Supporting
Machine Independent
Parallel Programming

on

Diverse Parallel Architectures

Wayne Fenton
Balkrishna Ramkumar
Vikram Saletore
Amitabh B. Sinha

Laxmikant V. Kale

Motivation

e \Wide range of Parallel machines available

e Each parallel machine has different characteris-

tics; programming them is difficult

e Desirable to write “machine independent” pro-

grams

e Machine independent programs must run effi-

ciently on all different types of machines

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

The
Chare Kernel —
A Machine-Independent

Parallel Programming

Language

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Outline of Talk

e Basic Language Features & Implementation

e Additional Language Features & Implementa-

tion

e Performance Data & Future Improvements

e Applications

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Basic Language Features

e Types of Processes

e Chares

e Information Sharing Mechanisms

e Messages

e Read Only Variables

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Processes

e Chares

e Medium Grained Processes

e Data Area

e Functions

e Entry Points (activated by messages)

e Functions and Entry Points share the chare's

data area

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Syntax of a Chare

chare Examplel {
/* Local variable declarations */
entry EP1: (message MESSAGE TYPE1 *msgPtr)
C-code-block

entry EPn: (message MESSAGE TYPEn *msgPtr)
C-code-block

functionl (<parameter-list>)

C-code-block

functionZ (<parameter-list>)

C-code-block

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Information Sharing Mechanisms

e Messages

e Read Only Variables

e Initialized in the Init Section of the program

e Remains unaltered thereafter

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Basic System Calls

e CreateChare(charename, ep, msg)

e Creates a chare of type charename

e Activates created chare by sending message

msg at entry point ep

e SendMsg(ep, msg, cid)

e Sends a message msg to chare with ID cid

at entry point ep

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Basic Features

e Pick Next Message

e Shared Machines: messages are picked

from the shared queues.

e Nonshared and NUMA Machines: mes-
sages are picked from the local queue, where
they are inserted after being picked from the

net

e Initialization Loop

e Message Processing Loop

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Basic Features

e Initialization Loop

e Pick next initialization message

e For a Read Only initialization message create
and initialize the corresponding Read Only

variable.

— On shared machines, a single copy of the

variable is maintained.

— On nonshared and NUMA machines the

variable is replicated on each node.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Basic Features

e Message Processing Loop

e Pick up next message

e Process Message

— For CreateChare messages, allocate data
area, and call entry point with data area

and creation message as parameters

— For SendMsg messages, determine data
area from ID, and call entry point with
data area and creation message as param-

eters

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Additional Language Features

e Types of Processes

e Branch-Office Chares

e Information Sharing Mechanisms

e \Write Once

e Accumulators

e Monotonics

e Dynamic Tables

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Types of Processes

e Branch-Office Chares(BOC)

e A representative branch chare on each

node

e A manager chare on node O.

e Branch and Manager chares have the same

syntax as a normal chare.

e Branches and Manager interact with one an-
other and other chares through SendMsg-
Branch, SendMsgManager and BranchCall

system calls.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Syntax of a Branch-Office Chare

BranchOffice Examplel {

manager {

/* Syntax of a chare */

}
branch {

/* Syntax of a chare */

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Information Sharing Mechanisms

e Write Once Variables

e Created once during execution; no subse-

quent modifications

e Accesses made through an index

e Accumulator Variables

e counter variable

e an operator to increment the counter

e an operator to combine two counter vari-

ables

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Information Sharing Mechanisms(contd.)

e Monotonic Variables

e monotonically changing variable

e operator to monotonically update variable

e DynamicTables

e Table entries are data items identified by a

key

e [hree operations: Insert, Delete, Find.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Additional Features

e Branch-Office Chares

e Initialization of Branches on the nodes done
in the Initialization Loop alongwith Read Only
variables — set up data area of branches, and
call the initialization entry point with appro-

priate parameters.

e Messages communicated between branches
and manager are processed in the Messsage

Processing Loop. Processing similar to the

SendMsg call.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Additional Features

e SHARED: Write Once, Monotonics, Accu-
mulators and Dynamic Tables are implemented
as shared variables; access is controlled through

locks.

e NONSHARED AND NUMA: Write Once,
Monotonics, Accumulators and Dynamic tables
are implemented as Branch-Office Chares. Branch-
Office chares are also used to implement load

balancing schemes and quiescence detection.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Implementation of Accumulators as BOCs

e Each branch maintains a local copy of the vari-

able.

e All updates on a node are made to the local

copy.

e \When the value of the accumulator is “demanded”,
a collection scheme is initiated on the spanning
tree on the nodes, with branches propagating

value of the subtree to parent node.

e The manager finally reports the value at speci-

fied address.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Example for Performance Data

e A symmetric Traveling SalesPerson Ex-

ample for 20 cities

e Branch & Bound Algorithm used

e [he bound is maintained with a monotonic vari-

able

e Number of nodes in the search tree counted

with an accumulator variable

e Search is made more efficient by assigning pri-

orities to nodes

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Performance Data

Sequent
Processors | Without Priority | With Priority
Nodes | Time (ms) | Nodes | Time (ms)
1 245 6370 360 8490
4 334 2930 363 2240
16 703 2010, 521 1080
MultiMazx
Processors | Without Priority | With Priority
Nodes | Time (ms) | Nodes | Time (ms)
1 245 14988 | 360 19942
4 340 6661 363 5397
8 579 9173 368 4575

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Performance Data (contd.)

NCUBFE
Processors | Without Priority | With Priority
Nodes | Time (ms) | Nodes | Time (ms)
4 304 1048 | 494 3007
16 1991 3822 | 1166 1623
64 - -1 4146 1615
128 - -| 7974 1418

Unwersity of Illinois, Urbana

Parallel Programmaing Laboratory

Inferences from Performance Data

e Performance is good for shared machines.

e Inadequate load balancing scheme for priori-

tized scheme.

e Need a better lower bound computation.

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Applications

e Othello (Chin-Chau Low)

e Incompressible Viscous Flow Computations (At-

tila Gursoy)
e Circuit Extraction (Balkrishna Ramkumar)
e N-Body Solver (Celso Mendes)
e Parallel Curve Tracing for Robotics (Darrell Stam)

e High Level Support for Divide-and-Conquer Ap-

plications (Attila Gursoy)

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Code Size Information

e Shared

e Machine Independent Code: 7219 lines of C

code

e Average Machine Dependent Code: 239 lines
of C code

e Nonshared

e Machine Independent Code: 9199 lines of C

code

e Average Machine Dependent Code: 849 lines
of C code

Parallel Programmaing Laboratory

Unwersity of Illinois, Urbana

Conclusions

e Portable Parallel Programming Possible with Proper

Selection of Primitives.

e Chare Kernel is a (MIMD) machine-independent

parallel programming language.

e Chare Kernel can serve as a bottom-layer for the
construction of application-specific machine-independent

high-level languages.

