Projections: A Preliminary Performance Tool for Charm*

Amitabh B. Sinha
Department of Computer Science
University of Illinois

Urbana, IL 61801

email: sinha@cs.uiuc.edu

Abstract

The advent and acceptance of massively parallel
machines has made it increasingly important to have
tools to analyze the performance of programs run-
ning on these machines. Current day performance
tools suffer from two drawbacks: they are not scalable
and they lose specific information about the user pro-
gram in their attempt for generality. In this paper,
we present Projections, a scalable performance tool,
for Charm that can provide program-specific informa-
tion to help the users better understand the behavior
of their programs.

1 Introduction

Performance is the reason for the existence of par-
allel computers. Machines with impressive peak per-
formances - in the range of tens to even hundreds
of gigaFLOPS - already exist today. However, the
actual performance obtained on realistic application
programs on such machines varies dramatically, and
is often much smaller than the peak performance. It
is not uncommon to see variations of two orders of
magnitudes in performance for the same machine on
different application programs. Even when we restrict
attention to different implementations of the same al-
gorithm, substantial variations in performance exist
on the same parallel computer. These variations arise
due to a variety of factors. Some of the common fac-
tors, at least on distributed memory computers, are:
presence and extent of sequential bottlenecks, load im-
balance across processors, communication costs, I/0O
costs, and synchronization requirements. These fac-
tors are in addition to the usual uni-processor concerns
such as the cache performance of sequential segments
of code. To improve the performance of a particular
parallel algorithm, one must identify the critical fac-
tor that is affecting the performance of the program
negatively in the most significant way, and the com-
ponent of the algorithm that is responsible for this
factor. Performance feedback and analysis tools are
therefore crucial to improving the performance of par-
allel programs.

Currently, two issues are considered important in
the design of performance tools for parallel programs:
generality (the tool should be applicable to a wide

*This work was funded in part by NSF under grants CCR-
90-07195 and CCR-91-06608.

Laxmikant V. Kalé
Department of Computer Science
University of Illinois

Urbana, IL 61801

email: kaleQcs.uiuc.edu

range of paradigms) and scalability (the tool should
provide comprehensible feedback for a large number
of processors). We consider a third issue to be im-
portant in the design of a performance tool: speci-
ficity (the tool should provide information about spe-
cific features of the application program). A specific
performance tool can provide the user with feedback
in terms of attributes that the user can identify from
the source program. The user can then identify and
remedy the segments of the program responsible for
poor performance. However a performance tool can
achieve specificity only at the loss of generality; there-
fore it is important that a specific performance tool
should be usable in conjunction with existing general-
purpose tools.

Charm [4, 5] is a portable parallel programming
language for MIMD machines. The system is de-
scribed briefly in Section 2. In this paper, we will de-
scribe a performance feedback tool called Projections
for Charm. We will describe the features provided by
the tool, and illustrate with an example how the speci-
ficity of Projections helps in improving performance of
Charm programs. Projections addresses the issue of
scalability by providing aggregated summary displays.

There is a significant body of prior research on per-
formance tools. In Section 3, we discuss some of the
relevant work, and provide the motivation for Projec-
tions. In Section 4, we describe Projections. The use
of Projections is illustrated with an example in Sec-
tion 5. Projections is an evolving system. Some of
the future enhancements are described in Section 6,
including features that improve its scalability.

2 Charm

Charm is a machine independent parallel program-
ming language. Programs written in Charm run un-
changed on shared memory machines such as Encore
Multimax and Sequent Symmetry, nonshared mem-
ory machines such as Intel 1860 and NCUBE/2, UNIX
based networks of workstations such as a network of
IBM RISC workstations, and any UNIX based unipro-
cessor machine.

The basic unit of computation in Charm is a chare.
A chare, created dynamically, has associated with it
a data area, and some entry functions that can access
this data area.

A new chare is created using the CreateChare sys-
tem call. As a result of this system call, a new-chare

message is created, which is at some later point in
time picked up for execution by the system. New
chare messages float among the available processors as
the system moves them around in an attempt to bal-
ance load. Once picked up for execution, a new chare
message results in the creation of a new chare, which
is subsequently anchored to that processor. Messages
can be addressed to existing chares using the SendMsg
system call. This call generates for-chare messages.

The only other type of process in Charm is a
branch-office chare. A branch-office chare has a repre-
sentative chare on each processor. Chares can interact
with the local representative of a branch-office chare
by invoking entry functions in the branch chare using
the BranchCall system call. The branches interact
with each other using the SendMsgBranch and Broad-
castMsgBranch system calls — as a result of these calls
for-boc messages are generated.

Data is shared among different chares as well as
branch office chares through messages and five types
of specifically shared variables, namely: readonly,
writeonce, accumulator, monotonic and distributed
tables. The implementation of these five specifically
shared variables is tuned to the architecture of individ-
ual parallel machines, hence they provide an efficient
means to share data.

The description of the Charm runtime system indi-
cates that there are numerous system-specific entities,
and overlooking such specific knowledge about the sys-
tem would result in an incomplete understanding of
program behavior.

3 Previous work

There has been substantial work done previously
on tools to analyze and understand the behavior and
performance of parallel programs on parallel machines.
In this section, we examine Paragraph and Upshot,
two general-purpose performance tools.

ParaGraph [2] aims to provide the user with a dy-
namic depiction of the behavior of the parallel pro-
gram by offering a re-enactment of the program’s trace
through many different views. The views fall under
four broad categories: utilization displays (e.g., Gantt
chart, concurrency profile, etc.), communication dis-
plays (e.g., message queues, animation, etc.), task dis-
plays (e.g. task count, etc.), and other displays (e.g.
critical path, phase portrait, etc.). ParaGraph pro-
vides multiple views of the same attribute, e.g. to
study utilization there are Gantt charts, concurrency
profiles, Kiviat diagrams etc., so that the user may
be able to see different aspects of the attribute in dif-
ferent views, and this may aid the user’s understand-
ing of program behavior. Trace data for ParaGraph
can be generated by instrumenting the user program
with primitives from PICL (Portable Instrumentation
Communication Library)[1].

Upshot [3] displays the logfile information as a time-
line for each processor. A time-line for a processor
contains either (or both) an event trace of the program
on that processor or a trace of states of the program on
that processor. An event is defined to have a beginning
and a closing state. Different events may be displayed
in different (user-chosen) colors.

ParaGraph and Upshot, although useful in many
contexts, suffer from two drawbacks: (1) they are not
targeted for the execution model or the programming
abstractions in Charm, and (2) they are not scalable.
In the remainder of this section, we discuss these issues
in greater detail.

3.1 Specific feedback

Many different models for parallel computation
have been proposed. Figure 1 shows a classification
of execution models. Parallel execution models can
be broadly classified either as SIMD or MIMD. The
class of MIMD algorithms can be separated into two
different paradigms: SPMD (Single Program Multiple
Data) and MPMD (Multiple Program Multiple Data).
SPMD and MPMD can be further separated into syn-
chronous message passing' and asynchronous message
passing? paradigms respectively. Synchronous and
asynchronous paradigms can be further classified as
static (processes are created statically) or dynamic
(processes can be created dynamically).

Models of parallel execution

SIMD MIMD
(CM-Fortran) |
r)
SPMD MPMD
|
Synchronous Asychronous Synchronous Asynchronous
(PICL) i L X |

Static Dynamic Static Dynamic

Processes Processes Processes Processes

(Occam) (RPC) (Linda) (Charm)

Figure 1: The paradigms of parallel computation.

Most of today’s parallel applications are written in
the SPMD model of parallel computation. Other mod-
els of parallel computation offer advantages over the
SPMD model of computation. The MPMD program-
ming model allows for multiple processes and their
dynamic creation, and permits the user to obtain a
(possibly) greater degree of parallelism. The down-
side of having multiple and dynamically created pro-
cesses is that MPMD models are even more difficult to
program and understand than SPMD models Existing
programming tools, such as ParaGraph and Upshot,
are geared towards the SPMD model of computation
— they do not provide any information on the creation
of new processes, or the inter-leaving of the execution
of many different processes on the same processor, etc.

In addition, neither Paragraph nor Upshot are spe-
cific to any language. This generality permits them to
be used flexibly with many different languages. How-
ever with this generality comes the loss in specific in-
formation about a program’s execution model. These
performance tools are based on a very general message
passing model — processes executing on different pro-
cessors and communicating through messages. The
runtime system for Charm programs provides features

1A send event in a process is synchronized with the corre-
sponding receive event in another process, e.g., in CSP a send
blocks till the corresponding receive is executed, and vice versa.

2A send event in a process can happen without the corre-
sponding receive event being executed on another process.

to share data and automatically balance load. General
purpose performance tools would lose such program-
system specific information, and therefore not give the
user sufficient information to understand the behavior
of the program. For example, instead of being told
that a particular processor is overloaded during a cer-
tain phase of the computation, and constitutes a bot-
tleneck, a tool should give more specific information.
It may inform that the overloaded processor is busy
because of the large number of new (small grained)
processes being created on it, which suggests using a
better dynamic load balancing strategy. Alternatively,
it may state that the overloading is due to the large
number of requests for a particular data-item stored
on this processor, thus suggesting replicating that data
item as a solution.

Projections is a performance tool geared towards
the programming language Charm, providing the user
information about the program in terms of language
features. It is not proposed as a tool to replace all ex-
isting performance tools. Rather, Projections is a per-
formance tool that complements the general-purpose
nature of tools, such as Paragraph and Upshot, with
information specific to Charm.

3.2 Scalability

Upshot and ParaGraph cannot be used effectively,
or are at best awkward to use for analyzing perfor-
mance of programs running on large parallel machines
with hundreds or thousands of processors. Upshot
provides a microscopic view of the computation by
displaying each event as it occurs on the processor’s
time-line (users can “zoom” out of this microscopic
view, but only to a limited extent). ParaGraph, also,
focuses on details by animating each message passed
in the system, either as an animation view, or as a
spacetime diagram. These views are useful when there
are few processors and the communication pattern is
regular (e.g. and FFT on a grid algorithm). How-
ever, when the number of processors are many, the
user is unable to absorb the details in these dynamic,
detailed views. Projections provides both summary
and detailed views of program execution, allowing the
user to examine the entire program in summary form,
and then examine specific (interesting) areas of pro-
gram execution in more detail.

4 Projections

Every parallel application program has its own
characteristics. A knowledge of these characteristics
can make debugging and performance analysis more
accurate, e.g., for a parallel application which has no
synchronization requirements, the performance anal-
ysis tool should look for good load balance and ade-
quate grainsize of tasks, and not for patterns of mes-
sage passing. Ideally the characteristics of application
programs would be implicit in the language features
used in the programming of the application. The cur-
rent parallel languages provide only limited informa-
tion about the characteristics of the parallel applica-
tion.

Charm provides a great deal of information about
the characteristics of a program, and we believe that

this information would enable us to make more spe-
cific analysis of the program. A long-term of our re-
search (see Section 6) is to develop an intelligent and
automated performance analysis tool for Charm. As a
first step, we have identified that the type of messages
(new-chare, for-chare, or for-boc) and the distinction
between the creation and processing of messages, can
provide the user with more information about the pro-
gram execution.

In this section, we discuss how data about the type
of messages and their creation and processing is col-
lected and displayed. We also discuss how trace data
for Projections can be transformed to obtain trace
data for Upshot.

4.1 Trace data collection

A Charm program can be executed in two different
modes. In the first, the normal mode, execution pro-
ceeds without any events or activities being recorded.
In the second, the record mode, the system records
information about defined activity types. A program
can be executed in any one of the two modes by linking
with the appropriate libraries — there is no need to
add instrumentation, or to recompile the user program
in order to generate the trace information. By re-
linking a program with the appropriate libraries, the
user can generate trace information for the program
on any machine on which Charm has been installed.

Each processor has its own local buffer to record
trace data for messages created and processed on it.
Data is recorded in these local buffers while the pro-
gram is executing. If a buffer is about to overflow
during an execution run, then it is written out to a
log-file corresponding to that processor. At the end of
the execution of the program, the buffers are written
out onto each processor’s log-file.

4.2 Trace data format
There are currently five types of events which are

recorded in trace files when a Charm program is exe-
cuted in the record mode:

1. Initiation of the program on a processor.
2. Termination of the program on a processor.

3. Creation of a message. Messages are processed
at some later time. A message can be one of a
new-chare, a for-chare or a for-boc message.

4. Start of processing of message on a processor.
Since all the system calls in Charm are non-
blocking, no other message can be picked up for
execution on this processor before this message is
completely processed.

5. Finish of processing of message.

The following three fields are recorded for each
event:

1. activity type: The activity type of this event from
among the above seven activity types.

2. processor: The processor number on which the
event occurred.

3. time: The local time (in microseconds) when the
event occurred.

The following two additional fields are recorded for
the creation and processing of each message:

1. entry: The entry function for which this message
is intended.

2. msg type: The type of the message, i.e., new-
chare, for-chare, etc.

4.3 Trace data display using Projections

The nature of execution of a Charm program can
be well understood by examining the values of the
number of creations and processings of new-chare, for-
chare and for-boc messages, and the percentage busy
time of processors. These values provide an indica-
tion for when, where and what type of work is created
during a program execution, and how this corresponds
to the overall performance of the program in terms of
the percent busy time. A processor is determined to
be busy during the period of time it executes an entry
function corresponding to a chare or a branch-office
chare. The execution of the user program is divided
into equal-length periods of time called stages. The
length of the time period, called timestep, used to cut
up the execution time into stages is user-defined and
can be changed interactively by the user to define finer
and coarser stages, as desired.

The data obtained by running the program in record
mode can be displayed in different ways to provide
the user with many views of the performance of the
program. The most basic views treat program at-
tributes, e.g., creation of new-chare messages, as a
function of two variables: stage and processor index.
Each program attribute can be thought of as a three-
dimensional object, and the views are merely projec-
tions of this object onto the coordinate axes: stages
and processors. The views provide different projec-
tions of this two-variable function. We can represent
the function, F,, for the program parameter, a, as

a= Fyu(s,p)

In the above equation s is the stage of program ex-
ecution and p is the processor index. The stage, s,
and the processor index, p, range over a stage set and
a processor set, respectively. In the default case the
stage set ranges over the stages for the period of ex-
ecution of the program, and the processor set ranges
over the processors used for execution.

The first set of views are called the overview views.
In these views, the user can select program attributes
to be viewed. The values of the selected program at-
tributes over the selected stage sets and processor sets
are shown as one screenful of data for an overview
of the program execution. There are two types of
overviews. In the first, the chosen program attribute is
summed up over all processors in the processor set for
each stage, and this aggregate is displayed as a func-
tion of the stage number (so, the function displayed
is Dg(s) = Zp Fo(s,p)). In the second, the chosen

program attribute is summed up over all stages in the

stage set for each processor, and this aggregate is dis-
played as a function of the processor number (so, the
function displayed is Dq(p) = >, Fa(s,p)). These
views are very useful in selecting interesting stages
and processors for a more in-depth view. In either of
these two overviews, the user can interactively change
the program attributes to be selected, and the stage
and processor sets for the views. By changing the
stage and processor sets the user can selectively look
at specific periods of program execution, or only at
specific processors. Since the views are limited to a
single screen full of information there is a consequent
limit on the detail that can be presented in the view.
This is the motivation for the second type of views.

The second type of views are called in-depth views.
There are four in-depth views:

1. View for a particular stage, sg, ranging over the
selected processor set, Fy(so,p).

2. View for a particular processor, pg, ranging over
the selected stage set, Fy(s, po).

3. View for the aggregate over all stages in the par-
ticular stage set, ranging over the selected proces-

sor set, > Fq(s,p).

4. View for the aggregate over all processors in the
particular processor set, ranging over the selected

stage set, Ep Fa(s,p).

The last two types of in-depth views are very similar
to the overviews, the major difference being that the
display is not limited to one screenful of information —
information is displayed over several “pages”, and the
user can browse through these pages as desired. In all
these views the user can interactively choose stage sets
and processor sets over which the program attributes
can be viewed. In addition the length of a stage can
also be interactively changed, so that the views can
be made more detailed, or more coarse. The limit of
the amount of detail depends on the granularity of the
program whose performance is being measured. These
views are completely scalable — they are not limited
by the number of processors or the length of execution
time of a program to be viewed.

4.4 Links with other display tools

The trace data obtained for Projections is fairly
general, and can be transformed in a simple way to
obtain trace data in the format required by other more
general strategies. We have done this transformation
for Upshot, so that the trace data obtained for Projec-
tions can be transformed to obtain the trace data for-
mat for Upshot. The data format for Upshot includes
an initial header file specifying number of processors,
number of different event types, and other informa-
tion, and a tail part which contains a record of events
occurring on various processors at various times. The
transformation consists in making the beginning and
finishing of processing of an entry point as two differ-
ent events, and then using this pair of events to denote
the state corresponding to the execution of the entry
point.

5 Understanding program behavior

In this section, we have chosen an example applica-
tion to illustrate the use of Projections in understand-
ing Charm program behavior. The analysis is carried
out with overviews for this example, even though more
detailed information can be (and was) obtained using
the in-depth views, it hasn’t been used here, because
of space limitations. However, overviews are sufficient
for the analysis we will present.

The Traveling Salesman Problem (TSP) [9] is a typ-
ical example of an optimization problem solved using
branch&bound techniques. In this problem, a sales-
man must visit n cities, returning to the starting point,
and is required to minimize the total cost of the trip.
Every pair of cities 7 and j has a cost Cj; associated
with them.

We have implemented the branch&bound scheme
proposed by Little, et. al. [6]. In Little’s approach, one
starts with an initial partial solution, a cost function
(C), and an infinite upper bound. A partial solution
comprises a set of edges (pairs of cities) that have been
included in the circuit, and a set of edges that have
been excluded from the circuit. The cost function pro-
vides for each partial solution a lower bound on the
cost of any solution found by extending the partial so-
lution. The cost function is monotonic, i.e., if S; and
Ss are partial solutions and S5 is obtained by extend-
ing S1, then C(S1) < C(S2). Two new partial solu-
tions are obtained from the current partial solution by
including and excluding the “best” edge (determined
using some selection criterion) not in the partial so-
lution. A partial solution is discarded (pruned) if its
lower bound is larger than the current upper bound.
The upper bound is updated whenever a solution is
reached.

In the Charm implementation of the branch&bound
solution of TSP, each partial solution is represented by
a chare and the cost of the partial solution is the prior-
ity of the new-chare message. A monotonic variable is
used to maintain the upper bound. We term as useful
messages all new-chare messages with cost less than
the cost of the best solution, and as useless messages
all new-chare messages with cost greater than the cost
of the best solution.

The TSP application was executed on 16 processors
of an NCUBE/2 with the ACWN [10] (adaptive con-
tracting within neighborhoods) load balancing strat-
egy. The execution with ACWN took about 29 sec-
onds with a total of 7131 partial solutions being gener-
ated. The optimal solution was found at 14.4 seconds.
Figure 2 show overviews of new chare creation and
processing over stages for the ACWN.

In Figure 2, note that even after the solution was
found at about 14.4 seconds, many new chare mes-
sages were still created. In our implementation, we
prune at creation all useless messages. Therefore these
new-chare messages could be created only if there re-
mained in the system useful messages even after the
best solution was found. As the processor utilization
is close to 100% prior to this time, this must have hap-
pened because many useless messages were processed
before the solution was found. In a sequential imple-
mentation, messages are processed in ascending order

of their costs, and after the best solution is found no
useful messages remain. In our execution run with
the ACWN load balancing strategy, useful messages
exist even after the best solution is found, because
new chare messages are not processed in order of their
costs. This suggests that the load balancing strategy
being used with this application did not balance the
priorities of new chare messages while balancing their
loads.

So we ran the TSP application on 16 processors
with another load balancing strategy called the Man-
ager strategy [11], which balances both load and prior-
ities across processors. The execution with the Man-
ager strategy took 21 seconds, and a total of 5785
partial solutions were generated. The optimal solution
was found at 9.6 seconds. Figure 3 show overviews of
new chare creation and processing over stages for the
Manager case. Note that very few new-chare messages
are created after the best solution is found indicating
that the load balancing strategy did a good job of
balancing both the load and priorities of new-chare
messages.

6 Discussion and future work

We have presented Projections, a scalable perfor-
mance tool for a machine independent parallel pro-
gramming language, Charm. We have illustrated with
an example how Projections can be used to make spe-
cific analysis of program behavior. We were able to
analyze the suitability of different dynamic load bal-
ancing strategies, provided by the runtime system, for
a particular application. We have also shown how
the trace information for our performance tool can
be transformed with ease into trace information for
Upshot, thus allowing the user to access the views
provided by Upshot. Hence we can, with the same
trace information, provide access to general purpose
tools such as Upshot and very specific tools such as
Projections. These other general purpose tools do not
provide the views that our performance tool does, and
vice versa, so they complement each other.

Pablo [7, 8] is a portable, scalable, and extensible
performance environment being developed at the Uni-
versity of Illinois, Urbana. Pablo consists of two com-
ponents: software instrumentation and performance
data analysis. The latter consists of performance data
transformation modules that can be graphically inter-
connected to form an acyclic, directed data analysis
graph. Performance data flows through the nodes of
this graph, and is transformed to yield various perfor-
mance metrics. The work being done for Pablo was
done concurrently with this project. Tools such as
Projections can be developed on top of Pablo with
relative ease in the future.

In future, we plan to deal with performance at-
tributes relating to specifically shared objects, mes-
sage queues and load balancing strategies. For exam-
ple, an examination of the access patterns of items
stored in distributed tables would help us understand
whether or not the items were distributed uniformly (if
not a different key may be necessary), and whether or
not accesses from different processors were uniform.
A knowledge of the distribution of the values of the

Exit Set Parameters
Selections:
=ieetlons [% MewChares Created £l ForChares Created £l BocMsgs Created [% MewChares Processed
1 ForChares Processed £l BocMsgs Processed _
__ HewChares Created — NewChares Processed === Percent Busy
- 10h
570
93
532 a1
434 a4
456 77
418 20
380 -
342
56
304 PERCENT
MESSAGES
SRR 43 BUSY
228 4
130 &
152 28
114 21
7 14
38 7
0 0
STAGES
Timestep: 1000000 Stages: 29 Processors: 16

Figure 2: This figure shows the overall efficiency, number of chares created and number of chares processed
over the various stages of the execution of a branch&bound implementation of the TSP program on an
NCUBE/2 with the ACWN load balancing strategy.

Exit Set Parameters
Selections:
shesHions % MeuChares Created £ ForChares Created £l BocMsgs Created [% MewChares Processed
1 ForChares Processed £l BocMsgs Processed _
__ HewChares Created — NewChares Processed === Percent Busy
- 105
(=0

58
=i
o4
77
70
B3

B16
572

528

484

440

3%
MESSAGES 392
308

264

220

176

132

8

44

55 PERCENT
43 BUSY

42
i
28
21
14

STAGES

Timestep: 1000000 Stages: 19 Processors: 16

Figure 3: This figure shows the overall efficiency, number of chares created and number of chares processed
over the various stages of the execution of a branch&bound implementation of the TSP program on an
NCUBE/2 with the Manager load balancing strategy.

priority of the top element in the case of prioritized
queuing strategies would be useful in understanding
how the execution of an algorithm was proceeding over
a prioritized search tree. The richness and specificity
of programming constructs in Charm will help us in
developing Projections into a more informative perfor-
mance analysis tool.

In the long-term, we believe that a much more in-
telligent and automated performance analysis tool is
possible if the language constructs provide enough in-
formation about the program behavior. Such a tool
will be built for Charm in the following steps:

e By identifying parallel application characteristics,
whose knowledge would help in the process of de-
bugging and performance analysis

e By providing mechanisms which allow the user
to specify the program characteristics identified
above either implicitly or explicitly

e By incorporating commonly used program char-
acteristics into Charm

We are also examining techniques to collect data
from hundreds and thousands of processors without
requiring prohibitively large memory space. This
would need development of minimal data formats and
compression techniques for the log files. A solution
adopted at times has been to display data on a real-
time basis (i.e. displaying attributes as they are gen-
erated during the run of the program, thus obviating
the need to store them in files). This sort of display
constrains user-analysis in obvious ways.

Another aspect of scalable displays is the ability to
select groups of processors for further review. Cur-
rently we allow the user to select only contiguous sub-
ranges. In future, the user can select groups of proces-
sors which have some unifying thread — e.g. all the
processors in the same position in all the planes of a
three-dimensional mesh.

References
[1] G. A. Geist, M. T. Heath, B. W. Peyton, and
P. H. Worley. Picl: a portable instrumented com-
munication library, ¢ reference manual. Technical
Report ORNL/TM-11130, Oak Ridge National
Laboratory, 1990.

[2] Michael T. Heath and Jennifer A. Etheridge. Vi-
sualizing the performance of parallel programs.
IEEE Software, pages 29-39, Sept. 1991.

[3] Virginia Herrarte and Rusty Lusk. Studying par-
allel program behaviour with upshot. User Man-
ual for Upshot.

[4] L. V. Kale. The Chare Kernel Parallel Program-
ming System Programming System. In Interna-
tional Conference on Parallel Processing, August

1990.

[5] L. V. Kale, et al. The Chare Kernel Programming
Language Manual. Internal report.

[6] J. D. C. Little, K. G. Murty, D. W. Sweeney, and
C. Karel. An algorithm for the traveling salesman

problem. Operations Research, 11:972-989, 1963.

[7] A. D. Malony, D. A. Reed, J. W. Arendt, R. A.
Aydt, D. Grabas, and B. K. Totty. An integrated
performance data collection, analysis, and visu-
alization system. In Proceedings of the Fourth
Conference on Hypercube Concurrent Computers
and Applications. Association for Computing Ma-
chinery, 1989.

[8] D. A. Reed, R. D. Olson, R. A. Aydt, T. M.
Madhyastha, T. Birkett, D. W. Jensen, B. A. A.
Nazief, and B. K. Totty. Scalable performance en-
vironments for parallel systems. Technical report,
University of Illinois, Urbana, 1991.

[9] Edward W. Reingold, Jurg Nievergelt, and Nars-
ingh Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1977.

[10] W. Shu and L. V. Kale. A dynamic load bal-

ancing strategy for small-grained processes. In
Supercomputing, November 1989.

[11] A. B. Sinha and L. V. Kale. A load balancing
strategy for prioritized execution of tasks. In In-
ternational Parallel Processing Symposium, April

1993.

