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ABSTRACT

Improving the performance of iterative, computationally heavy applications with frequent

memory access is challenging and exciting. This thesis shows the performance improvement

efforts of the paraTreeT library. ParaTreeT is a parallel tree toolkit inspired by the N-

body simulation problem to model and investigate the dynamic motion of astronomical

bodies given a set of initial conditions. ParaTreeT provides a generic parallel tree traversal

framework targeting high scalability and programmability. The inputs from the user are

partitioned and decomposed into leaf nodes of a chosen tree structure. The interactions

among particles are done through traversals of a global tree. Users apply their custom

structs of user data and define the tree type into which the data is partitioned, as well as

the partition algorithm used. In addition, the library is extendable with custom traversal

algorithms.

ParaTreeT has achieved better central processing unit (CPU) performance compared to

its predecessor ChaNGa by providing tree data using a shared-memory cache model, as

well as separating the data computation functionality from its spatial tree representation.

ParaTreeT demonstrated a 2-3x speedup over ChaNGa using up to 256 nodes (21504 threads)

on the Summit’s POWER9 machine.

This thesis focuses on improving the performance of the ParaTreeT framework through

two approaches.

The first approach is to implement load balancing strategies to speed up the iterative code

with growing load imbalance. This thesis presents different load balancing algorithms and

efforts to make them scalable. With theoretical runtime analysis of each algorithm, together

with scaling experiments, the thesis identifies the scaling bottleneck and scalability of each

algorithm.

The second approach is to add general-purpose computing on graphics processing units

(GPGPU) kernels to offload highly parallel computationally intensive work from CPU hosts

to graphics processing units (GPUs). This thesis identifies the computationally heavy blocks

of the CPU implementation and proposes multiple GPU kernels to speed up the computation.

The thesis also analyzes the overhead of the GPU implementation, with discussion of plans

for future improvements.
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CHAPTER 1: INTRODUCTION

1.1 PROGRAMMING MODEL OF CHARM++

Charm++[1] is a parallel programming language built on top of C++. Compared with

the widely used MPI[2] which is process-centric, Charm++ adopts the programming model

of migratable objects. The basic unit of Charm++ is a chare which is similar to an actor. A

chare is typically a C++ class with a collection of logically related functions. Users can define

functions in a chare as entries to make it remotely invocable. Entry functions can be called

by other chare objects potentially remotely in an asynchronous way. Chares can group into a

chare array to leverage the object-oriented natural of C++ classes with overdecomposition.

To perform overdecomposition, Charm++ typically partitions the domain of the problem

into finer grain sizes than the available processing units. In this way, multiple chares shares

one processing unit. With a combination of asynchronous execution and a runtime scheduler,

Charm++ provides a natural overlap of communications and computations. There is not a

fixed mapping between chares and processing units. All chare objects are migratable. Users

can specify variables to be packed with one object such that with variable unpacking, there

is no effect of the change of location. Charm++ [3] has supported several diverse science and

engineering applications with its message-driven execution model with migratable objects

and an adaptive runtime.

1.2 THE CHARM++ LIBRARY WITH BUILT-IN LOAD BALANCING
FRAMEWORK

Load balancing (LB) is a common technique to speed up iterative applications with mul-

tiple actors. The computation and communication behavior in the previous iteration of each

chare gives us a good estimation of the future. With the migratable objects and overde-

composition scheme adopted by Charm++, load balancing can be achieved by optimizing

the placement of chares to processing units. A better placement can impose less commu-

nication traffic or smooth the accumulated computation on each processor. Charm++ [4]

provides a generic load balancing framework to achieve measurement based optimization.

The Charm++ runtime tracks the execution and communication of each entry function call

for each chare in a load balancing database. When the load balancing step is called, the

Charm++ will apply a load balancing strategy to the collected chare data to generate a

new placement mapping for each chare. Runtime orchestrated dynamic load balancing can
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adapt to runtime changes of actor grain size and evolving load distribution at each iteration.

Figure 1.1: Diagram of the workflow of centralized LB.

A load balancing strategy has three critical parts, which are data collection, decision

algorithm, and object migration. The load balancing framework supports multiple strategies.

Figure 1.1 shows the workflow of the central strategy. Object data from all PEs will be

grouped together to a root PE via a global reduction. The root PE will then execute the

strategy algorithm on the collection of global data to generate migration decisions. As a

final step, the LB framework will migrate objects according to the decisions. Distributed

strategies, on the other hand, groups object data to local PEs. All PEs will execute the

strategy algorithm in parallel and send migration decisions of local objects. The current

integrated load balancing framework is described in [5] in detail.

An algorithm can work with any strategies adopting the data collection and algorithm ex-

ecution model. To describe a specific load balancing strategy, for example, a central strategy

coupled with a refinement decision algorithm, we will call it a CentralRefineLB. A greedy

decision algorithm extending the distributed strategy will be called a DistributedGreedyLB.

Decision algorithms working with the central strategy tend to be easy to program but suffer

from poor scalability. In contrast, distributed decision algorithms are harder to program but

can have better scalability if done nicely. Diffusion [6] based distributed load balancing

algorithm is a typical example to show the efficiency and scalability of distributed decision

algorithms.

1.3 THE CHARM++ LIBRARY WITH GPGPU SUPPORT

CUDA kernels can be injected into Charm++ programs without additional support. How-

ever, with the overdecomposition and asynchronous message-driven execution, synchroniza-

tion between host and device may be expensive. The Charm++ runtime scheduler will be
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blocked from handling incoming messages or scheduling work from other chares sharing the

same PE.

It is a good practice for each chare to have their own CUDA stream to schedule mem-

ory transformation or computation kernels asynchronously. Since kernel launches and data

transfer enqueued on the same stream will be executed in order, we can ensure dependen-

cies with ease. Choi [7] showed that we could achieve better overlap of computation and

communication with CUDA kernels by having multiple streams per chare. Choi created a

stream with higher priority to deal with all communication related operations while hav-

ing a stream with lower priority doing computation kernels only. With multiple streams in

each chare, computation kernels can run concurrently with communication kernels without

dependencies. CUDA events need to be added to enforce dependencies between streams.

CUDA enables the invocation of host functions based on the completion of device kernels.

Users may want to use cudaLaunchHostFunc to enqueue a host function in the CUDA stream

so that once the previous kernel finishes, a host function will be launched. In this case,

the CPU thread generated by the CUDA runtime will not be managed by the Charm++

runtime. To support such a use case, Hybrid API (HAPI) calls are implemented. Users

can call hapiAddCallback with a CUDA stream and a Charm++ callback object. Once the

Charm++ runtime detects the completion of the recorded CUDA events on the given stream,

the callback object will be scheduled for execution. The NAMD [8] application running on

top of hetergenous systems shows that the efficient CPU and GPU kernels can scale well

from thousands of CPU cores and thousands of GPU cores.

1.4 THE PARATREET LIBRARY

ParaTreeT [9] is a generic library for tree-based algorithms which was initially motivated

by the N-body simulation problem and built for generic applications. For a universe contain-

ing n particles, calculating interactions between all pairs of particles imposes an algorithm

with the complexity of O(n2). In 1986, Barnes and Hut [10] published an algorithm with

O(nlog(n)) complexity which soon became the standard for N-body simulation. The Barnes

and Hut algorithm decomposes particles into a hierarchical spatial tree (usually an octree)

to capture the spatial relationship among particles and do interactions among particles via

traversing along the tree. The pseudocode of the algorithm is in Listing 1.1:

Listing 1.1: Pseudocode of the BarnesHut algorithm

1 void BarnesHut ( p a r t i c l e , node ){
2 i f ( far away ( p a r t i c l e , node ) ){
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3 ca l cu l a t eGrav i t y ( p a r t i c l e , node ) ;

4 } e l s e i f ( hasChi ld ( node ) ){
5 f o r ( ch i l d node : node . ch i l d r en ( ) ){
6 BarnesHut ( p a r t i c l e , ch i l d node ) ; }
7 } e l s e {
8 f o r (p : node . p a r t i c l e s ){
9 ca l cu l a t eGrav i t y ( p a r t i c l e , p ) ; }

10 }
11 }

Figure 1.2: The process of building subtrees. The left graph shows a spatial partitions of
particles into blocks. Each block becomes a leaf node in the tree shown in the middle graph.
Internal nodes are constructed to connect the leafs to a root. The right graph shows data
aggregation from leaves to the root.

ParaTreeT created four abstractions components to model the problem. Trees and Data

are the fundamental concepts. Traversal and Visitor build on top of the basic one. Trees

are built by partitioning the input particles from the top down following a specified tree

type. The left and middle graphs in Figure 1.2 demonstrate a tree build of six particles into

a tree with four leaves. Data is subject to application specific properties. Users can define

a custom data class with required operators.

ParaTreeT creates a Charm++ chare array named Subtree to represent the spatial struc-

ture of the tree. Each Subtree chare will obtain a vector of leaves and internal nodes between

the leaves and the global root. From leaves to the root, Subtrees aggregate data and populate

internal nodes represented by gray nodes in the right graph in Figure 1.2.

On top of the concept of tree and data, Traversal defines an algorithm to visit each

node in the tree structure and Visitors define the action to be performed at each step of the

traversal. Multipole expansion can be used to approximate the gravitational force of a group

of bodies. With higher powers of the distance, the total gravitational force of the group is

proportional to the total mass divided by the square of the distance. Therefore, we define
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the boolean function open() to determine if we want to keep traversing the children of an

internal node or stop the traversal and contribute the gravitational force of all descendant

particles with estimations using the aggregated data. We define function node() to calculate

the gravitational forces between an internal node and a target node using estimation with

the aggregated data. We define leaf() function to calculate gravitational forces between a

source leaf node and a target node by interacting with every pair of particles.

We can now rewrite the single tree traversal Barnes-Hut algorithm to dual-tree traversals

[11]. The pseudocode of the algorithm is shown in Listing 1.2

Listing 1.2: Pseudocode of the dual-tree traversal algorithm

1 void node ( target node , source node ){
2 f o r ( p a r t i c l e in ta rge t node ){
3 update = ca lcu lateGrav i tyWithEst imat ion ( p a r t i c l e , source node ) ;

4 update ( p a r t i c l e , update ) ;

5 }
6 }
7

8 void l e a f ( target node , source node ){
9 f o r ( t a r g e t p a r t i c l e in ta rge t node ){

10 update = 0 ;

11 f o r ( s o u r c e p a r t i c l e in source node ){
12 update += ca l cu l a t eGrav i t y ( t a r g e t p a r t i c l e , s o u r c e p a r t i c l e ) ;

13 }
14 update ( p a r t i c l e , update ) ;

15 }
16 }
17

18 void DualTreeTraversal ( target node , source node ){
19 i f ( open ( target node , source node ) ){
20 node ( target node , source node ) ;

21 } e l s e i f ( hasChi ld ( node ) ){
22 f o r ( ch i l d node : node . ch i l d r en ( ) ){
23 DualTreeTraversal ( target node , ch i l d node ) ;

24 }
25 } e l s e {
26 l e a f ( target node , source node ) ;

27 }
28 }

In paraTreeT, the global tree is distributed among a Charm++ chare array where each

chare has a vector of leaf nodes. Each chare can do traversals simultaneously with local

leaf nodes being the target nodes following a traversal of the global tree. When the source
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node locates remotely, we need to access remote chares to bring the node data to the local

processor. ParaTreeT [9] proposed a shared-memory cache model for tree data to insert the

remote data to local caches to reduce communication overhead and duplication. Interactions

involving remote nodes are buffered and executed later.

1.4.1 N-body Simultaitons on GPUs

A survey about used hardware of the history over the last five decades of N-body simul-

taitons is shown in Bédorf and Zwart [12]. Stock and Gharakhani [13] proposed to generate

interaction lists on CPUs and accelerate the computations of interactions with GPU. Belle-

man et al.[14] uses GPU to calculate force and potentials while using CPU to do prediction

and correction. Hamada et al.[15] proposed a solution that CPUs generate tree walks while

GPU kernels executes multiple walks in parallel. Jetley et al.[16] integrates GPU kernels to

compute interaction pairs in parallel with modified ChaNGa CPU code. Bédorf et al.[17]

presented a sparse octree gravitational N-body code that runs on one GPU. It can achieve

20x speed up compare to CPU implementations. Liu et al.[18] moves the tree traversal to

GPUs together with interaction computation.
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CHAPTER 2: LOAD BALANCING STRATEGIES AND OPTIMIZATIONS

In this section, we present a few LB strategies that are triggered periodically during the

execution of the paraTreeT program to detect and fix the unbalanced object distribution

during execution.

For runtime analysis of load balancing algorithms, we define related parameters as follows:

Let α, β, and γ represent latency, bandwidth, and computation cost respectively.

Let P represent the number of PEs.

Let V represent the number of objects.

Let C represent any constant.

We will always analyze the average case of the runtime. With overdecomposition, we will

always have more objects than the number of PEs. The ratio between V and P is a constant

which is taken as an input in the paraTreeT program.

2.1 ORB BASED STRATEGY

Orthogonal Recursive Bisection (ORB) [19, 20] is an algorithm that recursively splits a

space into two halves such that the elements in each half are approximately equal in some

property

Figure 2.1: Partition of the input space into four blocks using the ORB algorithm.

The left graph shows the input space. The middle graph shows a partition along the x
dimension. The right graph shows two partitions along the y dimensions with the halves

spaces created from the last step.

Figure 2.1 shows an example of a 2D space with 14 elements and one partition along the

x dimension and 2 partitions among the y dimension.

The ORB partition groups spatially nearby elements and provides spatial locality. When

using the ORB algorithm to redistribute objects to processing elements, we select a splitting
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coordinate such that the resulting partitions have an approximately equal sum of loads for

the elements contained within.

Load balancing with ORB based algorithms has shown great performance with spatial

inputs that execute short range interactions [21]. Fleissner et al.[22] partitions particles

with ORB based algorithms, and use sampling to reduce the execution time of the partition

step. In this section 2.1, we show centralized and distributed ORB based load balancing

approaches integrated to the Charm++ load balancing framework.

2.1.1 Centralized ORB

With a centralized load balancing strategy, we first need to aggregate all object data to one

PE via a global reduction. With the global array of objects, we apply the ORB algorithm to

the longest dimension. We first need to sort all objects with 3D coordinates along with the

increasing order of the chosen longest dimension. Next, we loop through the sorted array

to find the splitting coordinate on the chosen dimension where the left and right halves will

have even loads. We then repeat the algorithm on the splitted halves.

We now present the runtime analysis of the centralized ORB algorithm in Table 2.1. We

first analysis the basic executions in the algorithm and their costs:

Table 2.1: Core steps of the centralized ORB algorithm.

S1
Collection Collect n object data from k PEs

to a root via a reduction
O(log(k)(α + nβ))

S2
Sort Quick sort an array of n objects with

respect to a selected dimension
O(nlog(n))

S3
Solve Find the even load point of the array

of n objects
O(n)

At the beginning of the load balancing phase, we first make a global reduction to collect

object data (S1). Once we obtain an array of data for all V objects, we start to partition

this array using the ORB algorithm into P parts.

We start with partitioning the whole array of length V , apply S2 and S3 on it, which

makes a runtime of O(V log(V ) + V ) = O(V log(V )). Next, we partition the left and right

halves to split the whole array into four parts. Assuming the split is even, this step takes a

runtime of 2 ∗ O(V
2
log(V

2
)). To achieve a P -way split, we need to apply 1 ORB on an array

of V , 2 ORBs on arrays of size V/2, 4 ORBs on arrays of size V/4,..., P/2 ORBs on arrays
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of size V/(P/2). The calculation of the total runtime of ORB (S2 + S3) executions is shown

below.

O(V log(V )) + 2 ∗ O(
V

2
log(

V

2
)) + 4 ∗ O(

V

4
log(

V

4
)) + ...+

P

2
∗ O(

V
P
2

log(
V
P
2

))

= O(V log(V )) +O(V log(
V

2
)) +O(V log(

V

4
)) + ...+O(V log(

V
P
2

))

= O(V (log(V )(log(P )− 1)))− log(2)− log(4)− ...− log(
P

2
)

= O(V (log(V )(log(P )− 1)))− 1− 2− ...− (log(P )− 1)

= O(V (log(V )(log(P )− 1)))− log(P )(log(P )− 1)/2

sinceV > P,

= O(V log(V )log(P ))

(2.1)

Therefore, the total runtime of the centralized ORB is

O(log(P )α + V log(P )β + V log(V )log(P )γ) (2.2)

2.1.2 Distributed ORB

In distributed load balancing strategies, object data are stored locally. To measure the

variation of the current load distribution and collect the boundary of the global universe,

we ask each PE to contribute their local sum of load and local universe boundary. We can

measure the degree of unbalanced loads by the ratio of the maximum PE load and the aver-

age. If the unbalance ratio is smaller than a defined tolerance, we have a balanced placement

of loads among PEs already and need to do nothing more. If we have an unbalanced load

placement, we will apply the distributed ORB algorithm.

We are given a subspace to partition together with a group of PEs and objects on them to

redistribute. Our goal is to split the subspace into the number of PE chunks and map objects

in each chunk on a PE. The leader PE broadcasts information about the subspace and the

chosen dimension to partition with to all PEs in the group along a spanning tree. (Shown in

phase 1 of Figure 2.2) When a member PE receives the information, it will decompose the

subspace along the chosen dimension into evenly spaced bins. The bin number is predefined.

The member PE will loop through its collection of objects, accumulate their loads into

matching bins, and accumulate counts of objects to each bin. After PE binning, the leader

PE accumulates binning results among all group PEs via a reduction. (Shown in phase 2 of
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Figure 2.2: Projection trace of distributed ORB load balancing strategy with 32 PEs.

Each color represents a function.
Phase 1 applied S1 (binning initialization) with a global broadcast of the subspace and
the chosen dimension to partition with. Once each PE receives the broadcast, it will do S2
(local binning).
Phase 2 applied S3 (aggregation) with a global reduction of binning results. At the root,
P0 will do S4 (evaluation).
Phase 3 is a global broadcast that asks all PEs to contribute their object data with the
optimal bin which applies to the first half of S5 (collection).
4 aggregates object data from all PEs via a reduction and applied the latter half of S5
(collection).
Phase 5 represents S6 (permutation). PE0-15 will send all local objects whose expected
PE will be among PE16-31.
Phase 6 repeats S1-6 among PE0-15.
Phase 7 accumulates objects from PE0-7 to PE0 which is applied in the first half of s7
(centralize solve).
Phase 8 applied the ORB algorithm on the collection of objects which is the second half
of s7 (centralize solve).

Figure 2.2) The leader then loops through the bins to find the optimal one whose boundary

coordinates along the chosen dimension makes the evenest partition. If the partition satisfies

the predefined tolerance, we successfully obtained a coordinate that separates all objects into

two parts mapping to two halves of the current PE group. We move objects on each PE

that should belong to the other half (shown in the phase 5 of Figure 2.2) and then do

decomposition recursively on both halves (shown in block 6 of Figure 2.2).

If the optimal bin boundary does not satisfy the predefined tolerance and the optimal bin

has more than a threshold number of objects, we need to repeat the binning process with

a smaller subspace derived from the optimal bin. If the optimal bin has no more than a

threshold number of objects, we will collect the information of objects in this bin directly.

(Shown in phases 3 and 4 of Figure 2.2) We then loop through the collected objects to find
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the coordinate that produces the evenest split of loads and move PE objects accordingly.

If the subspace for partition has a small number of objects, we can avoid unnecessary and

time consuming recursions by collecting all objects on the group PE into a leader to solve

the decomposition in a centralized way described in the previous section. (Shown in phases

7 and 8 of Figure 2.2)

The distributed ORB algorithm is complicated with conditions. We present the pseu-

docode in Listing 2.1 for the algorithm to help clarify the algorithm.

Listing 2.1: Pseudocode of the distributed ORB algorithm

1 void loadBinning ( subuniverse , dimension ){
2 f o r ( obj : l o c a l o b j e c t s ){
3 con t r i bu t e ob j e c t load to load b ins ;

4 con t r i bu t e a count to count b ins ;

5 }
6 // send load and count b ins to the l e ade r PE via reduct ion ;

7 con t r i bu t e ( l o c a l b i n s ) ;

8 // at the l e ade r PE, c a l l proces sBinn ing ( ) ;

9 }
10

11 void proces sBinn ing ( subuniverse , PEs , dimension , accumulated bins , nObjects ){
12 s p l i t t e r <− the optimal s p i t t i n g coord ina te de f ined by bin boundar ies

13 i f ( s p l i t t e r f a i l s t o l e r an c e ){
14 i f ( nObjects < THRESHOLD B){
15 gather a l l o b j e c t s in the optimal bin to the l e ade r PE;

16 update the s p l i t t e r ;

17 } e l s e {
18 c a l l loadBinning ( opt ima l b in un ive r s e , dimension ) on PEs ;

19 }
20 }
21 // the cur rent p a r t i t i o n i s completed

22 permute ob j e c t s with r e sp e c t to the p a r t i t i o n ;

23 l e f t u n i v e r s e <− l e f t h a l f o f the subun iver se ;

24 l e f t PEs <− l e f t h a l f o f the PEs ;

25 l e f t d im <− l o ng e s t dimension o f the l e f t u n i v e r s e ;

26 l e f t n o b j <− number o f ob j e c t s in the l e f t u n i v e r s e ;

27

28 Distr ibutedOrb ( l e f t u n i v e r s e , l e f t PEs , l e f t d im , l e f t n o b j ) ;

29

30 // repeat f o r the r i g h t h a l f

31 // The va r i a b l e s are made f o r the r i g h t h a l f .

32 Distr ibutedOrb ( r i gh t un i v e r s e , r ight PEs , r ight dim , r i gh t nob j ) ;

33 }
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34

35 void Distr ibutedOrb ( subuniverse , PEs , dimension , nObjects ){
36 i f ( nObjets < THRESHOLDA){
37 gatherObject s (PEs ) ;

38 cent ra l i z edOrb ( ) ;

39 } e l s e {
40 c a l l loadBinning ( subuniverse , dimension ) on PEs ;

41 }
42 }

We now present the runtime analysis of the distributed ORB algorithm in Table 2.2. We

first analyze the basic executions in the algorithm and their costs:

Table 2.2: Core steps of the distributed ORB algorithm.

S1

Binning initialization Broadcast the di-

mension coordinates of the sub-universe

and the chosen dimension to partition with

among k processing elements

O(log(k)(α + β))

S2
Local binning Loop through local objects

and do binning among k PEs and n objects
O(n

k
γ)

S3

Aggregation Run reduction of histogram

binning of object loads and sizes within the

sub-universe among k PEs. (Bin size is a

constant)

O(log(k)(α + Cβ))

S4
Evaluation Check if the optimal bin splitter

satisfy the error tolerance
O(Cγ)

S5

Collection Collect coordinates of objects in

the optimal bin directly among k PEs with

a broadcast followed by a reduction. Then,

find the optimal splitting dimension among

the collected data. (The number of gathered

object is bounded by a constant.)

O(log(k)(α + Cβ) + Cγ))

12



Table 2.2 (continued)

S6

Permutation Move object data relevant to

future partitions among k PEs and n objects.

Pair a PE on the right half with one on the

left half and exchange between the pair. (As-

sume half objects per processing unit need to

be moved)

O(α + n
2k
β))

S7

Centralized solve Gather n objects among

k PEs to a root PE. Apply the centralized

ORB algorithm with n objects and k PEs

O(log(k)(α + nβ) +

nlog(n)log(k))γ

To calculate the runtime of the distruibuted ORB algorithm, we start with applying S1

(Binning initialization), S2 (Local binning), S3 (Aggregation), S4 (Evaluation), S5 (Collec-

tion), S6 (Permutation) among all P processing elements and V objects, which makes a

runtime of O(log(P )α + (log(P ) + V
2P

)β + Cγ). In fact, S1-4 could happen multiple times

before reaching S5 (Collection). Since we force an upper limit of the repetitions, the runtime

stays the same. In practice, the value of V
P
is a constant, we can derive the runtime function

to O(log(P )(α + β) + Cγ). If there are less than a certain threshold amount of objects in

the half of processing elements in the previous iteration, we apply S7 (Centralize solve) and

end the computation. At this time, we are dealing with no more than a constant threshold

number of objects and processing elements since there is a constant ratio of objects per

PE. If there are more than a certain threshold amount of objects in the half of processing

elements in the previous iteration, repeating from the binning.

To derive the runtime formula for the whole process:

O(log(P )α + log(P )β + Cγ) +O(log(
P

2
)α + log(

P

2
)β + Cγ) +O(log(

P

4
)α + log(

P

4
)β + C)

+ ...+O(log(C)α + log(C)β + Cγ)

+O(log(C)α + log(C)Cβ + Clog(C)log(C)γ)

(2.3)

Therefore, the total runtime of the distributed ORB is

O(log(P )(log(P )(α + β) + Cγ)) (2.4)
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2.1.3 Scaling Comparison with Simulation

With the complicated Distributed ORB algorithm, we developed a simulation program

to simulate PEs with chares. The program will estimate communication runtime with the

input α, β, and P (number of PEs) parameters, and wall time is used for computation. In

the simulation, each PE keeps a local timer. When a message is passed from PEi to PEj,

PEi will attach a timer to the message as its current local timer plus a communication time

estimation calculated with the predefined α, β, and P . When PEj receives the message and

the attached timer from the message is larger than the local timer, PEj will update its local

timer to the attached one from the message.

This simulation program provides three major benefits. First of all, the simulation reduces

the time required for larger runs involving thousands of PEs. We can now simulate any scale

we want on one node without waiting for a large job to go over the scheduling queue of large

clusters. Secondly, the simulation helps us understand the scaling behavior of the algorithm

with flexible parameters of α, β, and P . For the result shown later, we represent a core as

a PE. In reality, we can make each PE represent a computation node with an inter-node α

value. We can choose to partition objects onto nodes using the distributed ORB algorithm

and further partition objects in a node onto each core with other strategies. Last but not

least, the simulation speeds up the development process. The fast execution on any scale

helps us to discover bugs and edge cases with increasing scales. In addition, the scaling

behavior helps us to diagnose the code blocks with poor scalability and make improvements.

Here we present the simulation results of centralized and distributed OrbLB strategies to

better understand the comparison of the runtime analysis.

In the practice of the paraTreeT program, the ratio of chare numbers on each PE is

configurable and a constant. Therefore, We can apply V
P
= C to remove the V term in the

expressions. The runtime of centralized OrbLB can be derived as O(log(P )α+ Plog(P )β +

Plog(P )log(P )γ. The runtime of distributed OrbLB can be derived as O(log(P )log(P )α +

log(P )log(P )β + log(P )γ).

The dominant terms are Plog(P )log(P )γ for the centralized OrbLB and log(P )log(P )α

for the distributed one. When Pγ < α, the centralized algorithm runs faster. When Pγ > α

with large P , the distributed algorithm runs faster.

Figure 2.3 shows the simulated runtime of centralized and distributed OrbLB with various

α options. β is fixed to 1 byte per nanosecond. γ is measured as walltime of function

duration. From figure 2.3 we can see that when α is small being 10 and 100 microseconds,

the distributed algorithm scales better than the centralized one. When α is large being

1000 microseconds, centralized algorithm behaves better up to 1024 PEs and the distributed
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Figure 2.3: The runtime simulation of centralized and distributed OrbLB with various α
estimations up to 2048 PEs and 32937 objects (about 16 objects per PE). The β is 1 byte/-
nanosecond. The γ is measured as walltime.

algorithm beats the centralized one with 2048 PEs.

In conclusion, we show that the distributed ORB algorithm has better scalability than

the centralized one.

2.2 PREFIX BASED STRATEGY

Prefix based strategies sort all objects according to their global indexing order. The sorted

array of objects will be decomposed in the number of PE chucks with an even accumulated

load. In the strategy, each PE will have a subarray of objects with continuous indices and

preserve the characteristics of the decomposition property. For example, if the objects are

partitioned in the order of where their coordinates fit on the Space Filling Curves (SFC),

the redistribution will not change it.

Aluru et al.[23] and Harlacher et al.[24] balance loads for unstructured meshes using prefix

sums based on their relative standings on the space filling curves. In this section 2.2 we

present centralized and distributed prefix based load balancing strategies integrated to the

Charm++ load balancing framework.
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2.2.1 Centralized Prefix

Once a global array of objects are collected at the root PE, we sort the objects according

to their indexing order. Next, we loop through the array to calculate the total load and

average load per PE. Then, we loop through the array again to assign objects to PEs based

on their prefix sum. The runtime of the algorithm is

O(log(P )α + V log(P )β + V log(V )γ) (2.5)

2.2.2 Distributed Prefix

In the distributed prefix algorithm, we first sort the local objects with respect to their

indexing order and calculate the local sum. Next, we calculate global prefix of each PE using

the recursive doubling algorithm [25]. The runtime of this step is O(log(P )α + log(P )β +
V
P
log(V

P
)γ). Given the total global load and the prefix sum of each PE, one PE loops through

its sorted array of objects to assign it to PEs based on its global prefix sum. In practice, V
P

is bounded by a constant. Therefore, the total runtime can be derived as

O(log(P )α + Pβ + Cγ) (2.6)

2.3 EVALUATION OF LB STRATEGIES

We apply the four different LB strategies mentioned above to the paraTreeT program on

the Stamepede2 cluster[26]. Five data points are taken for each configuration. The mean of

the data points is shown with lines and a 95% confidence interval is shown in shadow.

Figure 2.4 shows the total LB time for each strategy scaling from 1 node to 128 nodes.

On each node, we use 46 PEs. For this experiment, one PE maps to a physical core on the

node. The V
P

ratio is around 16 on average for all the runs. From Figure 2.4, we can see

both the distributed strategies scale better than the centralized ones.

There are two main components to the total runtime. The first part is initialization

defined by the time after entering the LB phase and before applying strategy algorithms.

For centralized strategies, all objects on each PE will be gathered to a root via a reduction,

imposing a runtime of O(log(P )(α + V β)). For distributed strategies, all objects will be

kept local and thus impose a runtime of O(1). Figure 2.5 shows the LB initialization time.

We can see that data gathering is expensive on a large scale.

The second component is the application of algorithms to make decisions to map objects

to PEs. In this step, centralized strategies are given an array with all objects to work with
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Figure 2.4: Total LB time of each strategy scaling from 1 node (46 PEs) to 128 nodes (5888
PEs) with an average of 16 objects per PE.

and only the root PE will execute the algorithm. For distributed strategies, all PEs will

participate in the algorithm with their local objects. From Figure 2.6, we can see that the

centralized ORB algorithm scales worse than the distributed ORB. The centralized prefix

algorithm scales better than the distributed prefix.

Looking back to the total LB runtime in Figure 2.4, the runtime scalability of centralized

strategies will always suffer from the initialization step where object data are gathered at

a root. Although distributed strategies tend to be more complicated, if the algorithm itself

scales well, the development effort will pay back. In fact, we have tried three major versions

of the distributed ORB algorithm to come up with the current one with the best scalability

so far. The simulator mentioned in section 2.3 in this chapter helps us with a quick diagnosis

of the scaling behavior of code blocks and fast improvement.

2.4 LIMITATION OF LOAD BALANCING STRATEGIES AND FUTURE WORK

The runtime of the load balancing strategies increases with more PEs. However, applica-

tions tend to run faster per iteration with more PEs. The different scaling patterns of the

load balancing strategies and application execution time makes load balancing more expen-

sive on larger scale runs and could hurt performance. From our observation, the unevenness
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Figure 2.5: The initialization time of each LB strategy. scaling from 1 node (46 PEs) to 128
nodes (5888 PEs) with an average of 16 objects per PE.

grows slower with larger scale runs. The user can reduce the frequency of the load balancing

steps to smooth load distribution during the execution with less overhead.

The basic unit of PE is a CPU core among the above experiments. We can reduce the

parallel runtime of distributed load balancing strategies by reducing the number of PEs

involved in the algorithm which reduces the depth of the spanning tree for broadcasts and

reduction. For example, with the same number of compute nodes and cores per node, it is

faster to partition objects to the node level than the core level using the same algorithm.

We can add hierarchies to the load balancing frameworks to achieve better flexibility and

reduce overhead.

For example, we can first partition the objects into each node and then apply a different

algorithm to further partition node objects to cores. We hope to achieve better performance

with distributed ORB strategy by partitioning objects into nodes using the distributed ORB

algorithm and applying a different algorithm on the node level. The node level algorithm

could be ORB with some fuzziness to trade spatial locality with more even loads per core.

The ORB algorithm can allocate a super object on a core whose load is 10x or even larger

than the average load per object. If this super object is on the edge of partition decisions, for

whichever PE that takes this object, the total load per PE could be far above the average.

If we allow exchanging the super object with some small objects, we can avoid placing the
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Figure 2.6: The strategy time of each LB strategy. scaling from 1 node (46 PEs) to 128
nodes (5888 PEs) with an average of 16 objects per PE. The y-axis is in log scale.

super object on the edge and can achieve a smoother load distribution with a minor sacrifice

of spatial locality.

The super objects could impose a greater challenge if one object has a load that is larger

than the average accumulated load per PE. In this case, even if we put only one super object

on a PE, this PE could still be the PE with the largest load, which results in a large max by

average ratio for PE loads. Bak et al. [27] proposed a solution to adapt user-defined code

to break large objects to smaller migratable pieces to reduce the impact of super objects.
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CHAPTER 3: INTEGRATION OF GPU KERNELS TO THE HOST
WORKFLOW

Recall from section 1.4, at each traversal step, when we need to recurse on the child nodes

of the current source node, we need to access each child node as the new source node with a

local pointer or a remote request. When we do not need to do recursion, we need to execute

node() or leaf() functions which are computation heavy.

The node() function takes a target node and source node. It will loop through all particles

in the target node to calculate gravitational forces with the aggregated data at the source

node to produce updates for each particle. If each node has no more than p particles, the

runtime of the node() function is O(p).

The leaf() function also takes a target node and source node. For each particle in

the target node, it will loop through the particles in the source node to accumulate the

gravitational forces update to the target particle and execute the update at the end. The

runtime of this function is O(p2).

Before presenting the modifications for GPU kernels, let us first walk through the workflow

of the cpu implementation.

3.1 WORKFOW OF THE CPU IMPLEMENTATION

ParaTreeT has a Subtree-Partition model where particle decomposition can be done in

two different manners, taking charge of different functionalities and working in sync. The

traditional N-body framework has only one decomposition type to serve the data hierarchi-

cally and distribute computation loads among processors. ChaNGa [28] for example uses

TreePieces to manage segments of all particles in the input space. However, the traditional

decomposition enforces cubical decomposition of inputs which could potentially create imbal-

anced computation distribution. Hutter et al. [9] showed performance improvement with an

octree decomposition to serve the spatial structure (i.e., memory) and SFC decomposition to

distributed loads (i.e., computation). Subtree is the chare array serving a hierarchical spatial

view of the input and handling memory requests. We define tree type to be the decompo-

sition type of Subtree. Partition is the chare array organizing computations. We define

decomposition type to be the partition type of Partition. The user can choose to give the

same decomposition type for Subtree and Partition. In that case, paraTreeT will work sim-

ilarly to the traditional approach. Figure 3.1 presents an example of the Subtree-Partition

model with Subtree partitions the universe in three pieces while Partition decomposes the

inputs into four units. The graph at the bottom shows one Subtree chare and two Partition
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Figure 3.1: Subtree and Partition have different decompositions of the input space. This
graph shows a case with three Subtree chares and four Partition chares distributed on two
cores.

chares located on core 0 and the rest located on core 1.

3.1.1 Input Decomposition

ParaTreeT reads the user input of initial conditions of all particles in the universe in

parallel, growing the universe boundary box while adding particles. The read-in particles

will then be overdecomposed into fine-grained chunks and be sent to Subtrees and Partitions.

With a space-filling curve (SFC) based algorithm, all particles are assigned a key with respect

to their coordination in the universe and be sorted according to their keys and be decomposed

into continuous blocks. The particles assigned to the same block will have locality in regard

to the SFC order. Particles can also be decomposed by applying the K-D tree algorithm. We

can recursively partition the universe into blocks with even particle sizes. With the K-D tree

decomposition, particles in the same block have locality respecting their coordinates. The

type of decomposition should be chosen carefully with regard to the particle distribution in
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the input universe to minimize communication and reduce load variation.

3.1.2 Tree Build and Data Aggregation

Each decomposed input block will be sent to a Subtree chare to build the spatial tree

from the top down. Particles in a Subtree will further be partitioned recursively following

the defined tree type. The goal of the tree build step is to partition particles into leaf nodes

of the spatial tree and construct internal nodes to connect the global root to all local nodes.

User can define the maximum number of particles a leave can hold to enforce a upper bound

of the leaf() and node() functions. The left and middle graphs in Figure 1.2 shows this

top-down process of tree build.

After each Subtree chare has its local share of the global spatial tree, it will traversal the

local tree bottom-up to populate the tree with data aggregation. The right graph in Figure

1.2 shows such aggregation. Internal nodes aggregate data of all its direct and indirect chil-

dren by applying the algorithm defined by the Data::operator+= method. The aggregated

data at internal nodes will help with gravity computation with estimation between a target

node and a far-away source node. The aggregated data at the source node will be used to

contribute updates to particles in the target nodes. With this estimation technique, we no

longer need to traversal through the piece of the global tree with the source node being the

subroot.

After tree build and data aggregation, Subtrees will send particles to their related Par-

titions. If the Subtree and Partition follow the same type of decomposition, a particle in

Subtree with index i should be located to the Partition at index i. Leaf nodes in a Subtree

can be sent to its pairing Partition without changes. If Subtree and Partition apply different

decomposition algorithms, particles in a leaf node might be sent to different Partition chares.

3.1.3 Tree Traversal with Vistors

Users can define the custom Traversal class to implement different algorithms of the tree

traversal. Each Partition chare performs the traversal algorithm concurrently to visit each

node in the global tree and update local particles by applying the Visitor functions. Let’s

take a look at the example of the builtin TransposedDownTraverser. At each node of the

global tree, if the node does not locate on the local process, we will invoke a remote request

to bring data of the remote node locally. The interactions related to remote nodes will be

queued up and performed after the interactions among local nodes. When the source node

is a leaf, we will apply the leaf() function defined in section 1.4 to loop through particles in
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the source node and particles in the target node to compute gravitational forces for all pairs

of the particles. When the source node is not a leaf and it fails the open criteria, we will

apply the node() function defined in section 1.4 to compute gravitational forces between

the aggregated data of the source node and all particles in the target node. If the source

node passes the open criteria, we keep traversing the children of it.

The pseudocode for the traversal algorithm is shown in Listing 3.1:

Listing 3.1: Pseudocode of the recursive tree traversal algorithm

1 void TransposedDownTraverser : : r e cu r s e ( source node , a c t i v e t a r g e t n od e s ){
2 vector<Node> new ac t i v e t a r g e t node s ;

3 i f source node i s a l e a f :

4 f o r ( ta rge t node : a c t i v e t a r g e t n od e s ){
5 l e a f ( target node , source node ) ;

6 }
7 e l s e i f source node i s an i n t e r n a l node :

8 f o r ( ta rge t node : a c t i v e t a r g e t n od e s ){
9 i f ( open ( target node , source node ) ){

10 new ac t i v e t a r g e t node s . push back ( ta rge t node ) ;

11 } e l s e {
12 node ( target node , source node ) ;

13 }
14 }
15 e l s e i f source node l o c a t e s on remote proce s s :

16 r eque s t source node on remote p r o c e s s e s

17

18 i f ( ! n ew ac t i v e t a r g e t node s . empty ( ) ){
19 f o r ( c h i l d : source node . ch i l d r en ( ) ){
20 r e cu r s e ( ch i ld , n ew ac t i v e t a r g e t node s ) ;

21 }
22 }
23 }
24

25 r e cu r s e ( g l oba l r o o t , l o c a l l e a v e s i n P a r t i t i o n ) ;

We define local interactions to be the computation done between local source and target

nodes. Remote interactions refer to the computation done between remote source nodes and

local target nodes. The initial tree traversal will perform all local interactions as soon as

they are invoked. In the meantime, remote nodes will be requested. After the competition

of the initial traversal and all the local interactions, we will deal with the remote interactions

accumulated. For each remote source node, we will traverse the piece of the global tree with

the source node being the root. Note that traversal on tree pieces rooted at a remote node
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can invoke requests of new nodes from remote processes.

3.1.4 Post Traversal Updates and Reset

We are now at the last phase in an iteration. Particles updates their local fields with

respect to the accumulated gravitational forces done by remote and local interactions. Sub-

trees and Partitions need to be reset to prepare for the next iteration. The load balancing

step might be invoked at the end of each iteration to detect and fix an unbalanced load

distribution.

3.2 WORKFLOW OF THE GPU IMPLEMENTATION

We name the GPU kernel in substitution of the node() function nodeOnDevice() and

name the leafOnDevice() kernel to replace the leaf() function. We need to provide a list

of interactions for each invocation of GPU kernels. To avoid duplicated memory copies of the

local node and particle data feeding to each GPU kernel, we decide to serialize and allocate

a global device copy of the local node and particle data per process. At each invocation of

computation kernels, we can just pass in indexing data for each node or particle to access

the global device storage to save memory bandwidth.

We now talk about modifications of the CPU implementation for adding GPU supports.

3.2.1 Tree Build and Data Aggregation

Figure 3.2: The device memory of local nodes and particles.
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ParaTreeT allocates one CacheManager chare per process to maintain a unique copy

of node and particle data. During the tree build process, each Subtree chare will generate

internal and leaf nodes while registering unique pointers for them at the local CacheManager.

Each CacheMananger will have pointers of all local nodes and particles once all Subtrees in

the process completes the tree build process. We can then serialize all nodes and particles

and copy the memory to the device while Subtree chares are doing data aggregation.

Figure 3.2 shows the structure of device memory of local nodes and particles. The top

two bars represent vectors of internal nodes and leaf nodes respectively. Computations

involving internal nodes only need aggregated data which we add to the struct. The leaf()

function loops through all particles in the leaf node to calculate gravitational forces. To

address particles belonging to a leaf node, we will allocate a continuous block of memory

in the particle array for particles in one leaf node. Struct for the leaf node tracks the

starting index of its particles in the vector and the size of particles in the node. Remote

nodes and particles will be added on-demand later during traversals. Since cudaMalloc has

implicit synchronization to allocate memory on the host, we create memory buffers at the

initialization time of the CacheManager class to reduce thread blocking on the CPU side.

We use cudaMemcpyAsync to avoid blocking the host execution while data transfer is in

progress.

3.2.2 Tree Traversal with Visitors

In the current design of our implementation, we ask CPUs to do tree traversal, buffer

the interactions and invoke GPU kernels in bulk. Appending pairs of interactions could be

memory heavy as the list goes long with no memory reuse. We allocate enough capacity

to the memory buffer base on input size to avoid expanding the buffer size while collecting

interaction pairs and excessive memory copies. To copy host data on the device, CUDA first

needs to allocate pinned memory pages to copy the host buffer to the pinned memory. After

that, pinned memory will be copied to the device. To avoid this two-step memory process,

we use cudaMallocHost to allocate pinned memory where we will store the interaction lists

directly. Pinned memory enables asynchronous data transfers between the host and device.

Figure 3.3 shows a plot of binning of the duration of cudaMemcpyAsync calls with mem-

ory allocated using cudaMalloc and cudaMallocHost. We can see that the memory copy

duration with pinned memory centers around 20 milliseconds. The duration with unpinned

memory centers around 40 milliseconds and has more instances with higher duration than

the case with pinned memory. Memory copying with unpinned memory takes longer since

the host needs to request pinned memory pages before returning from the asynchronous call.
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Figure 3.3: Plot of binning of the duration of cudaMemcpyAsync calls with memory
allocated using cudaMalloc and cudaMallocHost.

Frequent memory requests on the system can impose a large overhead.

Using pinned memory could potentially hurt system performance as it consumes available

memory resources for paging. Each Partition chares will create two CUDA streams with

one dedicated to leaf interactions and one serving the node interactions. Keeping separate

streams per Partition increases the runtime concurrency of CUDA kernels and improves

performance. At each CUDA computation kernel, updates on the particles in the target

node will be written to the global GPU memory using atomic operations to avoid data

racing.

3.2.3 Post Traversal Updates and Reset

After the competition of interactions, the GPU memory of local particles needs to be

copied back to the host. We can reduce the copy back of the particle memory if the mapping

between nodes particles as well as the relationship between nodes and their location in

Subtrees and Partitions stay constant. In this case, the host only needs to wait for all
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streams to finish their queued jobs to start the next iteration. Note that, even if we can

reuse the GPU memory across iterations, we cannot reuse the interaction lists from the last

iteration. The movement of particle coordinates can change the testing result of the open

criteria between two nodes in consecutive iterations. We do not need to deallocate GPU and

CPU buffers as we can reuse them. At the last iteration of the program, we need to clean

up memory allocations and reset the GPU device.
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CHAPTER 4: GPU KERNEL EXPERIMENTS AND EVALUATIONS

All experiments are done on a Dell R730 server with 2x Intel Xeon E5-2698v4 (20-core @

2.20GHz-3.60GHz) CPUs and 2x NVIDIA Tesla K80 GPUs per node. We choose an input

with three million particles.

We first identify the characteristics of the formation of interaction lists.

Figure 4.1: Leaf interaction lists of three target nodes. The right table lists all source node
indices that the target node interacts with and the size of the interaction list. The left

graph is the box plot of the interaction lists for three target nodes.

Figure 4.1 presents three leaf interaction lists corresponding to three target nodes. The

right table shows the raw data. The left graph is a box plot of the raw data. Recall that we

serialize local nodes with indices to address them on the GPU device. In this experiment, we

collect interaction lists for doing the leaf() computation for each leaf nodes in the process.

We found that the size of interactions varies depending on the positions of the leaf nodes.

Boundary nodes with few nearby neighbors tend to have short lists and nodes in the center

surrounded by many nodes tend to form long lists.

4.1 APPROACH 1: 1-D KERNELS

In this approach, each GPU thread takes care of a pair of source and target nodes. During

the tree traversal, we append the pair of nodes doing leaf() or node() computations to
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separate lists.

Let buffer size (represented by N) be the size which when a list collects N pairs, it will

invoke asynchronous memory kernel to copy the interaction list to the device and perform

computation kernels in bulk. Recall the tree traversal process in section 3.1.3, when visiting

a source node, pairs of interaction between this source node and all leaf nodes in a Partition

chare will be appended if needed. Therefore, for continuous pairs of interactions, they are

likely to have different target nodes while sharing the same source node. The cache line size

of the GPU is 128 bytes, which can hold around 10 node records. As Harris [29] suggested,

global memory access can be done efficiently if threads in a warp have coalescing memory

accesses. For the 32 threads in a warp, ideally, access to the target nodes can coalesce in four

cache lines. Threads in a warp are likely to access the same source node and thus cannot

take advantage of the cache line size and cannot reduce attainable memory bandwidth with

memory coalescing.

Figure 4.2: Runtime per iteration with various GPU kernel buffer sizes (N). In this
experiment, the blockDim of CPU kernels is held constant. Buffer size being 8192 provides

the best performance.

In this approach, we can tune the performance of the end-to-end runtime of all compu-

tations by changing the buffer size (N). Figure 4.2 shows experiments with various buffer

sizes. We can see that buffer size being 8192 provides the best performance. With a smaller

buffer size, we will trigger more launches of the GPU kernels. On the CPU side, with a

constant host to device memory transformation bandwidth, the copy time of the input list
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of interaction pairs grows proportionally to the buffer size. The host overhead of the com-

putation kernel launch is fixed regardless of the buffer size. A smaller buffer size allocates

fewer threads per kernel launch and enables parallel execution of more kernels from different

streams on the device. In this experiment, we always allocate 256 threads in a block and

enough grids to cover the list of buffer size. For our testing hardware, there can be at most

32 streams working concurrently on a device.

Figure 4.3: Profiles of GPU kernels with different buffer size. The x-axes of the two plots
are not to scale. The top graph has buffer size being 1024. Each computation kernel will
allocate one grid and one block with 1024 threads in total. The bottom graph has buffer
size being 32768. Each computation kernel will allocate 32 grids of blocks with 1024 threads
each.

Figure 4.3 shows two profiles of GPU kernels. For both runs, there are 31 Partition chares

each having two CUDA streams with one doing leaf interactions and one doing node ones.

The graph on top has the buffer size being 1024. One block with 1024 threads can cover the

entire input interaction list. The graph on the bottom has the buffer size being 32768. Each

computation kernel launch needs to allocate 32 blocks to cover the input list. With small

kernels, the top graph shows a maximum of 13-way parallelism with computation kernels.

Kernels from ten steam can run concurrently the most time. In the meanwhile, at the peak,

thirteen streams can be scheduled to execute in parallel. With larger kernels, the degree

of parallelism is reduced to two on average and three at the maximum. Despite the higher

level of parallelism with a smaller buffer size, the runtime of the whole program is more than

four times longer than the run with a bigger buffer size. The overhead of around 32X more
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launches outweighs the benefits of parallelism.

Figure 4.4: Runtime per iteration with various number of threads per GPU block. In this
experiment, we set buffer size (N) to be 2048 and 8192. The configuration with buffer size
being 8192 and blockDim.x being 256 has the best performance.

We then hold the buffer size constant and look at the impact of the number of threads

per block. For a GPU kernel, with more threads per block, we need fewer grids. Figure 4.4

shows the impact of tunning blockDim.x for kernel launches. We can see that an allocation

of 256 threads per block has the best performance with buffer size being 8192.

Figure 4.5 shows the scatter plot of the duration between consecutive device kernel

launches and the execution time of the device kernels. The figure shows that the execu-

tion time in a kernel is mostly shorter than the time for input collection.

In the 1-D kernel, each thread needs to perform as many atomic writes as the number

of particles in the target node. The atomic write step alone takes around 20% of the total

GPU computation time. To minimize atomic operations, the second approach, 2-D kernels

is proposed.

4.2 APPROACH 2: 2-D KERNELS

This approach is designed with the objective to reduce global atomic operations. To do

so, we want each particle in the target node to interact with multiple source nodes while
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Figure 4.5: Scatter plot of device computation kernel duration as well as the time spent for in-
put collection before each launch. The x axis is the starting time of events. Node launch gap
is the duration between two consecutive deviceNodeKernel launches. Leaf launch gap is the
duration between two consecutive deviceLeafKernel launches.

accumulating partial updates and conduct one atomic write to the global memory at the

end.

Figure 4.6 presents the kernel design of the second approach with 2-D threads in blocks.

Let BX,BY be the x and y dimension size of a block. Each thread with x dimension being

0 will be the leading thread among the ones with the same y index. Each thread with y

dimension being 0 will be the leading thread among the ones with the same x index. At

the beginning of the computation kernel, all leading threads in the y dimension will load a

particle in the target node to shared memory. Each leading thread in the x dimension will

load one source node to the shared memory. After a block synchronization, each thread will

calculate the gravitational force between one particle in a target node and a source node.

With device leaf computation, a thread will loop through all particles in the source node

and accumulate particle to particle updates. With device node computation, a thread will

calculate the update between a particle and aggregated data information in internal node.

After another synchronization, the leading threads in the y dimension will collect all updates

with respect to the same particles and perform an atomic update on the global memory.

In the second approach, we are able to reduce the number of atomic writes by a factor

of BX by leveraging the shared memory and the 2-D thread layout. With the 2-D kernel,
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Figure 4.6: Diagram of the 2-D kernel structure. For each block with 2-D threads, threads
with the same x index will share one source node. Threads with the same y dimensions
share the same particle in the target node. Each block produces updates between one target
node and multiple source nodes.

BY has to be the size of maximum particles in a leaf node which is configurable. BX ∗BY

cannot exceed 1024 which is the maximum number of threads per block.

To tune the performance of this approach, we can change BX,BY and the buffer size of

interaction lists. For the 2-D kernel, we need to group source nodes in chunks of size BX

with one target node. During the tree traversal introduced in section 3.1.3, we will have

K entries to collect interactions where K is the number of leaf nodes in a Partition chare.

Once at an entry, there are BX number of source nodes appended, we will create one entry

in the kernel input buffer to add the target node index to the array of target nodes and add

BX source nodes to the source node array. The collect buffer will be cleared after adding

information to the kernel input buffer.

The buffer size of the kernel input buffer is defined as the size of the source nodes. We

can change buffer size to invoke more computation at each launch. However, with a larger

buffer size, it takes longer to accumulate enough inputs.

Figure 4.7 shows the average iteration time with various configurations of BY and buffer

size. We can see that BY = 32 is the optimal configuration with buffer size being 512 and

1024. The configuration with BY = 32 and buffer size being 1024 has the shortest average

interaction time being 18.247 seconds.
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Figure 4.7: Average interaction time with various configurations of BY and buffer size. (BX
is fixed to 16.)

4.3 FUTURE WORK

From Figure 4.1 we can see that adjacent target nodes may share the same source nodes

in their interaction lists. In addition, nearby source nodes are likely to be listed in the

iteration lists continuously. Instead of sending the complete interaction list to GPUs, we

can reduce the memory transformation bandwidth by encoding the input interaction lists

to group continuous sequential source node indices as well as reducing duplication of the

same source node sequence in interaction lists of adjacent target nodes. In addition, we can

offload more CPU work to GPUs. For example, Liu et al. [18] offloaded the local tree walk

process to GPU by simulating tree walks with stacks.
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CHAPTER 5: CONCLUSIONS

This thesis introduced two methods to accelerate the ParaTreeT library. The load balanc-

ing approach demonstrates strategies with good scalability that smooth the load distributed

among processing units. Load balancing offers optimization of per iteration runtime during

the execution adopting the runtime changes of the computation and communication behav-

ior of chares. The design of load balancing algorithms needs insights into the characteristics

of the input as well as the iterative evolving trends. The load balancers introduced above

are able of reducing 20% of the runtime.

There is still room for improvement on top of our proposed load balancing algorithms. One

direction is to apply different algorithms on different layers of control. We can perform one

algorithm to distribute objects on computation nodes followed by another algorithm doing

an intra-node placement. In this way, inter-node algorithms will have the dominant runtime

factor being communication while intra-node algorithms are likely to be computation heavy.

Another direction is to add fuzziness to sacrifice some sanity of partition rules in exchange

of more evened load distribution.

Chapters 3 and 4 introduce the workflow of CPU implementation to describe the modifica-

tion for supporting GPU kernel additions. The effort of minimizing host overhead includes

the creation of memory buffers, usage of asynchronous multistreaming kernels as well as

reduction of unnecessary kernel launches. Interaction between target and source nodes is

highly parallelizable and computation heavy, therefore, two kernel designs are proposed by

the thesis to leverage GPU devices.

The approach with 1-D kernels has the advantage of a fast collection of inputs but im-

poses a large amount of global atomic operations. To reduce the amount of global atomic

writes, the approach with 2-D kernels utilizes the shared memory to increment target par-

ticle reuse and reduces global operations by a constant factor. With experiments exploring

the configuration space, the thesis points out the best performant configuration.

The GPU kernels can be further improved by encoding inputs to GPU kernels to reduce

memory copying overhead. Modification of CPU implementation is needed to increase device

data reuse across iterations.
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