High Level Support For Divide-and-Conquer
Parallelism

Attila Gursoy
L. V. Kale
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 W.Springfield Ave., Urbana, IL 61801

Abstract

In this paper we present a simple language for expressing divide and conquer computations.
The language allows for many variations in the standard divide and conquer paradigm. It is
implemented using the Chare Kernel parallel programming system. The Chare Kernel supports
dynamic creation of work with dynamic load balancing strategies, and machine independent
execution. As a result, implementation of languages and systems such as that described in this
paper is simplified significantly. A translator translates divide-and-conquer programs to Chare
Kernel programs, handling details of synchronization and communication automatically. The
design of the language is presented, followed by a description of its implementation, and per-
formance results on many parallel machines, including NCUBE/two, iPSC/2, and the Sequent
symmetry. User programs do not have to be changed to run on any of these machines.

1 Introduction

The dramatic advances in parallel computer architectures have led to an expectation that most
computation-intensive problems will be routinely speeded up using parallel processing. Although
many commercial systems have appeared in the market, programming them to meet this expec-
tation is still a challenging task. Parallel programming is obviously more difficult than sequential
programming. It is necessary to simplify and support the task of writing parallel applications, and
also to ensure that the investment in parallel software is protected through architectural advances
and new generation of parallel machines.

One approach to simplify parallel programming is to identify important computational paradigms,
and develop a specialized software system (languages or packages such as Matlab) for each paradigm.
Such software allows the user to express computations that fit the particular paradigm in a con-
cise and simple manner. The system embodies techniques needed for implementing the particular
paradigm, so the programmer does not have to repeatedly do that. The system may employ dif-
ferent techniques on different types of parallel machines, but again the user is spared these details.

In this paper, we describe such a system for the divide-and-compose (or divide-and-conquer)
paradigm. Divide-and-compose is a naturally parallel paradigm and is considered to be a broadly
applicable one. Many problems such as combinatorial optimizations, searches, many problems
in computational geometry, and problem-reduction in Al are formulated naturally as divide-and-
conquer computations.

In a typical divide-and-compose computation, a computational problem is broken down into
smaller subproblems, some of which may be of the same type (but lesser complexity) as the original

Figure 1: A simple DJG

problem itself. This process is continued recursively as many times as necessary. When the sub-
computations are simple enough they are solved directly without further sub-division. The results
from the subcomputations are passed to the parents which created them. The parent node composes
the solutions to subproblems to form the solution to itself, which it then sends to its parent.

A few variations on this theme are also possible within the paradigm. In search-type problems
the composition-of-subproblems is either trivial or absent (if solutions are directly printed). In
some other domains, solutions to some sub-problems may lead to creation of new sub-problems
which must be solved. This can happen, for example, due to a data or control dependency among
the sub-problems.

We describe a language that can be used to express such programs concisely and with ease.
After the description of the language in section 2, we discuss a programming example to show how
the system is used in section 3. The system is implemented on top of the Chare Kernel parallel
programming system [9]. The Chare Kernel supports dynamic creation of medium grained tasks
with dynamic load balancing strategies, and provides machine independence. It is a general purpose
machine independent parallel programming system, which can be used to develop specific languages,
such as the one discussed here, with relatively little effort. Thus the implementation, discussed in
Section 4, concerns mainly translating the user program into a Chare Kernel program. Performance
on various shared and non shared memory machines, including Sequent Symmetry, intel’s iPSC/2,
and NCUBE/two are described in section 5, which is followed by a section summarizing the paper.

2 Language Definition

A divide-and-compose program is expressed as a set of node definitions along with usual C functions.
An instance of a node definition corresponds to a node in the computation tree. A node can also
be visualized as a Data Join Graph (DJG). A DJG is a dependency graph where edges represent
subcomputations or conditions and vertices represent synchronization points. A subcomputation
which is originating from a vertex can start after all immediate predecessor subcomputations are
completed. For example, subcomputation labeled as s, in Figure 1, can begin execution after p
and r have completed, and can receive data from them. A node definition is expressed in C syntax
with a few extensions. It has a number of components to conveniently represent a DJG and the
data it operates on. A BNF-like definition of the node syntax is shown Figure 2.

A simple toy example of node declaration is shown in Figure 3. Different components of the
node definition are described below.

2.1 Data Declarations

in : <parameter-list>

node <node—name> {
in : { <parameter-list> }
out: { <parameter-list> }
node <node-declarations> ;
cond <cond-declarations> ;
<local-variable-declarations>
init : <init-body>
[when <condition-list> : <when-body>]

}

<parameter-list> is a sequence variable declarations as in C.

<node-declaration> |
<node-declaration>,<node-declarations>
<node-declaration> ::= <node-name> : <label>
<cond-declarations> <cond-declaration> |
<cond-declaration>,<cond-declarations>

<node-declarations>

<cond-declaration> ::= <label>

<condition-list> ::= <condition> | <condition>,<condition-list>
<condition> ::= <label> | <label>[<range-list>]
<range-list> ::= <range> | <range>,<range-list>

<range> ::= intconstant | intconst-intconstant

<node-name> ::= id

<label> = id | id[intconst]

where intconst is a compile time constant of type int;

Figure 2: Syntax of a node

out

node

cond

2.2

init

when

node fib {
in : {int n;}
out: {int result;}
node fib : p, fib : q;

init : {

if (in->n < 2) {
out->result = in->n;
send result;

}

else {
P.in->n
q.in->n
fire p;
fire q;

in->n - 1;
in->n - 2;

}
}

when p,q : {
out->result = p.out->result + q.out->result;
send result;

Figure 3: Node definition to compute fibonacci numbers

It specifies the formal parameters to be received by value.

<parameter-list>
It specifies the formal parameters to be sent to the parent instance by value.

<node-label-list>

Each subcomputation (or edge in the DJG) should have a distinct label to differentiate it
from others. <node-declarations> declares all the labels used in the node, and specifies
the node type each label refers to. Input and output parameters of a subcomputation are
accessed through the pointers <label>.in, <label>.out respectively. A node can access its
own input and output values through the pointers called in and out.

<cond-var-list>

Condition variables provide an easy way to impose a specific order on the execution of poten-
tially concurrent when statements. They will be discussed later in set statement explanation
part.

Blocks

<init-body>
When an instance of a node is created, <init-body> is executed first. It usually contains
initialization code and termination check which decide whether to subdivide the problem fur-
ther or solve it directly. It spawns a set of subcomputations, if necessary. After completing
<init-body>, node suspends itself until one of the when-block is satisfied.

<condition-list> : <when body>
The labels in the <condition-list> refer to subcomputations or condition variables. If

2.3

Fire

send

set

all the subcomputations listed in the <condition-1ist> have been completed and the con-
dition variables listed in the <condition-1list> have been set (by the set instruction), then
<when-body> is executed. If more than one when-block are satisfied, the order is nondeter-
ministic.

Statements

The syntax of fire statement is:
fire <label>;

It creates an instance of the node which is associated with <label>. Before invoking a
fire statement, it is necessary to assign the required input values to <label>.in. With
the execution of the fire statement, control of the data area pointed to by <label>.in is
transferred to the subcomputation, and it should not be accessed furthermore. Similarly, the
data pointed by <label>.out is valid only after the subcomputation <label> completed.
Therefore, <1label>.out should be used in only proper when-blocks. Nodes may be indexed
for convenience. For example, Figure 4-a shows the code for firing 10 subproblems. Instead
of writing 10 fire statements with 10 distinct labels, the code can use a simple loop to fire
them using the indexed label p.

result
A node sends its output, (data pointed by out), to its parent node with the statement :

send result;

In addition to that, memory space allocated to all responses that are received from subcom-
putations are released, and execution of that instance is terminated.

set <label>;

A label listed in <condition-list> is accepted as true if it is set by a set instruction. A
label may refer to a subcomputation or a condition. Node labels are allowed to be set in order
to permit variable number of subcomputations to be activated. In Figure 4-b, the for-loop
activates a subset of subcomputations p[0]...p[9]. Assume that it is not known at compile
time which subset of p’s will be activated. How one can specify conditions for a when-block
that should be activated when all the fired instances of a node completed. A solution to this
problem utilizes set instruction as follows: <condition-1ist> of when-block includes all
labels that can be activated potentially. However, the labels that are not actually activated
are set explicitly in the else part to satisfy <condition-1list>.

Another usage of set statement is the control of order of when-blocks. Consider the exam-
ple in Figure 5-a: Let’s assume that p has been completed already, and the corresponding
<when-body> has been executed. When q is completed, either the second when-block or the
third one can be executed. In order to use the new value of b, the third when-block should
wait for completion of the second one. Correct order of execution is achieved by utilizing
condition variables as in Figure 5-b.

node f:p[10] node f:p[10];

for(i=0;i<10;i++) for(i=0;i<10;i++)
fire plil; if (condition(i))
fire plil;
else
set plil;
when p[0-9] :{...}
(a) (b)

Figure 4: Variable number of subcomputations

2.4 Main Node

The source program should have one specially designated node named main. The main definition
does not have in or out declarations since it is the root of the computation tree. In the init-block
of the main node, readonly variables are initialized. Readonly only variables can be accessed from
any other node.

2.5 Other Data Abstractions

Two kinds of abstract data types supported by the Chare Kernel can be directly used in nodes
and other functions. Those are readonly and monotonic variables that provide information sharing
among instances of nodes executing in parallel. Two operations are allowed on readonly variables,
initialization -which must be done in main node, and retrieval. Monotonic variables are initialized
in main node and two other operations allowed for them are update and retrieval.

3 A Parallel Programming Example

In this section, a practical example is given to show the advantages of the node construct in im-
plementing a divide-and-compose algorithm. Matrix multiplication is considered and it is demon-
strated what difficulties are eliminated which user should deal otherwise.

A simple divide-and-compose strategy for matrix multiplication: Let A and B be two n X n

Ambiguous version: Correct Version:
/* a and b shared */ /* a and_b shared */
whenp :{a-=...} cond c[2];
whenq :{b=...} when p : { a=..; set c[0];}
when p,q : { £(a,b)} when q : { b=..; set c[1];}
when c[0,1] : {f(a,b) ...}
(a) (b)

Figure 5: Control of order of when-blocks

plo] pl1] compute C11
°
° ° ° °
°

compute C22
pL7]
[]

Figure 6: DJG of the matrix multiplication

matrices. The product matrix C = A X B can be computed by decomposing A and B into subma-
trices of size n/2 X n/2 and then computing multiplication of those submatrices recursively in the
same way.

All A12 Bll BlZ — Cll 012
AZl A22 BZl B22 021 C122

C11 = A11B11 + A12By;

C12 = A11B1a + A12B>»
Co1 = A1 Bq1 + A3By;
Cag = A1 B1a + A3 By

The formulation can be optimized further to encode Strassen’s algorithm [1], which creates 7
(instead of 8) subproblems. As the purpose in this paper is to illustrate the language, we will stay
with this simple formulation.

Figure 6 shows data dependency of the matrix multiplication algorithm and the node definition
is listed in Figure 7. Matrices A and B are declared as readonly so they are shared among nodes.
Each node receives as input size, row and column numbers of the left-upper corner of the matrices to
be multiplied. The result of a node is a matrix which is the product of input submatrices. Grain size
control is done to stop further division of the problem in init block. If size of matrices gets smaller
than a threshold value, multiplication is carried out sequentially. Otherwise, matrices are divided
into smaller blocks. If granularity is too small, overhead due to creation of large number of nodes
and messages causes performance degradation. If it is too large then potential parallelism cannot
be exploited. As far as divide-and-compose programs are concerned, user can easily tune grain-size
by comparing total number of nodes and serial execution time. The labels p[0] ... [p7] refer to the
subcomputations. The decompose function divides the input problem into eight subproblems and
fills input fields of each subcomputation. Then, the for loop fires subcomputations. As product
of submatrices arrive, they are added pairwise to construct one quadrant of the local result in
when-blocks. Although in principle add operation can be performed in parallel, here it is done
sequentially locally.

Parallel implementation of divide-and-compose algorithms is significantly simplified by the node
construct, and following detailed tasks are eliminated at the user level:

readonly float Ri;
R1 A[20][20], B[20][20];

node main {
node mult:root;

init : {

InitMatrix(); /* read and initialize readonly matrices */
InitRootInput(root.in); /* fill row,column and size fields of root.in */
fire root;

when root:{PrintResult(root.out);}

node mult {
in : { int rowA, colA, rowB, colB, n;}

out: { float c[in->n*in->n];}

node mult : p[8]; /* p[0] computes A11xB11 */
cond c[4]; /* p[1] computes A12xB21 */
init : { I ... */

if (matrix-size < grainsize) { /* p[7] computes A22xB22 */

seqgentialmult(in,out);
send result;

}
else {
decompose(in,p);
for(i=0;i<8;i++) fire pl[il;
} }

when pl[0,1] : { add(p[0].out,p[1].out,out); set c[0];} /* compute C11 */
when p[2,3] : { add(p[2].out,pl[3].out,out); set c[1];} /* compute C12 */
when p[4,5] : { add p[4].out,p[5].out,out); set c[2];} /* compute C21 */
when pl[6,7] : { add p[6].out,pl[7].out,out); set c[3];} /* compute C22 */
) when c[0-3] : { send result;}
decompose (in,pin)

mult_IN *in,*pin;

{ /* £ill fields of p[].in */}

add (plout,p2out,out)

mult_OUT *plout, *p2out, *out;

{ /* code for matrix addition : out->c = plout->c+p2out->c*/ }
sequentialmult(in,out)

mult_IN *in;

mult_OUT *out;

{ /* sequential matrix multiplication */}

Figure 7: Matrix multiplication node definition

e synchronization management : keeping track of responses from subcomputations, execution
of when-blocks if their conditions are met.

e tree communication : handling parent-child communication.
e allocation : automatic allocation and deallocation of messages.
e Dynamic load balancing.
e Machine dependent expression.
Once the algorithm is implemented with node constructs, it is translated into a Chare Kernel

program. Then, Chare Kernel translator produces the C code. Finally, the C code is compiled and
linked with Chare Kernel Runtime environment, as illustrated in Figure 8.

User Program

!
Node Translator

!
CK Translator

!
CK Run Time

!
Machine

Figure 8: Layers of program development

4 Implementation

A translator has been developed to transform the user program with node definitions into a Chare
Kernel program. A Chare Kernel program consists of chare definitions, function definitions, and
message definitions. A chare is a parallel action with several properties. They are not preemptible
and execute for a very small time compared to a process in general. A chare consists of a local data
declaration block, a number of entries and functions. A chare can send a message to an entry of
any other chare. When a message received, the entry point specified by the message is executed.

Figure 9 depicts the translation of a node definition to a chare definition. Input and output
definitions are converted to message definitions. In addition to user supplied data fields, input-
messages contain two more fields for parent chare address and entry point number.

For each label that is declared in node-declaration statement, message pointers with the same
label name are declared in local data declaration block as follows:

/* node declaration */ /* message pointers */
node <node—-name>:<label>; struct <node-name>_NODE {
<node—-name> *in;

<node—name> *out;
} <label>;

For each label again, a response entry is created to receive messages from the subcomputations
associated with the label. init-block is converted to an entry with a name init. init entry
allocates memory for the outgoing messages, initializes other data structures used by the system
before executing user code in init-block. Each <when-body> is converted to a private function of
the chare.

In order to ensure synchronization as specified in the node definition, a counter for each
when-block is initialized in the init entry to the number node and condition labels listed in the
<condition-list> When a response message is received from a subcomputation, the response
entry that gets the message performs following synchronization-code :

entry <label>_response :

for all when-blocks whose <condition-list> contains <label>{
decrement counter of the when-block
if counter is zero invoke <when-body>

The response entry knows which when-block is dependent on it (by examining <condition-list>
again). It decrements the counter of each dependent when-block. If the counter reaches to zero,
the corresponding <when-body> is called. The set instruction also performs same synchronization
procedure. The Chare Kernel code for fire <label> is :

<label>.in->parent = MyChareId();

<label>.in->epoint = <label>_response;

CreateChare (<node—-name>,<node-name>@init,<label>.in);
where <node-name> is the one that is referred by <label>

It initializes the parent address field to the address of the current chare, and the entry point field
to the number of entry which is created for the <label>. Then it creates a chare and sends the
message <label>.in to the init entry of the newly created chare. send result statement is
translated into :

SendMsg(in->epoint,out,&(in->parent));
free-messages-received-from-subcomputations

CkExit();

It sends the message out to the parent chare using the address information in the in message.

5 Performance

Table 1 depicts the performance results of several programs on shared memory architectures
(Sequent Symetry, Encore Multimax) and on nonshared memory architectures (intel’s IPSC/2,
NCUBE/two). Description of the programs is as follows:

10

message mult_IN { int n; |
ChareIDType parent; I
int epoint; } I
message mult_OUT{ int m;}

I
I
I
I I
o
P 1oca1—comp—2I chare func { I
| declare counters |

declare messages for labels p,q,s
user data declaration
local- local- o
compl s comp3 entry init:
o————-- >o0-————————- >o0-————- >o| allocate memory for messages |

[local-compl

I ——————————————————————————————— I Create chares for p,q and s

}

entry p_response : {

synchronization check

/* for all dependent when blocks */

/* decrement counter of it */

/% if counter is zero execute when */

Inode func {

in : {int n;}

out: {int m;}

node func=p, func=q, func=s;
user data declaration

init : { local-compl entry q_response : {

fire p; synchronization check
fire q; }
fire s; entry s_response : {

}

when p,q : {/* when body 0 */
local-comp2
set c;

}

when s,c : {/* when body 1 */
local-comp3
send result;

}

whenO() { /*when body 0 */
local-comp2
synchronization check

}

when1() { /* when body 1 */
local-comp3

send message out to parent

I
I
I
I
I
I
I
synchronization check I
I
I
I
I
I
Exit system I

|
I
|
I
I
I
I
| }
I
I
I
|
I
I
I

Node definition Chare Definition

Figure 9: Node to chare translation

11

Adaptive Quadrature Integration [5] of the function ;‘3“/2’ over the interval [107%, 1] correct up

to 10714, Interval is divided into two if the accuracy is not sufficient. If the difference between
computed error and required error is less than 10~!!, computation continues sequentially.

Partition Counting the number of partitions of n identical objects into k piles, using the recursive
formulation : f(n, k) = f(n — 1,k — 1) + f(n — k, k), where n=100, k=20 for this case.

Clique Finding the largest clique for a given undirected graph. All potential cliques are generated
with a divide-and-conquer approach [12].

Matrix Multiplication Multiply two 160 x 160 matrices as in explained in section 3. When size
of the submatrices reaches below 20 x 20, multiplication is done without further division.

All programs achieved almost linear speedups on shared memory machines. This indicates that
enough parallelism is available. However, on nonshared memory machines, the performance is not as
good as expected. The second version of the chare kernel system was recently completed. The load
balancing scheme has not yet been fine tuned. Once that is done, we expect the programs to yield
as high performance as reported for previous chare kernel programs. In some cases, superlinear
speedups are achieved on the Sequent Symmetry. Since there is no speculative work in these
examples, it is highly probable that this is due to higher data locality achieved by the parallel
version.

6 Summary

We presented a high level language construct to support a convenient representation of parallel
divide-and-compose algorithms on MIMD multiprocessors. The end user is freed from tedious tasks
such as communication setup, and synchronization. We also demonstrated that such systems can
be built without much effort on top of the Chare Kernel system. Preliminary performance results
encourage us to develop high level support systems for other widely used parallel computational
models.

12

machine | serial | 1 2 4 8 16 20
sequent | 29.3 | 29.8 | 14.9(1.97) | 7.5(3.91) | 3.6(8.1) | 1.8(16.2) | 1.5(19.53)
max 81.7 | 83.3 | 41.7(1.96) | 21.2(3.85) | 10.2(7.99) | - -
ipsc2 | 28.4 |29 | 15.9(1.5) | 9.7(2.97) | 6.2(4.58) | 4.2(6.76) | -
ncube | 12.5 | 13.1 | 7.1(1.76) | 3.9(3.2) | 2.4(5.21) | 1.8(6.94) | -
Table 1: Adaptive Quadrature - time (speedup)
machine | serial | 1 2 4 8 16 20 32
sequent | 178.9 | 179.7 | 89.9(1.99) | 45(3.96) | 22.9(7.81) | 11.2(15.97) | 9.1(19.66) | -
max 243.6 | 245.4 | 123.5(1.97) | 62.8(3.88) | 31.3(7.78) | - - -
ipsc2 168.1 | 169.3 87(1.93) 47.3(3.55) 27.4(6.14) 16.6(10.13) - -
ncube | 116.4 | 117.8 | x 31.3(3.72) | 17.3(6.73) | 10.4(11.19) | - 6.5(17.9)
Table 2: Partition - time (speedup)
machine | serial | 1 2 4 8 16 20 32
sequent | 87.8 88.5 39.3(2.23) 21(4.18) 11.1(7.85) 5.4(16.35) 4.4(19.95) -
max 173 | 176.5 | 89.4(1.94) | 45(3.84) | 29.2(5.92) | - - -
ipsc2 | 102.1 | 103.1 | 52.5(1.94) | 27.3(3.74) | 14.8(6.9) | 8.1(12.6) | - -
ncube | 110.5 | 113 | 55.6(1.99) | x 15.5(7.13) | x - 6.6(16.74)
Table 3: Clique - time (speedup)
machine | serial | 1 2 4 8 16 20
sequent | 87.4 | 83.2 | A1.4(2.11) | 22(3.97) | 11.1(7.87) | 5.5(15.89) | 4.7(18.59)
max 99.1 | 98.8 | 49.2(2.01) | 25.3(3.92) | 12.6(7.87) | - -
ipsc2 | 62.4 | 66.5 | 36.23(1.72) | 19.9(3.13) | 10.6(5.86) | 6.7(9.31) | -

Table 4: Matrix Multiplication - time (speedup)

speedup = serial-time/parallel-time
execution time is in seconds.

entries marked with x are not available due to memory management faults.

13

References
[1] A.Aho, J.Hopcraft, and J.Ullman. The design and analysis of computer algorithms, Addison-
Wesley, (1974) pp230-232.
[2] J.L.Bentley, “Multidimensional divide-and-conquer,” Comm. ACM, vol. 23, no. 4., April 1980.

[3] F.W. Burton, M.M.Huntbach, “Virtual Tree Machines,” IEEFE Trans. Comput., vol. C-33, no.
3, pp- 278-280, Mar. 1984.

[4] F.W. Burton, “Storage management in virtual tree machines”, IEEE Trans. Comput., vol. 37,
no. 3, pp. 321-328.

[6] Conte and de Boor, Elementary Numerical Analysis, (1980) pp 328-332.

[6] J.B.Dennis, E.C.Van Horn, “Programming semantics for multiprogrammed computations,”
Comm. ACM vol. 9, no. 3, pp.143-155, 1966.

[7] R.Finkel, U.Manber, “DIB-A distributed implementation of Backtracking,” ACM TOPLAS
9(2) pp.235-256, April 1987.

[8] E.Gabber, “VMPP: A practical tool for the development of portable and efficient programs
for multiprocessors”, IEEE Trans. Parallel and Distributed Sys., vol. 1, no.3, pp304-316, July
1990.

[9] L.V.Kale, “The Chare Kernel parallel programming language and system”, Proceedings of the
International Conference on Parallel Processing, Vol 11, Aug 1990, ppl17-25.

[10] J.T.Kueth, H.J.Siegel, “Extensions to the C programming language for SIMD/MIMD paral-
lelism,” Proceedings of the International Conference on Parallel Processing, Aug. 1985, pp.232-
235.

[11] V.Kumar, V.N.Rao, “Parallel depth first search,Part I:Implementation,”
[12] C.Mead, L.Conway, Introduction to VLSI systems, Addison-Wesley, (1980) pp 307-312.

[13] P.A. Nelson, L.Synder, “Programming paradigms for nonshared memory parallel computer,”
in The Characteristics of Parallel Algorithms, L.H.Jamieson, D.B.Gannon, and R.J.Douglas,
Eds. Cambridge, MA: MIT Press, 1987, pp. 3-20.

[14] F.J.Peters, “Tree machines and divide-and-conquer algorithms,” Proc. Conf. Analyzing
Problem-Classes Programming Parallel Computing, Nuremburg, W.Germany, June 1981, pp.
25-36.

[15] V.N.Rao, V.Kumar, “Parallel depth first search, Part II: Analysis,”

[16] V.M.Lo, S.Rajopadhye, “Mapping divide-and-conquer algorithms to parallel architectures,”
Proceedings of the International Conference on Parallel Processing, vol. 111, pp. 128-135, Aug.
1990.

[17] W.Shu, L.V.Kale, “Dynamic scheduling of medium-grained processes on multicomputers”,
Tech. Rep. UIUCDCS-R-89-1528, Dept. of Computer Science, University of lllinois at Urbana-
Champaign, July 1989.

14

[18] T.L.Sterling, et al., “Effective implementation of a parallel language on a multiprocessor,”

IEEE Micro, vol. 7, no. 6, pp. 27-36, July 1984.

[19] Q.F.Stout, “Supporting divide-and-congquer algorithms for image processing,” J.Parallel Dis-
trib. Comput. 4 (1987), pp.95-115.

[20] Y.Wu, T.G., Lewis, “Parallelism Encapsulation in C++,” Processedings of the International
Conference on Parallel Processing, vol. II, pp. 35-42, Aug. 1990.

[21] Z.Xu, K.Hwang, “Molecule: A language construct for layered development of parallel pro-
grams”, IEEE Trans. Software, vol. 15, no. 5, May 1989

15

