing away with the initial
sorting phase, at the cost of spending more time on pro-
ducing the histogram for a given probe with unsorted keys.
- Since the optimal value of £ depends on the number of
processors, we can allow &k to dynamically vary from phase
to phase, depending on the number of processors in a phase.
- The initial probe keys for the first histogramming itera-
tion in each phase can be generated by more sophisticated
methods. For example, each processor can find its local set

of splitter keys, which can be combined heuristically in a
reduction, so that a more accurate picture of data distri-
bution is obtained.
- The message driven nature of CHARM allows us to over-
lap communication and computation effectively. Thus the
histogram phase itself can be pipelined by segmenting the
set of probe keys and the corresponding histogram into
separate pieces that can be broadcast and reduced con-
currently with each other. The data movement step is cur-
rently overlapped with the merging step, and we could also
overlap the histogramming and data movement steps.
Finally, we expect the algorithm to perform very well
on MIMD computers with faster processors, because the
time for local computations, which is the major fraction of
the total time, will be reduced.
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