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Professor Luke Olson
Professor David Padua
Dr. Antonio Peña, Barcelona Supercomputing Center



ABSTRACT

Load balancing, modifying the distribution of work across a system to optimize resource

usage, is vital for achieving scalability and high performance for dynamic parallel applications.

However, as applications and systems grow increasingly complex, established methods of

measuring and balancing load are becoming less effective. Traditionally, load balancing only

considered the total amount of execution time, stored as a scalar value, as a metric for load,

but this fundamentally cannot capture other performance-limiting execution properties such

as phase-based iteration structures due to dependencies between tasks, the simultaneous

division of work across host CPUs and accelerator devices, or the impact of other resource

constraints such as memory footprint. This inability to accurately characterize the nature of

“load” causes balancing strategies to make poor placement decisions, leading to suboptimal

performance.

In this thesis, we propose vector load balancing, in which load is a vector of values rather

than a scalar, and analyze its potential to improve the quality of load balancing for these

complex applications and systems. We discuss the mathematical underpinnings of vector

load balancing and challenges in measuring and utilizing vector loads, developing several new

load balancing algorithms designed specifically for use with vector loads. We demonstrate

both simulated and practical speedups across several different applications and programming

models using these new techniques. Finally, we develop optimization techniques to improve

the performance of vector load balancing strategies to make them viable at scale.
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CHAPTER 1: INTRODUCTION

High performance computing (HPC) is a vital tool in modern scientific research. The

ability to perform simulations of phenomena from subatomic to galactic scales and to observe

in detail the impacts of varying different parameters using supercomputers has allowed science

to progress along avenues where experimental or other methods are not feasible.

While supercomputers are indispensable for science, there are many challenges in using

them effectively. One of the largest of these is being able to actually utilize the vast raw

processing power of systems to do useful work. For many applications, a critical factor in

achieving high performance is the necessity of addressing load imbalance, a disparity in work

across processors, causing some processors to be idle while waiting for others to complete

some task. By definition, when load imbalance exists, a system is not being fully utilized.

The challenge of addressing load imbalance is not one unique to the computational domain.

It is innate to any coordinating team of workers and thus a core part of the field of operations

research, the study of using data and analytic methods to make better, more efficient

management decisions. Queueing theory and makespan minimization problems such as job

shop scheduling, among others, are variants reaching toward the same fundamental goal:

optimizing the scheduling and assignment of work in systems to achieve high performance.

However, these optimization problems are not easy to solve; in general they are NP-hard.

In practice, this means that they are often addressed using approximations and heuristics,

otherwise they would be intractable problems. This is particularly acute for the case of

high-performance parallel applications, the area of this proposed thesis, as executing a

program with tens of thousands of processors and millions of tasks is commonplace.

These issues are exacerbated by the complexities of HPC applications. Many problem

domains and algorithms have innate dynamism, which result in dynamically changing

computations exhibiting load imbalance. Modern multi-scale, multi-resolution techniques

have exacerbated this dynamism, creating ever larger load differences and introducing several

distinct phases into their algorithms. Additionally, modern systems are becoming increasingly

complex and heterogeneous. The number and types of cores in a node are increasing,

and this induces further load imbalance due to the different performance characteristics of

different types of processors and variability in the components. Futhermore, there are often

other properties that constrain a computational job, such as the memory capacity or power

usage of a node and contention for shared resources, such as last-level caches or network
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communication. It can be very difficult to determine which of these many factors actually

affect performance in practice, a set which may change depending on the application, input

data, machine, network topology, etc. Because of this dynamism and complexity, the pattern

of load may be continuously changing across an execution, necessitating periodic rebalancing

throughout the run, so load balancing must also be fast, lest it add significant overhead to an

application. Finally, the time-stepped iterative nature of many HPC applications necessitates

synchronization across processors at every step, exacerbating the impact of load imbalance

since every processor has to idly wait for the most heavily laden one to finish before advancing

at the end of every iteration.

To this end, an emerging issue is that existing load balancing techniques do not have the

sophistication to address all of the intricacies of these modern applications and systems. In

particular, distilling “load” down to a single scalar value per object does not capture the

richness of the performance landscape. Without insight into the individual aforementioned

software and hardware considerations, load balancers often do not have enough information

to adequately analyze or make decisions about the performance of an application.

One potential solution to address this issue is vector load balancing, in which load is no

longer a single scalar value, but instead a vector of values, each representing a different aspect

of the execution. Via these data, load balancing algorithms can take a holistic approach

rather than a myopic one, considering load as a cohesive whole encompassing these individual

measurements. Thus, much in the same way that diets are assessed not only by calories, but

also fat, carbohydrates, protein, vitamins, and minerals, application performance and load

balance should also be assessed by considering the individual components that comprise the

overall picture.

In this dissertation, we identify and characterize several situations where the use of a

scalar to represent load is fundamentally incapable of representing the true nature of the

load imbalance of an application. We show that load vectors are able to faithfully capture

the details of such situations and we demonstrate that vector load balancing strategies can

use these vectors to produce higher quality load balancing results. We construct a solution

to the issues created by the multi-dimensional nature of “load” via vector load balancing and

apply it to parallel applications. This entails exploring and elaborating the multi-dimensional

nature of “load” and its relationship to properties of interest, such as execution time and

execution feasibility, constructing the vector measurement and storage infrastructure, a

runtime system interface, new vector-based LB strategies, and finally using all of that to

demonstrate benefit for applications.
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CHAPTER 2: BACKGROUND

2.1 LOAD BALANCING

Load balancing in the context of HPC encompasses a wide variety of different techniques

with the common aim of improving performance by balancing the workload across the

available resources of the system, ranging from fine grained workstealing of parallel loop

iterations to domain-specific methods for partitioning, such as orthogonal recursive bisection

for particle-based codes. In this thesis, we focus on coarse-grained periodic dynamic load

balancing for use with distributed-memory parallelism. By “coarse-grained”, we mean that

we assume the application is decomposed into objects that encapsulate the computational

work and/or data of the program and we balance on the level of these objects, mapping them

to the processing elements (PEs) of the system. Until the objects are remapped at the next

invocation of a load balancing strategy, all of the work associated with an object executes on

the PE it is mapped to. By “dynamic”, we mean that load characteristics of the application

may evolve over time, and by “periodic”, we mean that load balancing will be invoked

repeatedly across the course of the execution of the application to address the dynamically

varying load. The interval between invocations is usually on the order of tens to hundreds

of iterations, depending on the particulars of the application. While load balancing more

frequently may allow a faster response to changes in load, there are overheads associated with

load balancing. The main overheads are the cost of running the strategy to determine the

new, balanced mapping itself, and the cost of migrating the objects from one PE to another

to apply that new mapping, which can be quite expensive in the distributed-memory context

we focus on since it requires serializing objects and transferring them over the network. Thus,

load balancing too frequently can increase time to solution when these accumulated overheads

exceed the benefit of rebalancing.

In the remainder of this thesis, when we refer to load balancing, we mean this particular

type of load balancing unless otherwise specified.

2.2 SCALAR LOAD BALANCING

In general, the goal of load balancing is to minimize the maximum load assigned to a

processor in the job. Or, mathematically, let P be the set of processors, O the set of objects,

lo ∈ R≥0 the load of object o ∈ O, and M : O → P a function mapping objects to processors.
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Then, the goal of load balancing is to find a mapping M to minimize the following objective

function:

arg min
M

 max
p∈P

 ∑
∀o∈O:M(o)=p

lo

 (2.1)

Load on PE p

Maximum load on a single PE

Note that load balancing is semantically a bit of a misnomer in this formulation; balance

or equality are not the explicit goals, instead the aim is to minimize the maximum load on

any processor in the job. This is because the most overloaded processor is usually what

determines overall application performance, as it will be the last to complete iterations or to

arrive to barriers.

LB

PE1

PE2

PE3

PE0

8

18

13

11

13

13

12

12

Figure 2.1: Application Timeline with Load Balancing

Figure 2.1 illustrates how load balancing can improve the performance of a parallel

application. This figure depicts an execution timeline for a hypothetical application running

on four PEs. PEs are arranged on the vertical axis, and the horizontal axis shows the

progression of time. The boxes sitting atop the PE lines represent the execution of a task on

that PE, with the color of the box indicating the ID of the object owning that task. The

measured load of each PE is written under the corresponding line at the end of each iteration.

In this case, the load of a PE is equal to the sum of the loads of the objects on that PE, and

the load of an object is equal to the total time spent in the execution of its tasks since the

invocation of the load balancer.

The figures shows two iterations of the application, and load balancing is invoked between

the two, indicated by the vertical dashed line. In the first iteration, the maximally loaded
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PE is PE2, with a load of 18. Visually, even though all four PEs have execute four tasks, we

see that PE2 has three relatively long tasks, the first three shown on the timeline colored in

shades of blue, while the other PEs have shorter tasks on average. At the tail end of the first

iteration, the other PEs remain idle for a long time while they wait at the synchronization

point for PE2 to finish its assigned work.

When the load balancer runs, it sees that imbalance exists in the job and it remaps the

objects across the PEs to reduce the maximum load assigned to any single PE. In the second

iteration, which runs after the load balancer has applied this new mapping, there are now

two PEs, 2 and 3, tied as the maximally loaded PEs, each with a load of 13, only 72% of the

maximum load before load balancing. We see that the three lengthy blue colored tasks that

were previously all on PE2 are now spread across PE1, PE2, and PE3, leading to a more

balanced distribution of load.

2.2.1 Assessing Load Balance Quality

Importantly, when evaluating the quality of a load balancer, it may be tempting to use

variance as a metric to determine how “balanced” a given mapping is, since variance directly

measures the degree of dispersion of values from the mean; so a mapping with a smaller

variance should be more “balanced” than a mapping with a larger variance. However,

when comparing mappings, a smaller variance does not necessarily co-occur with a smaller

maximum load. Instead, we use the maximum to average load ratio (Max : Avg), as this

correlates directly with the aforementioned optimization objective. For example, consider

the two cases presented in Figure 2.2.

Both Mapping A (Figure 2.2a) and Mapping B (Figure 2.2b) distribute 24 units of load

across 6 PEs, with a mean load of 4 units per PE. Since the maximum load on any processor

in Mapping A is 6 and the maximum load in Mapping B is 7, Mapping A is the better

mapping by our optimization criterion.

Mapping A has a variance of 4.8, while Mapping B has a lower variance of 2.8; thus, if

we were to use variance as our quality metric, Mapping B erroneously beats Mapping A.

However, by Max : Avg, Mapping B rightfully loses, with a ratio of 1.75 as opposed to 1.5

for Mapping A. Thus, in general, we use Max : Avg as the metric to evaluate the quality of

load balancing results for the remainder of this thesis.

Returning to the example shown in Figure 2.1, the Max : Avg ratio decreases from

18/(50/4) = 1.44 before load balancing to 13/(50/4) = 1.04 after load balancing, quantifying
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Figure 2.2: Comparison of Two Mappings of 24 Units of Load

the improvement in the quality of the mapping.

2.3 SCALAR LOAD BALANCING TECHNIQUES

The simplest case of load balancing is that of static problems, or problems where load

does not change at all during execution. In this case, a single partitioning of the data at the

beginning of execution is most often used. Since the cost of partitioning happens only once,

partitioning performance and load measurement are not paramount concerns, so it differs

greatly from the dynamic case.

Dynamic problems present a far more interesting problem, as the load distribution can

change wildly and unpredictably across the execution of the problem.

The same partitioning strategy as used in the static case can also be used in the dynamic

one, except it must now be repeated throughout the execution; so both partition quality and

partition performance become important for useful load balancing. Additionally, depending

on the application, both computational balance and communication locality may be important.

Due to these factors, partitioners such as METIS [1] and Zoltan [2] are commonly used

for load balancing parallel applications. These packages offer high performance balancing

by using scalable techniques such as graph coarsening and recursive geometric bisection.

Object graphs where vertices correspond to objects and edges correspond to communication
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or interactions between objects may also be provided to these systems, allowing them to

make placement decisions that take communication into account by considering the cost of

the edge cut sets. These systems can only make partitioning decisions ; the user application

is responsible for measuring load and passing it into the partitioner and actually applying

the output decision by repartitioning or migrating the data of the program.

Corbalan et al. take the opposite approach for MPI + OpenMP applications [3]. Instead

of repartitioning the data to balance load, they move computational power between MPI

ranks, decreasing the number of OpenMP worker threads used on underloaded ranks and

increasing the number of threads on overloaded ranks.

Another scheme for load balancing is work stealing. In work stealing schemes, each processor

has a queue of work items. When load is imbalanced, some processors will finish all of the

items in their queue before others have. When this happens, idle processors with empty

queues will steal work items from the queues of other processors, preventing idle time so long

as some available work remains. This scheme is used in Cilk [4] and Multilisp [5]. Since it is

automatically triggered and requires no explicit calls to balance load, work stealing is very

responsive and easy to use, but it can suffer from high overheads via context switches, poor

locality, and contention. Further, it is typically only used for within-node load balancing due

to locality considerations.

Task-based parallel programming frameworks offer another perspective on load balancing.

Systems such as StarPU [6] and OmpSs [7] manage programs expressed as a set of tasks,

each with some dependencies. The runtimes construct these into a task graph where edges

correspond to dependencies, and tasks then get scheduled across the processors of a job as

their incoming dependencies are fulfilled. Additionally, both of these systems have advanced

runtimes that can analyze the properties of their tasks to do things like place tasks close to

their required data and dynamically select different hardware targets based on the performance

characteristics of the task.

2.4 CHARM++

The load balancing strategies in this thesis are designed to be used with Charm++ and

extend its load balancing framework, unless otherwise noted. However, the ideas and strategies

themselves are not dependent on Charm++ and may be used with other programming systems

so long as they provide the necessary knobs and levers. In this section, we describe Charm++

and the capabilities it offers.
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Charm++ [8], [9] is an adaptive, asynchronous, task-based parallel programming framework.

The core entities of Charm++ are objects, called chares, which send messages to each other

to trigger tasks on the host processor of the receiving object. Charm++ has three particular

properties that enable it to perform load balancing: an active runtime system, migratable

objects, and overdecomposition.

2.4.1 Active Runtime System

When a Charm++ application executes, it runs in the context of the Charm++ runtime

system (RTS). The RTS runs a scheduler that decides which task to execute next, and

control always returns to the RTS after a task completes. While this of course adds some

overhead to execution, it also allows the RTS to introspect, make measurements, and change

the configuration or layout of the application in search of higher performance. Namely, for

load balancing, this allows the system to automatically measure the load of objects and to

use that information to identify imbalance and plan how to correct it via load balancing

strategies. The output of a load balancing strategy is a mapping of objects to processors

created by solving or approximating some optimization problem.

2.4.2 Migratable Objects

Creating a new mapping that balances load is only useful if that mapping can actually

be applied. Charm++ allows for the application of new mappings via migratable objects. In

general, communication in Charm++ is object-centric, meaning that messages are addressed

to and delivered to objects, regardless of where they are located in the system, a characteristic

akin to the actor model. This is enabled by location management services in the RTS. In

contrast, in other systems such as MPI, communication is processor-centric, meaning there is

no way to directly address an object. Further, these Charm++ objects have serialization and

deserialization routines, meaning they can be packaged up and moved between processors

or nodes. Taken together, this means that when imbalance is identified, Charm++ has the

means to migrate objects between nodes and processors to improve the situation.

2.4.3 Overdecomposition

In many parallel programming paradigms, data are decomposed into a number of chunks

or objects equal to the number of processors in the job. This minimizes messaging and

scheduling overhead while ensuring that every processor has some work to do. However,
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as addressed earlier, these chunks may not actually represent an equal amount of work,

especially for dynamically evolving problems. Further, even if these chunks were migratable,

only having one chunk per processor means that the size of objects is too coarse to actually

address the differences in load; migrations result in either a mere permutation of the original

one-to-one mapping or, by the pigeonhole principle, processors with multiple chunks while

others are empty. Charm++ instead encourages overdecomposition, creating many more

objects than the number of processors. This gives the runtime system scope to move objects

between processors while still ensuring that all processors have work. Also, objects are usually

fine grained enough that they can be distributed in a way to give the processors roughly

equal load. While overdecomposition can result in higher overheads, these are often hidden

by overlapping computation and communication. All in all, overdecomposition provides

sufficient granularity to balance load between processors.

2.4.4 Load Balancing Framework

Building on these core tenets, Charm++ features a well-established load balancing frame-

work [10]–[12]. The existing framework supports automatically instrumenting chares to

measure their load and communication pattern and volume, as well as measuring intrinsic PE

load. The runtime manages collecting these load statistics, passes them into strategies when

they are invoked, and coordinates the migrations of objects to conform to the new mapping.

There are two main modes for invoking load balancers: periodic and AtSync. In the

periodic mode, load balancing is called repeatedly according to a user specified period,

running asynchronously with the application as it continues to execute. In AtSync mode, the

application calls the AtSync function from every object, which triggers load balancing after

all objects have checked in. The load balancing framework then resumes the objects after

load balancing and migrations are complete. In general, most applications use AtSync mode

since load statistics are more accurate, transient chare data does not need to be migrated as

chares are at a known point in their iteration lifecycle, and performance is more predictable.

There are several different load balancing strategies, each providing different performance-

quality tradeoffs, with some offering special additional considerations, such as minimizing

the number of object migrations or minimizing internode communication. Applications are

also able to write their own custom load balancing strategies to take specific properties of

their application into account. Strategies may be written with different modes of execution,

such as centralized, hierarchical, and distributed.

Load balancing in Charm++ has been used to great effect in a variety of applications, such
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as weather forecasting [13], crack propagation through finite element models [14], molecular

dynamics [15], and cosmology [16].
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CHAPTER 3: VECTOR LOAD BALANCING

In this chapter, we describe the mathematics and theory involved in the extension of the

load balancing problem to vector load balancing, different possible objective functions and

applications of vector load balancing, and the strategies we have developed to balance load

in practice.

3.1 VECTOR LOAD BALANCING

Vector load balancing extends the load balancing problem formulated above in Equa-

tion (2.1), adding a dimension d and making the load
#»

lo ∈ Rd
≥0 of each object into a vector

of size d. (
#»

lo )i refers to the ith component of o’s load vector. The optimization problem then

becomes a multi-objective optimization problem, in which the goal is to map each object to

a PE while minimize the maximum PE load in each dimension simultaneously. In general,

these problems do not have a single solution that minimizes each dimension at once, but

instead a set of multiple solutions such that each element in the set cannot be improved in

any dimension without making some other dimension worse. This set of solutions is called

the Pareto frontier of the problem, and this property of the solutions where each cannot be

improved without trading off another dimension is called Pareto optimality. The elements of

the Pareto frontier are each “optimal” in some abstract sense, given the constraints of the

problem, but the load balancer needs to select between them based on how they affect the

performance of the target application.

An immediate difficulty that arises is how to compare mappings with vector loads. How

do we know which of two mappings is better? In the scalar world, we are able to simply take

the maximum load over all PEs and use that as the comparison metric for the mapping. In

the vector world, things are more complicated; we can construct a maximum load vector

analogous to the scalar version by taking the maximum load in each dimension over all

PEs, but can we use this to compare mappings? The most obvious to do so is to do a

componentwise comparison since this isolates comparisons to a single dimension at a time.

However, while in the scalar case, this is a total order, in the vector case, it is merely a

partial order, for example, two solutions from the Pareto front cannot be ordered relative to

each other. This is unsuitable for our purposes, as we need some way to compare mappings

in order to select one solution. In order to do this, we apply another function to the results

in order to obtain a totally ordered metric. Namely, we focus on the following two objective
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functions:

1. Minimizing the sum of the maximum load on a processor in the job across each

dimension. Or, mathematically:

arg min
M

∑
1≤i≤d

 max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )i

 (3.1)

Sum across dimensions Load on PE p in dimension i

Maximum load in dimension i on a single PE

2. Minimizing the maximum of the maximum load on a PE in the job across any

dimension. Or, mathematically:

arg min
M

max
1≤i≤d

 max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )i

 (3.2)

Maximum across dimensions Load on PE p in dimension i

Maximum load in dimension i on a single PE

The validity of these objective functions varies depending on the underlying execution

pattern of the application. We describe load balancing scenarios where Equation (3.1)

accurately models the resulting performance in Chapter 4 and scenarios for Equation (3.2) in

Section 5.2 of Chapter 5.

Correspondingly, the Max : Avg ratio for a mapping when using Equation (3.1) is given

by:

∑
1≤i≤d

max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )i


∑
1≤i≤d

(∑
o∈O

(
#»

lo )i

)
|P |

(3.3)

Maximum load under sum (Equation (3.1))

Average load under sum

The Max : Avg ratio for a mapping when using Equation (3.2) is given by:
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max
1≤i≤d

max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )i


max
1≤i≤d

(∑
o∈O

(
#»

lo )i

)
|P |

(3.4)

Maximum load under max (Equation (3.2))

Average load under max

For the sake of completeness, we generalize these functions. First, we define some prelimi-

naries: Take
# »

lM to be the load of a mapping M , a vector where each dimension equals the

maximum load in that dimension on any single PE under the mapping M , and take
#»

lO to

be the load of the set of objects O, a vector where each dimension equals the sum of every

objects’s load in that dimension:

# »

lM =

〈
max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )1

 , . . . ,max
p∈P

 ∑
∀o∈O:M(o)=p

(
#»

lo )d

〉 (3.5)

#»

lO =

〈∑
o∈O

(
#»

lo )1, . . . ,
∑
o∈O

(
#»

lo )d

〉
(3.6)

Then, because
#»

lo ∈ Rd
≥0 ⇒

# »

lM ,
#»

lO ∈ Rd
≥0, we can restate the objective functions given in

Equations (3.1) and (3.2) using vector norms as:

arg min
M

∥∥∥ # »

lM

∥∥∥
1

(3.7)

arg min
M

∥∥∥ # »

lM

∥∥∥
∞

(3.8)

And we can similarly restate the Max : Avg ratio functions given in Equations (3.3)

and (3.4):

|P |

∥∥∥ # »

lM

∥∥∥
1∥∥∥ #»

lO

∥∥∥
1

(3.9)

|P |

∥∥∥ # »

lM

∥∥∥
∞∥∥∥ #»

lO

∥∥∥
∞

(3.10)
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Finally, we fully generalize the objective function for any k-norm, k ∈ R≥1 (we use k

instead of the more traditional p to avoid confusion with processors):

arg min
M

∥∥∥ # »

lM

∥∥∥
k

(3.11)

And the associated Max : Avg ratio function:

|P |

∥∥∥ # »

lM

∥∥∥
k∥∥∥ #»

lO

∥∥∥
k

(3.12)

Notice that Equations (3.1) and (3.2) are each equivalent to Equation (3.11) at the extreme

values of k = 1 and k =∞, respectively, as are Equations (3.3) and (3.4) to Equation (3.12).

In some situations, there may be other optimization goals depending on the application or

system, such as minimizing a function of some dimensions while constraining other dimensions

to some threshold. Such situations are explored in Chapter 6.

3.1.1 Related Work

While scalar load balancing has been very widely studied, research into vector load

balancing is much more nascent. What work there is spans several fields, from general

mathematics to specific cases in the database community, the scientific computing community,

and particularly the theory community, providing abstract algorithms or bounds for quality

or runtime.

The earliest work in the area appears to be that of Hong in 1992 [17], in which an IO-bound

query task and a CPU-bound query task in a database system are executed simultaneously

to maximize utilization. This scheme is simple yet effective, only requiring the solution of

simple linear systems to find the balance point. Since the execution engine of the query

system can decide how to execute a given query, this is also very adaptable; the degree of

parallelism of each task can be selected by the runtime based on the current state of the

system.

Garofalakis et al. [18], [19] take a further step in the vein of Hong’s work, using a general

multi-dimensional optimization scheme to serve multimedia database queries, with a goal of

serving as many requests as possible subject to some response time and hardware bandwidth

constraints. Their scheme can be used with tasks of arbitrary dimension. Their proposed
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solution uses greedy list scheduling, ordering tasks by their maximum load component and

iteratively assigning each to a feasible site such that makespan is minimized.

While these database query optimization schemes do share the same basic principles as

the vector load balancing approach that is the focus of this thesis focuses on, they are not

general enough, nor do they offer the performance or scalability that load balancing for HPC

requires.

A theoretic definition for what they call the vector scheduling problem is provided by

Chekuri et al. in [20]. Here, they provide several algorithms and tighten the known optimal

bounds for approximation schemes for the problem for different dimensions d. While their

algorithmic techniques and analysis are useful for the matter at hand, the time complexity of

their methods is too large to be practical for load balancing parallel applications, for which

improvements in balance quality must not come at the cost of excessive overhead, since

load balancing is typically performed with some frequency throughout the execution of a

program. Epstein et al. provide a more general framework for vector assignment problems

in [21], developing a method that allows for balancing with even a non-monotonic objective

function. There are several other theoretical works providing approximation bounds or formal

algorithms for vector load balancing, particularly focused on online algorithms, such as

[22]–[24], or problems of specific dimension, such as [25]. These theoretical contributions

are valuable, but in this thesis we are interested in the practical applications and impact of

vector load balancing.

The earliest practical applications of vector load balancing in HPC style applications appears

to be heat diffusion style strategies targeted toward phase based applications described in

[26] and [27]. In these works, the phase structure of several physics applications results

in poor load balance when using scalar balancing techniques. To address this, they add

vector support to their load diffusion implementations to compute the magnitude of each

dimension of load to send to each neighbor, and then use some heuristics to approximate the

multidimensional subset sum problem to decide which tasks to actually send to neighbors.

This technique is effective in both papers and diffusion offers a clever, scalable solution to

balancing vector loads, but the task selection techniques used are lacking in robust accuracy

and neighborhood oriented LB tends to produce poor results on large machines because of

the limited available scope of load information.

The load balancing problem can be phrased as a graph partitioning problem, splitting a fully

disconnected graph where weighted vertices represent object loads, or G = (V = O,E = ∅),
into |P | mutually exclusive subgraphs while balancing the total sum of the vertex weights of
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each partition. When communication costs are significant, this can be adapted to promote

intra-node communication by adding edges weighted by the communication volume between

two objects to the graph and partitioning with consideration of both balancing vertex load

and minimizing the edge cut. As graph partitioning is a very common operation in scientific

computing, there are several high-performance software packages to perform this task such as

METIS [1], Scotch [28], and Zoltan [29]. Some of these tools support giving vector loads to

vertices, for example, the multi-criteria graph partitioning algorithms in METIS are described

in [30] and those of Scotch in [31]. These methods offer the performance and quality needed

for HPC load balancing and are both a point of comparison for new load balancing algorithms

and an essential component of the end-to-end LB systems implemented for this thesis.

Devine et al. apply multicriteria load balancing to geometric partitioners [32], used in cases

where objects have a position in some coordinate space and partitions are disjoint regions of

that space. These schemes are useful in many physical simulations because the locality of

objects in “application space” is maintained in “processor space”, and nearby objects often

interact with each other. In this paper, they use recursive coordinate bisection to perform

the partitioning, determining the bisection point by comparing norms of the sums of objects

in each partition. They also attempted to use arbitrary cost vectors to combine the load

vectors of a partition into a single metric, but abandoned that in favor of using norms for the

sake of performance and feasibility, as it changes the problem from optimizing a potentially

non-convex function to doing so for a monotonic one. Results were promising, slightly worse

quality than using a graph partitioner, but with lower runtime for the partitioning step.

3.2 VECTOR LOAD BALANCING STRATEGIES

3.2.1 Greedy

The vector greedy strategy takes the standard scalar greedy balancing strategy and adds

dimension awareness. It creates d separate min-heaps, one for each dimension, and each heap

contains every available PE, with heap i keyed on the ith dimension of the load vector of

the PE. Objects are sorted in descending order by the maximum of their load vectors. The

difference from the scalar strategy is that after the the current maximum object is popped

from the object heap, the balancer determines which dimension contains its maximum load

value, then places the object on the min PE corresponding to that dimension, and then

removes and readds the selected PE from all of the PE heaps (since the entirety of the

selected PE’s load vector may have changed). This requires a specially designed heap that
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allows for removing nodes from any position in the heap, as the selected PE is likely not at

the top of the heaps for other dimensions.

The operation of the vector greedy strategy for a two-dimensional balancing problem is

graphically illustrated in Figure 3.1. The figure begins in medias res and shows the selection

and placement procedure for a single object. On the left side of each subfigure is the sorted

list of objects, each element showing the object ID and load vector. The right side shows

the current state of each per-dimension min-heap of PEs, each element showing the PE ID

and its load in the corresponding dimension. Figure 3.1a shows the existing state of the

problem, with several objects already having been placed on the PEs. In Figure 3.1b, the

algorithm selects the current largest object, obj5, from the front of the list. In Figure 3.1c,

the strategy determines the target dimension of the load vector of the selected object by

comparing the load in each dimension to the mean load in that dimension across all objects;

the dimension with the largest load relative to the average is the target. Here the load

vector of obj5 is 〈2, 9〉 and we assume that both dimensions have the same mean load, so the

target dimension is one (zero-indexed). Then, in Figure 3.1d, the algorithm finds a PE for

placement by selecting the PE with the minimum load in this dimension by selecting the top

of the PE min-heap for that dimension, here PE4 with a load of 0 in the target dimension.

Once a PE is selected, the strategy locates each element corresponding to that PE in the PE

min-heaps for all other dimensions as shown in Figure 3.1e, as placing an object on a PE

requires updating every dimension of the load of a PE. Finally, the placement is performed:

the object is removed from the list, the load vector of the chosen PE is updated to reflect its

new load, and the PE min-heaps are updated, resulting in the final state shown in Figure 3.1f.

This process repeats until the list of objects is empty, at which point each object has been

placed on a PE.

This scheme is not robust since it only considers a single dimension when making placement

decisions, but it can still be effective, especially for applications comprised of objects that are

each mostly active only in a single phase. For example, in a simple n-body simulation, one

set of objects may be responsible for calculating forces, active for only one phase and another

set of objects may apply those forces to particles, which only run in a different phase.

3.2.2 Vector Norm Balancing with k-d

One way of reducing the complexity of the multi-objective optimization problem presented

by vector loads is to convert it to a single-objective problem by minimizing the norms of

vectors rather than the components of vectors themselves. This approach naturally considers
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Figure 3.1: Operation of Vector Greedy Strategy
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Figure 3.1: Operation of Vector Greedy Strategy (cont.)
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the object and processor loads holistically, using the norm as a proxy to try to ensure that

no single component of the processor load grows too large.

In general, this can be done with any norm, but norm selection is very important, as

different norms can produce radically different results. Using the 1-norm, which merely

sums the components of the vector, is equivalent to the traditional scalar load balancing

approach with no awareness of vector load. Using the ∞-norm, which takes the max of the

vector, is also a poor fit for the problem since it effectively disregards the contributions of the

non-maximal elements. Thus, a p-norm with 1 < p <∞ is more suitable for this problem.

For the sake of performance, p should be an integer, as that empirically generates much

faster, more vectorizable code. Studying the details and impact of norm selection is future

work. Unless otherwise stated, assume that all references to norms in the following text are

to the standard Euclidean 2-norm.

While using a norm does considerably simplify the problem, it is still difficult to assign

objects to processors. This algorithm performs a greedy assignment of objects to processors,

at each iteration assigning the largest remaining object to the processor with the minimum

post-assignment norm. The norm provides a total order on these otherwise only partially

ordered sets of vectors, but the processor with the minimum norm at any given step may

not be the best choice for assignment because vector addition is not an order-preserving

transformation under the norm. As an example, take
#»

lo = 〈2, 0〉 and
# »

lp1 = 〈3, 0〉 , # »

lp2 = 〈0, 4〉.
In this case, ‖ # »

lp1‖2 = 3 < ‖ # »

lp2‖2 = 4, but ‖ # »

lp1 +
#»

lo‖2 = 5 > ‖ # »

lp2 +
#»

lo‖2 = 2
√

5 ≈ 4.47. Thus,

the set of processors must be reordered relative to each object as it is considered.

Figure 3.2 shows a high level view of how the vector norm strategy performs an object

placement, using the same problem data used in Figure 3.1. Figure 3.2a depicts the initial

state of the objects, visualizing each PE as a point in 2-space. In Figure 3.2b, the strategy

computes the projected load for each PE, shown in orange, if the current object for placement,

which has load 〈2, 9〉, were to be placed on that PE. The norms of these projected loads are

calculated in Figure 3.2c. Finally, in Figure 3.2d, the algorithm selects the PE on which to

place the candidate object by finding the PE with the smallest projected load norm, here PE0,

shown in green. Note that this result differs from that of the vector greedy strategy depicted

in Figure 3.1, which selected PE4, because the vector greedy strategy makes placement

decisions based on the single largest dimension of the object’s load, whereas the use of the

norm implicitly considers every dimension.

Since the PE ordering changes depending on the object, finding the minimum processor

for an object is non-trivial. In the scalar case, this can easily be done by maintaining a
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Figure 3.2: Operation of Vector Norm Strategy (cont.)
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min-heap for processors and a max-heap for objects and merely taking the maximum object

and assigning it to the minimum processor at every iteration. In the most näıve translation

of this to the world of vectors, the processor heap can be remade every iteration, at a total

cost of O(n · p log p) where n is the number of objects and p is the number of processors.

However, this is a poor choice, as even an exhaustive linear search over all processors at

every iteration is better, with time O(n · p). The earliest implementation of the vector norm

balancing algorithm does exactly this, but while it suffices in returning the correct result, its

performance is non-scalable and not suitable for anything but small problems.

To achieve more scalable performance, we can consider the d dimensional processor load

vectors as points in Rd
≥0 and use space-partitioning trees to improve query performance.

Space-partitioning trees are data structures that hierarchically and recursively subdivide a

space into a tree of non-overlapping regions, which can then be exploited to perform fast

operations on the underlying data. In particular, we use a k-d tree [33], a space-partitioning

tree for point sets of arbitrary dimension; each level of the tree splits the space in a single

dimension at one of the points in the set, with the levels cycling through the different

dimensions (e.g. for the three dimensional case of (x, y, z), level 0 splits along x, 1 along y, 2

along z, 3 along x, . . .). Each node has a data element, data, which stores the split point, and

two children, left and right, which point to the “smaller” and “larger” partitions, respectively.

Once this tree is constructed, finding the minimum object is a fairly straightforward traversal,

as described in Algorithm 3.1.

Essentially, this algorithm traverses the space, searching “smaller” candidates before “larger”

ones and identifying and pruning partitions that cannot beat the current best. In the worst

case, a single iteration of this can still result in an exhaustive search of the processor space,

but pruning should significantly reduce the search space for a reasonable distribution of

processors, in expectation. However, there are still a few issues with this approach, namely

induced imbalance in the tree and the cost of repeated insertions and deletions. At each

iteration, after choosing a processor to take the current object, that processor is removed

from the tree, updated with the load vector of the object, and then readded to the tree. In

other words, we remove a “small” processor from the tree and readd it as a “big” processor.

This can cause the tree to become imbalanced, which increases the time for search, addition,

and removal. Additionally, while addition is O(log n) for balanced trees, it can still be costly

in practice since additions require traversing the tree until finding a leaf, as insertions at

arbitrary positions are not allowed, which also inhibits maintaining a balanced tree.

In order to address the issues with standard k-d trees, we use relaxed k-d trees [34].
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Algorithm 3.1: k-d Strategy Algorithm

1 tree←MakeTree(P );

2 for o ∈ sorted(O) do

3 pmin ← FindMinNormPE(tree, o);

4 tree← Remove(tree, pmin);

5 sol.Assign(o, pmin);

6 tree← Add(tree, pmin);

7 end

8 Function FindMinNormPE(tree, o, bounds = 〈0, . . . , 0〉):
9 if tree.left 6= NULL then

10 pbest ← FindMinNormPE(tree.left, o, bounds);

11 end

12 if ‖tree.data+ o‖ < normbest then

13 normbest ← ‖tree.data+ o‖;
14 pbest ← tree.data;

15 end

16 if tree.right 6= NULL then

17 oldBound← bounds[tree.dim];

18 bounds[tree.dim]← tree.data[tree.dim];

19 if ‖bounds+ o‖ < normbest then

20 pbest ← FindMinNormPEEarly(tree.right, o, bounds);

21 end

22 bounds[tree.dim]← oldBound;

23 end

24 return pbest
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Relaxed k-d trees differ from their standard brethren in that consecutive levels no longer

regularly cycle through splitting different dimensions, instead, each node stores an arbitrary

discriminant j ∈ {1, 2, . . . , k}, which indicates the dimension it splits. In this data structure,

children may even split along the same dimension as their parent. This relaxation allows

greater flexibility when performing updates to the tree, namely that nodes can be inserted

at arbitrary positions at any level, not just as leaf nodes. Coupled with random level and

discriminant selection, we can exploit this flexibility to maintain a probabilistically balanced

tree while performing updates at every iteration. Empirically, this results in much better

algorithmic performance than exhaustive search or the standard k-d tree. We analyze the

performance and scalabilty of load balancing strategies in more detail in Chapter 7.

3.2.3 METIS

METIS, a graph partitioner, offers another way of making vector load balancing deci-

sions [30]. In their scheme, a graph is partitioned into some number of partitions such that

the load vector of the partition is less than or equal to some tolerance in each dimension

while minimizing the sum of the weights of the edges cut. This is accomplished by performing

multi-objective bipartitioning, which recursively splits the graph into two subgraphs (METIS

also offers a direct k-way partitioning method [35], but both methods provide roughly the

same results in terms of performance and quality, so we only describe one method for the

sake of simplicity). Partitions are kept balanced by searching through d priority queues,

each corresponding to one dimension of the load vector. Each vertex is only in one of these

priority queues, the one corresponding to the dimension of its largest load. After partitioning,

the partitions are refined to minimize the edge cut using vector extensions of standard

algorithms such as Kernighan-Lin [36] or Fiduccia-Mattheyses [37]. Additionally, for the

sake of performance, the graph is coarsening by collapsing pairs of connected vertices. This

reduces the problem size and, by selecting heavy edges to collapse, also guarantees that

these edges stay in one partition. As the algorithm proceeds, the graph is hierarchically

uncoarsened, being fully uncoarsened at the leaves.

While METIS is usually used for communication-aware load balancing, it can also be used

for general load balancing by trivially viewing the objects as a fully disconnected graph. This

does not take communication into account at all, but still provides balanced partitions of

objects with vector loads.
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3.3 VECTOR LOAD BALANCING IN CHARM++

As a prerequisite to developing, testing, and evaluating vector load balancing strategies,

first, support for vector load balancing had to be added to the load balancing framework

inside Charm++. This required adding the ability to measure vector loads, store and pass

vector loads inside the RTS, and to accept load balancing strategies that can ingest and

utilize vector loads.

C++ template specialization is used to support distinguishing vector versions of a strategy

from the scalar version of a strategy. Scalar and vector versions of the same strategy may

differ in terms of the applicability of certain data structures or particular optimizations (the

same can apply to vector variants of different dimensions, which this scheme also supports).

A complete example of the implementation of scalar and vector versions of the greedy load

balancer in Charm++ is shown in Listing 3.1.
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1 // Vector version
2 template <typename O, typename P, typename S>
3 class Greedy : public Strategy <O, P, S> {
4 public:
5 void solve(std::vector <O>& objs , std::vector <P>& procs , S& solution , bool objsSorted)

{
6 // Sorts in descending order of the maximum value in an object ’s load vector
7 if (! objsSorted) std::sort(objs.begin (), objs.end(), CmpLoadGreater <O>());
8

9 // Create one heap per dimension (this special heap type supports arbitrary removal)
10 std::vector <ProcHeap <P>> heaps;
11 for (int i = 0; i < O:: dimension; i++) {
12 heaps.push_back(ProcHeap <P>(procs , i));
13 }
14

15 // Find the average load vector of an object
16 std::array <float , O::dimension > averageLoad;
17

18 for (const auto& o : objs) {
19 for (int i = 0; i < O:: dimension; i++) {
20 averageLoad[i] += o.load[i];
21 }
22 }
23 for (auto& load : averageLoad) {
24 load /= objs.size();
25 }
26

27 // Going through the objects in descending order of load ...
28 for (const auto& o : objs) {
29 int maxdimension = 0;
30 float maxfactor = 0;
31 // Find largest dimension relative to the average load
32 for (int i = 0; i < O:: dimension; i++) {
33 if (o.load[i] / averageLoad[i] > maxfactor) {
34 maxfactor = o.load[i] / averageLoad[i];
35 maxdimension = i;
36 }
37 }
38 // Assign object to the PE with smallest load in that dimension
39 P p = heaps[maxdimension ].top();
40 solution.assign(o, p);
41 for (auto& heap : heaps) {
42 heap.remove(p);
43 heap.push(p);
44 }
45 }
46 }
47 };
48

49 // Scalar version
50 template <typename P, typename S>
51 class Greedy <Obj <1>, P, S> : public Strategy <Obj <1>, P, S> {
52 public:
53 void solve(std::vector <Obj <1>>& objs , std::vector <P>& procs , S& solution ,
54 bool objsSorted) {
55 if (! objsSorted) std::sort(objs.begin (), objs.end(), CmpLoadGreater <Obj <1>>());
56

57 // Only one heap needed for one dimension
58 std:: priority_queue <P, std::vector <P>, CmpLoadGreater <P>> procHeap(
59 CmpLoadGreater <P>(), procs);
60

61 // Going through the objects in descending order of load ...
62 for (const auto& o : objs) {
63 // Assign to the PE with smallest load
64 P p = procHeap.top();
65 procHeap.pop();
66 solution.assign(o, p);
67 procHeap.push(p);
68 }
69 }
70 };

Listing 3.1: Vector and Scalar Greedy Load Balancer
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CHAPTER 4: LOAD BALANCING FOR PHASE-BASED APPLICATIONS

In this chapter, we describe the motivations for and properties of phase-based applications,

the fundamental deficiencies of current load balancing techniques for these applications, and

the improvements provided by applying the new vector based load balancing techniques

developed in this thesis.

4.1 PHASE-BASED APPLICATIONS

4.1.1 Overview

As high performance computing has grown in adoption throughout the scientific and

engineering community, so has the diversity of applications. Further, as the capabilities of

machines, libraries, and other software building blocks have improved, so has the intricacy

and sophistication of programs, enabling ever faster, larger, and more detailed simulations.

Many factors have contributed to these improvements in diversity and utility. Applications

may be composed of several modular pieces, combining the results of each in order to solve a

more complex problem than any individual piece is able to on its own. Similarly, scientists

may take an existing application or framework and build a novel extension atop it in order

to use it for their own field. Additionally, researchers have developed optimized adaptive

algorithms that focus their time on the “interesting” parts of the problem space, providing

great speedups and bringing previously infeasible problem sizes into the realm of possibility.

One consequence of these advances in applicability and performance is increased complexity

in the execution structure of programs, namely the rise of phase-based applications (PBAs,

often also called multi-phase applications).

In a phase-based algorithm, each iteration is broken down into several different collaborative

components, each specializing in performing a particular part of the larger computation.

These individual phases can have arbitrary data domains and dependencies, but a common

configuration is one wherein the results of certain phases are used as the input for subsequent

phases. The communication domain for phases may also vary; some phases may perform no

communication, others may do so only within some local neighborhood, and others may do

global reductions, all-to-alls, or other communication across the entire parallel job.

Because of these dependencies, the execution structure of the phases is essentially sequential,
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with the next phase unable to start until the previous phase has completed. For example, in

a molecular dynamics application, the computation of all the various forces, such as bonded

forces, electrostatics, and van der Waals forces, must be completed first before applying them

to the atoms, yielding two phases, force calculation and force integration.

Note that we define phases of a computation to be completely orthogonal, meaning there is

no overlap between the execution of one phase and any other phase across the entire system.

Many applications exhibit this structure for a variety of reasons, as we discuss in Section 4.1.2.

However, some applications may have “blurry” phase boundaries, such as cases where an

object only depends on a subset of the other objects and can proceed to the next phase as

soon as it has received updates from those dependencies. The techniques discussed in this

chapter should generally still work for such cases, as we are solving a stricter version of the

problem than required by those cases.

4.1.2 Causes

Phase-based applications are widespread in practice. Partially, this is because of innate

qualities of the problem domain or target datasets:

Multiple Variables: Physical problems of interest to researchers often involve studying

the combined effects and evolution of several different simultaneous physical processes,

e.g. analyzing the change in and interplay between temperature, pressure, wind speed,

humidity, and precipitation in weather prediction software. Applications for such work

often perform a separate set of calculations for each property of the problem, and are

hence called multiphysics simulations. [38] Multiphysics simulations have an inherent

phase structure, as the calculations for simulating each separate physical process are

generally performed in separate phases, and, on top of that, additional phases are

needed to integrate all of the disparate results and update the state of the simulation.

Multiscale Data: The data used in scientific problems may span across several orders of

magnitude due to underlying physical properties, such as the difference in pressure near

a blast wave versus in the remainder of the fluid for shock hydrodynamics applications.

In these situations, it may not be necessary to update every component in the simulation

domain with the same frequency or precision; for example, regions of the domain near

the fast-moving wave need to be updated at high detail and high frequency to capture

the nuances of propagation and evolution of the wavefront, whereas regions far from the

wavefront can be updated relatively infrequently without sacrificing precision beyond

the desired tolerance, as they undergo only very minute changes until the wave reaches
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them. This strategy of skipping uninteresting or relatively slowly evolving parts of

the domain during some timesteps is part of the field of multiscale simulation. This

optimization can make previously intractable simulations tractable and is the core idea

behind techniques such as adaptive mesh refinement (AMR) and multi-timestepping.

In these applications, an iteration is subdivided into phases corresponding to multiple

smaller “timesteps,” each only updating the pertinent subset of the domain, e.g. a

structure such as AAB, with two “A” timesteps that update only fine parts of the

dataset, and then a “B” timestep that updates both fine and coarse parts of the dataset.

In other cases, a phase structure arises due to design or implementation choices:

Specialization: In particle-based simulations, such as astrophysical or molecular dynamics,

forces exerted between particles are one of the main quantities to be calculated at

every timestep. Näıvely calculating these pairwise forces takes O(n2) time. However,

by instead classifying these pairwise interactions into separate sets of short-range and

long-range pairs based on their distance and processing them separately, techniques such

as Barnes-Hut simulation [39] or Ewald summation [40] [41] reduce this to O(n log n)

time. This greatly improves performance and can also introduce a phase structure to

the code depending on the implementation.

Note that this is different from the multiphysics case because we are only concerned

with the forces of a single physical process and it is also different from the multiscale

case because we still update the state of the entire simulation at every timestep.

Libraries: Decomposing a complex algorithm into individual phases consisting of its simpler

constituent components or reframing a computation into a different paradigm to enable

the use of high-performance external libraries may improve application performance

may yield a phase-based structure. For example, a direct implementation of a graph

algorithm may be outperformed by a three phase implementation, a phase to convert

graph data into a matrix, a phase performing some matrix computation using an

optimized BLAS library, and a final phase to convert data back into the original graph

format.

Locality: Completing all of one type of computation before moving onto the next can

improve spatial locality, leading to increased cache performance and vectorizability

with single-instruction multiple-data (SIMD) instructions. However, this can lead to

tradeoffs with regards to temporal locality, as the same data may be repeatedly accessed

from within different phases rather than reading it once and doing the whole end-to-end

computation with it while it is in a register or cache.
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Simplicity and Programmability: Some applications might not strictly require barriers

to synchronize between separate components of an application for the sake of correctness,

but developers may intentionally decide to insert global synchronization regardless.

This is usually done to prevent race conditions in cases where checking for the actual

necessary dependencies is too difficult to program or computationally expensive. Such

situations arise in irregular applications, wherein objects may not be aware how many

messages they need to receive before advancing to the next part of the computation, or

in applications with dynamic object creation or deletion, in which dependencies may

change from iteration to iteration. Further, developers may use synchronization to

provide more predictable performance or to avoid overloading memory or the network.

Furthermore, these qualities may co-occur in an application, multiphysics simulations

are often used with datasets amenable to multiscale execution, and calling into specialized

libraries for parts of their computation is common.

4.2 LOAD BALANCING PHASE-BASED APPLICATIONS

While phase-based applications can provide many benefits as explored above, they also

increase the difficulty and complexity of achieving performance and scalability.

In particular, PBAs present a challenge for load balancing because the distribution of load

becomes spatiotemporal within an iteration, not merely spatial as it is for non-phase-based

applications. Specifically, describing load by where it occurs is insufficient to fully characterize

the execution pattern; it now needs to be described by both where and when it occurs.

4.2.1 Limitations of Scalar Load Balancing

Figures 4.1 and 4.2 illustrate this challenge by comparing the behavior and observed

load of a non-phase-based application and a phase-based application when using scalar load

balancing. Note that spacing has been added for clarity in both figures.

Figure 4.1 traces a hypothetical run of a non-phase-based application on four PEs, arranged

vertically, and shows the progression of time horizontally. Each colored box represents the

execution of a task on the PE corresponding to the line it sits atop. Each task belongs to

an object as indicated by the color of the task. The measured load for each PE is shown

to the right of the last task; in this case, each PE has a measured load of 16, indicating a

perfectly balanced workload with a Max : Avg ratio of 1. Recall that to calculate the load
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Figure 4.2: Phase-Based Application Timeline

of a PE, we merely sum the loads of its resident objects, and the load of an object is the

sum of the execution time of each of its tasks. Finally, the total length of the iteration is

16, calculated by determining how long it takes for all tasks to be completed. Importantly,

this corresponds to the maximum observed PE load (in practice, this would not be the case

unless all communication were overlapped with computation on the heaviest loaded PE, but

in general this is true to some epsilon).

Figure 4.2 shows an execution timeline of a phase-based application consisting of iterations

split into two phases, A and B. Tasks executing in phase A have a solid fill and tasks executing

in phase B have a wavy fill. Again, the color of an task indicates its object, but note that

some objects may only have tasks that execute in one phase of the iteration. A gray vertical

dashed line indicates the globally synchronized phase boundary; all phase A tasks must be

complete on all PEs before any PE begins any phase B task.

Just as described for Figure 4.1, the observed load for each PE is shown to the right of the

last task, and again, each PE is measured to have a load of 16.

This is an accurate measurement, as each PE does indeed spend 16 units of time executing
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tasks for its objects. However, as the phase and iteration time measurements at the bottom

of the figure indicate, the total length of an iteration is 21, made by summing the lengths

of the two constituent non-overlapping phases A and B, which have lengths of 11 and 10,

respectively. The length of each phase is calculated in an analogous way to how the length of

the iteration was calculated in the non-phase-based case, determined by how long it takes for

all tasks belonging to that phase to be completed.

Here we see the fundamental problem with using scalar load measurement with phase-based

applications. Phases impose restrictions on when certain tasks can be executed, but scalar

load balancing, by combining load measurements from every phase into a single scalar value,

cannot capture these restrictions. Phase-based load is not fungible, yet scalar LB treats it as

though it is.

This issue of storing multi-dimensional data as a single dimension is the culprit behind

the dissolution of the relationship between scalar load and iteration time for phase-based

applications. From an information theory perspective, scalar load does not encode enough

information to accurately represent the structure of a PBA.

4.2.2 Benefits of Vector Load Balancing

A solution to the issue of losing the phase provenance of measured load is to use vector

load measurement and balancing rather than scalar measurement and balancing. Each phase

is assigned a separate dedicated dimension of the load vector, which is used to store the

measured loads for that phase. Then, when performing load balancing, vector-aware load

balancing strategies can utilize this per-phase data to more effectively balance the load by

virtue of having awareness of how potential object migrations affect each phase of execution.

This benefit is illustrated by considering how these different load balancing paradigms

would balance the application from Figure 4.2.

Figure 4.3 shows an execution timeline of a phase-based application with scalar load

measurement and balancing, while Figure 4.4 shows an execution timeline of the same PBA

with vector load measurement and balancing instead.

In Figure 4.3, the scalar load data indicates that every PE has the same amount of load, 16

units in this example. Thus, from the perspective of the LB strategy, the existing mapping is

already perfectly balanced, with a Max : Avg ratio of 1, and so should not be altered by

migrating objects. Correspondingly, we see in the figure that the locations of the objects

are unchanged after load balancing executes. However, as explained in Section 4.2.1, the
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Figure 4.4: Phase-Based Application Timeline With Phase Aware Vector LB

scalar load given to the balancer does not accurately reflect the true load distribution of the

application. It is impossible for the balancer to identify that the application is imbalanced

at the phase level, and even if it were explicitly told that the data it is given are from an

imbalanced execution, it does not have enough information to know how to address that

imbalance.

By contrast, in Figure 4.4, the use of vector load measurement captures the differences in

per-phase load between the different PEs. Rather than the single scalar load value shown

for each PE in Figure 4.3, each PE in Figure 4.4 has a load vector; the pre-LB load for

PE 0 is 16 in the scalar case, and 〈10, 6〉 in the vector case, for instance. The sum of the

pre-LB load vector for each PE is 16, the same as the observed load in the scalar case, as the

amount of time spent executing tasks does not change. However, by categorizing that load

into its constituent phases, vector load measurement gives the load balancer awareness of the

phase structure of the application, which the scalar case does not provide. We see that the

application has imbalance in both phases A and B; Phase A loads range from a low of 6 on

PE 2 to a high of 11 on PE 1, and Phase B from 5 on PE 1 to 10 on PE 2. Note that the
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maximally and minimally loaded PEs in the two phases are the same two PEs in opposite

order, a particularly egregious case of misrepresentation in the scalar case that is corrected

by using vector loads.

By virtue of using this more detailed and faithful representation of load, vector load

balancers are able to identify and ameliorate phase-level imbalance, as shown in the post-

LB portions of Figures 4.3 and 4.4. As explained earlier, scalar LB does not identify any

load imbalance and accordingly does not migrate any objects, leaving the load distribution

unchanged. On the other hand, vector load balancing is able to recognize the imbalance and

improve the load distribution relative to the original mapping, reducing the per-phase times

for A and B from 11 and 10 to 9 and 9, respectively, and the total execution time from 21 to

18, a 1.17x speedup. Notably, measured in terms of scalar load, the new mapping produced

by vector LB is worse than the original mapping, raising the maximum load on a PE from 16

to 18 (PE 1’s load of 〈9, 9〉), again demonstrating the incongruity of using scalar load for

PBAs.

4.3 RELATED WORK

Zheng proposes a rudimentary phase-based load balancer where each phase is balanced

separately [12]. This works well for objects with tasks that are active either in only one or in

all of the phases (i.e. they have no restrictions on their execution), but it cannot cope well

with more complex execution patterns. The proposed balancer does not use vector balancing,

merely multiple passes of scalar load balancing, one for each phase and one for non-phase

linked load.

Much of the work discussed in Section 3.1.1 is intended for PBAs, as well.

4.4 SYNTHETIC EVALUATION

We use our load balancing simulator to evaluate the quality of the mappings produced

by different load balancing strategies for a variety of load vector configurations representing

phase-based applications. We provide a load configuration file to the program which specifies

the number of phases for each object and a statistical distribution for each phase, which each

object independently samples from in order to generate the load of each of its phases.

The available statistical distributions for generating the load for each phase are:

1. Constant: Assigns a given constant value to the phase.
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2. Linear: Given a base, increment, and shift, assigns to the phase a linearly in-

creasing load l = base + indexeff ∗ increment, where indexeff = (indexobj − shift)
mod numobjs.

3. Normal: Assigns a sample taken from a normal distribution with given mean and

stddev to each object.

4. Exponential: Assigns a sample taken from an exponential distribution with given

lambda.

5. Nested Block: Given a ratio array and an array of distributions, partitions the

objects into contiguous blocks sized according to ratio and assigns to each block the

load from the corresponding entry in distributions. For example, if ratio = [2, 1] and

distributions = [(constant : 10), (constant : 20)], the first two-thirds of the objects will

be assigned a load of 10 and the final third will be assigned a load of 20 for the phase.

6. Nested Probability: Given a ratio array and an array of distributions, for each object,

selects a distribution with probability corresponding to ratio/sum(ratio) and assigns

the load from that distribution. For example, if ratio = [2, 1] and distributions =

[(constant : 10), (constant : 20)], in expectation two-thirds of the objects will be

assigned a load of 10 and one-third will be assigned a load of 20 for the phase.

4.4.1 Configuration

The quality of selected load balancing strategies for simulated phase-based applications

with normally distributed load vectors of dimension two, four, and six is shown in Figure 4.5.

Each dimension of the load vector for every object is sampled from a normal distribution

with µ = 10, σ = 3.

This experiment is repeated for simulated phase-based applications with alternating

exponentially and normally distributed load vectors of dimension two, four, and six, with

results shown in Figure 4.6. Each exponential dimension of the load vector (i.e. first dimension

in the 2D case, first and third in the 4D case, and first, third, and fifth in the 6D case) is

sampled from an exponential distribution with λ = 0.15 and each normal dimension of the

load vector is sampled from a normal distribution with µ = 10, σ = 3.

Finally, the simulations are repeated again for a more complex three dimensional load

problem, with results in Figure 4.7. In this case, the first dimension of each object has an

80% chance of being sampled from a normal distribution with µ = 1, σ = 0.1 and a 20%
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chance of being sampled from a normal distribution with µ = 5, σ = 0.1. The second and

third dimensions are sampled from an exponential distribution with λ = 0.1.

Since these simulations represent phase-based applications, mappings are evaluated using

the sum evaluation function given in Equations (3.1) and (3.3). Results shown are the

minimum, maximum, and median across one hundred runs with different RNG seeds.

4.4.2 Analysis

With limited exception, the vector aware load balancing strategies provided better mappings

than the scalar greedy strategy for most of the load configurations. Further, the more

holistic rk-d and METIS strategies generally resulted in better balance quality than the

greedy strategy. The rk-d strategy performs the best overall, giving either the best or very

competitive mappings for all tested load configurations across the full range of PE counts.

METIS essentially ties rk-d for the normally distributed and complex three dimensional cases,

but is uncompetitive with rk-d for the (exponentially, normally) distributed case.

The results feature two notable anomalies, however:

1. METIS provides relatively poor quality mappings for the two phase (exponentially,

normally) distributed case at 4k, 8k, and 16k PEs, losing out to even the scalar greedy

strategy. It is not entirely clear why METIS delivers bad results here, but it is an

isolated enough occurrence that it is likely not a concern in practice.

2. The greedy strategy performs on par with or worse than scalar greedy across the board

for the three dimensional case. This likely occurs because the greedy strategy searches

for a placement according only to a single dimension, the dimension of the object’s load

vector that is largest relative to the average load in that dimension over all objects.

For this configuration, in the 20% of cases where the first dimension of an object’s load

vector happens to be sampled from the larger normal distribution with µ = 5, then it

is expected to be 2.78x larger than the average load (expected average load for the first

dimension is 1·0.8+5·0.2 = 1.8). In this case, for one of the exponential dimensions to be

used by the greedy strategy instead, it needs to be > 2.78x the mean of 1/λ = 1/0.1 = 10

in expectation. Using the CDF of the exponential distribution, this only occurs with

probability P (X > 10 · 2.78 = 27.8) = e0.1·27.8 = 0.06; and so the probability that one of

the two exponential dimensions will be used by the greedy strategy instead of the first

dimension in this case is only 1 − P (X <= 27.8)2 = 0.12. Thus, the 20% of objects

with a large first dimension are likely to be placed without regard to their potentially
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Figure 4.5: Quality Comparison with 2/4/6-Normally Distributed Vectors, 8 Objects/PE
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Figure 4.6: LB Quality Comparison with 2/4/6-(Exponentially, Normally) Distributed
Vectors, 8 Objects/PE
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Figure 4.7: LB Quality Comparison with 3-(Normally/Normally, Exponentially,
Exponentially) Distributed Vectors, 8 Objects/PE

large exponentially distributed dimensions. Another consequence of this behavior is

the large observed range in quality for the mappings of the greedy strategy.

The scalar greedy strategy avoids this worst case behavior since it uses a sum of all of

the dimensions of the load vector for balancing, meaning it will likely avoid colocating

objects that are have large loads in multiple dimensions as their sum will be large.

4.5 PRACTICAL EVALUATION

4.5.1 Stencil

We evaluate the efficacy of our vector load balancing algorithms in practice on the KNL

partition of Stampede21 with the mpi-linux-x86 64 build of Charm++ via a phase-based

3D 7-point stencil mini-app. The computation pattern of the mini-app consists of a series

of user customizable phases, selected from the set of distributions described in the previous

section. Every object samples from the specified distribution assigned to it for that particular

phase and performs work proportional to the resulting value. At the end of each phase, the

application sends message to each of its six neighbors if configured to do so.

For the first experiment, two phases of load are configured, the first phase an exponential

distribution with λ = 0.15 and the second a normal distribution with µ = 10.0, σ = 3.0, the

1https://www.tacc.utexas.edu/systems/stampede2
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same configuration as the simulations shown in Figure 4.6a. Two strong scaling studies are

given below, a 10x10x10 grid with 1,000 objects from 64 to 512 PEs is shown in Figure 4.8,

and a 20x20x20 grid with 8,000 objects from 64 to 4096 PEs is shown in Figure 4.9. Timings

are the average of five runs. For both studies, the maximum tested PE count is approximately

the end of scaling, as there are only about two objects per PE on average at that scale.

All load balancing strategies outperform the case without load balancing, meaning the cost

of statistics collection, running the load balancing strategy, and migrating objects is less than

the benefit provided by improved load in practice (note that the simulations in Section 4.4

did not take these costs into account, only measuring the resulting quality of the mappings

produced by LB). The two vector aware strategies outperform the scalar strategy, and rk-d

outperforms greedy at scale. Minimum, average, and maximum speedups with the use of

load balancing over the no LB case are shown in Table 4.1.

Size Strategy
Speedup

Minimum Average Maximum

10x10x10
Scalar Greedy 1.03 1.14 1.28
Greedy 1.09 1.23 1.29
rk-d 1.12 1.28 1.42

20x20x20
Scalar Greedy 0.96 1.02 1.22
Greedy 1.01 1.14 1.28
rk-d 1.05 1.25 1.46

Table 4.1: Speedup Over Baseline with Load Balancing for Two Phase (Exponentially,
Normally) Distributed Problem

The second experiment uses a three phase problem, configured in the same way as the

simulations shown in Figure 4.7, the first dimension coming from a normal distribution, with

an 80% chance of using µ = 1, σ = 0.1 and a 20% chance of µ = 5, σ = 0.1, and the second

and third dimensions sampled from an exponential distribution with λ = 0.1. As in the first

experiment, 10x10x10 runs up to 512 PEs and 20x20x20 runs up to 4,096 PEs are shown in

Figures 4.10 and 4.11, respectively.

Validating the results of the simulations in Figure 4.7, the greedy strategy performs

relatively poor here as compared to the quality of the mappings it provided for the two

dimensional case, in which it always outperformed the scalar greedy strategy. The reasons

behind this degradation in quality are discussed in Section 4.4.2.

While greedy is outperformed by scalar greedy in some cases for this three phase problem,

rk-d outperforms the other load balancers in every case, illustrating the benefit of using a
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norm-based decision strategy as the load vector gains additional dimensions and a more

complex distribution. The 20x20x20 grid at 64 PEs has negative or only marginal benefits

with load balancing; there are 125 objects per PE in this case, and because the load of each

object comes from the same underlying distribution, there are enough objects per PE that

the per-PE loads are likely close enough to the mean that the load balancing will not help

much. Note that this may not be the case if there were a structured pattern to the load

distribution, e.g. for some dimension, objects with low indices being more likely to have

small loads than objects with high indices. Minimum, average, and maximum speedups with

the use of load balancing over the no LB case are shown in Table 4.2.

Size Strategy
Speedup

Minimum Average Maximum

10x10x10
Scalar Greedy 1.23 1.29 1.37
Greedy 1.08 1.20 1.50
rk-d 1.33 1.56 1.76

20x20x20
Scalar Greedy 0.95 1.26 1.72
Greedy 0.95 1.27 1.43
rk-d 1.01 1.51 2.12

Table 4.2: Speedup with Load Balancing for Three Phase (Normally/Normally,
Exponentially, Exponentially) Distributed Problem

4.5.2 Adaptive MPI

Adaptive MPI (AMPI) [42], [43] is an implementation of the Message Passing Interface

(MPI) [44] built atop Charm++. The MPI standard defines a parallel programming model

wherein an application is executed by several concurrent workers called ranks, which com-

municate data to each other via passing messages. MPI is the most widely used parallel

programming paradigm in the HPC community. Most MPI implementations implement

ranks via creating an operating system level process for each rank, but AMPI distinguishes

itself by instead using user-level threads (ULTs) for ranks. This brings several benefits, such

as improved performance when the number of ranks is greater than the number of cores,

communication-computation overlap and latency hiding for blocking calls via fast context

switches, and, most importantly for our purposes, migratability, enabling the use of load

balancing. Typically, load balancing is difficult to apply to MPI programs, as the standard

does not offer any facilities for data repartitioning, location management, or migrating ranks,

so developers must manually add these features to their application. By contrast, AMPI uses

the load measurement and load balancing features included in Charm++ along with a special
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memory allocator called Isomalloc that automates serialization to allow load balancing to be

used with MPI applications with minimal changes.

Because AMPI can transparently make use of Charm++ features, our vector load balancing

strategies also work with AMPI. We add a function void AMPI Load set phase(int phase)

to the AMPI API which allows MPI applications to inform the RTS when a new phase begins

so that measured load is attributed to the correct dimension of the load vector, but this

minor addition is all that is needed for MPI applications to use vector LB.

We use a simple phase-based mini-app to demonstrate the benefits of vector load balancing

in AMPI. Each iteration in the mini-app consists of two phases. In the first phase each

rank does work proportional to its index, and in the second phase each rank does work

proportional to the total number of ranks minus its index. Thus, the total amount of work

done in total by each rank across the two phases is the same for every rank, but the division

of this labor between the two phases is different for each; ranks with small indices do little

work in the first phase and a lot of work in the second phase, ranks in the middle of the

index space do roughly the same amount of work in each phase, and ranks with large do a

lot in the first and little in the second.

Figure 4.12 shows timelines for three different executions of this mini-app with 64 ranks on

4 PEs provided by the Projections performance analysis tool [45]. Each execution consists

of two iterations, and, when used, load balancing is invoked between these two iterations.

Figure 4.12a does not use load balancing and completes in 361.73 s, Figure 4.12b uses the

scalar greedy strategy and completes in 305.34 s and Figure 4.12c uses the rk-d strategy,

completing in 288.74 s. Overall, scalar load balancing gives a speedup of 1.18x and vector

load balancing a speedup of 1.25x over the no LB case. Visually, the impact of load balancing

is evident, with scalar LB dramatically shrinking the idle time at the ends of phases as

compared to not using load balancing, but still leaving significant gaps that the vector load

balancing ameliorates almost completely.

This rudimentary example is admittedly simple, but it showcases the ability of vector load

balancing to improve upon what scalar load balancing can offer in an applied scenario and

proves the viability of using our strategies for non-Charm++ applications.

4.5.3 Virtual Transport

Virtual Transport (VT) [46] is a task-based parallel runtime system developed by the

DARMA group from Sandia National Laboratories with many similarities to Charm++.
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(b) Scalar Load Balancing

(c) Vector Load Balancing

Figure 4.12: Phase-Based AMPI Mini-App Timelines
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Notably, it has an active RTS that can measure load, support for migratability, and encourages

overdecomposition, all of the prerequisites to load balancing as discussed in Section 2.4.

VT differentiates itself from other task-based runtimes in that it is intended to provide

a harmonious and seamless interface between MPI applications and task-based execution,

allowing users to enjoy the benefits a task-oriented decomposition can bring, such as load

balancing, without requiring a wholesale rewrite of existing code or forcing abandonment of

the familiar MPI ecosystem, environment, and libraries. While other task-based systems such

as Charm++ support MPI interoperation, VT does this in a more integrated way, using MPI

and its associated tools to handle parallel execution, network communication, compilation,

and launching.

EMPIRE

One of the motivating applications for the development of VT is ElectroMagnetic Plasma In

Realistic Environments (EMPIRE) [47], an unstructured finite element method particle-in-cell

(PIC) code also developed at Sandia National Laboratories. This application is used to

simulate the interaction of electric fields, magnetic fields, and high-energy plasmas in complex

geometries, as may be found in fusion energy research, for example. EMPIRE is a purely

MPI code, using Trilinos [48] and Kokkos [49] to provide performance portable single node

parallel solvers.

There are two separate implementations of the PIC functionality in EMPIRE. The original

implementation is a pure MPI design, in which cells are distributed across ranks according

to the same decomposition as used in other parts of the code. Each rank is responsible for

computations on particles found within the cells it owns.

Some input datasets result in large, dynamic load imbalance in EMPIRE, particularly

in the particle operations. To address this, a second implementation was developed using

VT, which we call EMPIRE-VT. This implementation obtains overdecomposition by further

subdividing the sets of cells assigned to each rank. The data and computations on particles

residing in these subsets of cells are managed by migratable objects, giving the load balancer

scope to address imbalances. In EMPIRE-VT, these further subdivided pieces are called

colors. To interact with the rest of the code, these objects each communicate with a “home”

object on the original rank, to which its cells are assigned for the rest of the code.

EMPIRE and EMPIRE-VT are security controlled applications, so further details on its

structure, composition, and applicability are not available for distribution.
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Load Balancing in VT

VT supports measuring and recording vector loads in phase-based applications, with one

load measurement per phase (note that in the parlance used by VT, what we call a phase

VT calls a subphase, and what we call an iteration VT calls a phase; here we will use phase

and iteration, respectively). However, at the time of writing, it does not provide any load

balancing strategies that can exploit this level of per-phase load granularity.

In order to support VT applications, we wrote an adapter that allows VT to use the vector

load balancers that we developed for use in Charm++. Additionally, support for ingesting

VT load logs was added to our LB simulation tool, enabling offline analysis and testing of

various LB strategies and options with real data.

In particular, we focus on a representative dataset for EMPIRE-VT that presents fourteen

distinct phases of execution per iteration. This data set is comprised of eight colors, a

measure of the degree of overdecomposition for the particle-based work. We compare the

results of kdLB and TemperedLB [50], a novel load balancing algorithm developed by the

DARMA group, on a 32 node run of EMPIRE-VT in Figures 4.13 and 4.14. Experiments were

performed on an internal cluster at Sandia equipped with 2.0 GHz ARM Cavium Thunder-X2

processors and connected with EDR Infiniband. TemperedLB, while sophisticated in its

analysis of load distribution and migration decisions, operates only on a scalar load value

and thus is unaware of the load distribution of individual phases in the computation. kdLB,

however, utilizes a load vector of the per-phase loads in this case.

Figure 4.13 shows execution timelines of EMPIRE-VT with the two different load balancers

as provided by the tracing framework inside VT and the Projections performance analysis

tool. Time is on the x-axis and PEs from 0-31 are on the y-axis. The timestamps do not align

since these are taken from two different runs, but the timescale is the same in both timelines

and both show the same numbered iteration (304) from their respective runs, aligned for ease

of comparison. The length of time shown corresponds to approximately one iteration for the

TemperedLB run, about 263ms. For both timelines, the iteration begins at the left edge of

the chart and ends at the vertical orange line extending beyond the top and bottom borders

of the chart near the right side.

By visual inspection, it is clear that the iteration with kdLB is shorter than the iteration

with TemperedLB. Comparing the different phases shown in the timeline indicates where

this performance delta arises.

Figure 4.14 shows a high-level comparative analysis provided by VT tools. Each of the

50



(a) With TemperedLB

(b) With kdLB

Figure 4.13: Execution Timelines of EMPIRE-VT

graphs has time on the y-axis and iteration count on the x-axis. The top row of graphs shows

the overall performance delta between the kdLB and TemperedLB runs. As expected, the

plots of non-VT capable work in the bottom row indicate that there is negligible performance

difference in the non-VT capable work between the two load balancers, as this corresponds

to the cell-based work that is not load balanced and maintains the same static decomposition

as the pure MPI code. Thus, the overall performance delta is attributable solely to the VT

capable work shown in the middle row. These plots shows a divergence between the two

load balancers, with kdLB generally resulting in shorter iterations, cumulatively resulting in

approximately 12% less time spent in VT capable work across 1,000 iterations as compared

to TemperedLB.
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CHAPTER 5: HETEROGENEOUS LOAD BALANCING

In this chapter we analyze the load imbalance that arises in heterogeneous applications

and systems and the ways in which using load vectors allows us to address this imbalance.

“Heterogeneous” is a somewhat ambiguous term as used in extant literature, here we specifically

use it in the sense of a system composed of a host CPU and an accelerator device, and we call

an application heterogeneous when it contains at least one component eligible for execution

on a CPU and at least one component eligible for execution on an accelerator device such as

a GPU, and when these components are non-trivial (e.g. a CPU component must do some

meaningful work beyond merely launching and waiting for the completion of GPU kernels).

Further, we concern ourselves only with the case where these heterogeneous components

run concurrently, overlapping their execution (Chapter 4 covers the case where they run

sequentially as a series of phases).

We classify heterogeneous work into two categories: retargetable and non-retargetable.

Retargetable applications have tasks that can run on multiple different targets, i.e. they have

semantically equivalent implementations for multiple architectures that can be dynamically

selected between at runtime based on some criteria. On the other hand, non-retargetable

work can only execute on a single a priori designated target. These different types of work

may coexist in an application, but here we focus on each in isolation to avoid confounding

factors.

Section 5.1 explores load balancing for retargetable work, and Section 5.2 studies load

balancing for non-retargetable work. We focus primarily on uses of NVIDIA’s Compute

Unified Device Architecture (CUDA) due to its popularity, but our methods apply equally to

the use of any accelerator.

5.1 VECTOR MALLEABILITY FOR INTRA-NODE HETEROGENEOUS
BALANCING2

5.1.1 Introduction

Many current supercomputers derive a majority of their compute power from accelerator

devices. NVIDIA and AMD GPUs, as well as other accelerators, have already seen widespread

adoption in many Top 500 machines. As the exascale era continues, several new machines will

2Contains content previously published in [51].
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derive a sizable portion of their overall FLOPS from GPUs. These include both the Aurora

system at Argonne National Laboratory and the El Capitan system at Lawrence Livermore

National Laboratory. However, programming models and systems have been slow to adapt to

this changing environment. In this section, we examine an extension to the Charm++ parallel

programming framework that enables coordinated execution of heterogeneous tasks. We focus

on compute kernels developed for NVIDIA GPUs using CUDA. Our framework automatically

generates tasks from user-annotated functions that can be executed on either the host or

device. This strategy ensures full utilization of available hardware and reduces computation

time. In this section we examine the heterogeneous performance of two mini applications, a

two-dimensional stencil application called stencil2d and a molecular dynamics application

called md.

5.1.2 Background

The parallel structure and methods of Charm++ programs are described in a charm interface

file, which is parsed by the charm translator charmxi to generate code for the runtime. In

this work, we modify charmxi to generate both host and CUDA versions of the entry

methods tagged for execution on different devices. It can be extended to generate code for

any hardware platform, but these two targets are sufficient for our tests. We also augment

the Charm++ runtime, adding the capability to schedule heterogeneous work across the host

and device based on a provided heuristic.

Graphical processing units (GPUs) are becoming prevalent in the HPC community, as is

evident from their number over time in the Top 500. Originally intended as special purpose

accelerators for graphics applications, they are now user programmable and often referred to

as the “device” (as opposed to the CPU or “host” cores) due to their supplementary use in a

system. A variety of languages and tools for GPU programming exist (e.g. OpenCL [52],

CUDA [53], etc.), but GPUs remain more difficult to program for than traditional host cores.

Unlike CPUs, GPUs are made up of hundreds of lightweight cores grouped together into

streaming multiprocessors (SMs). These SMs share critical resources, such as registers and

shared memory. Collections of threads, called warps, are launched on these SMs and execute

in lockstep. This unique design can lead to strong performance for some highly parallel

applications, e.g. graphics, but can be hampered by its strict SIMD nature (for instance

when encountering branch divergence in code). Data movement is also a concern since the

GPU cannot directly access host memory using the usual memory bus. Therefore, data must

be copied to the device before being used, which often limits performance due to the latency
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and bandwidth constraints associated with transferring data across the PCI Express bus.

5.1.3 Related Work

Load balancing for retargetable work is well studied in literature [54], [55], but the vast

majority of work is limited to doing so for a particular problem, partitioning data across the

hardware resources in an algorithm specific way.

A similar approach to using runtimes in heterogeneous environments can be found in

the StarPU programming library [56]. They also schedule tasks, called codelets, which can

have multiple implementations targeting different hardware platforms, and they automate

data transfer dynamically across the different targets. However, StarPU does not have a

mechanism to automatically generate kernels for different platforms as our work does.

The Legion programming model [57] can also execute in heterogeneous environments using

similar techniques to those of StarPU, supporting variants of tasks and automating data

movement, but relying on explicit kernels or using some third-party generation facility such

as Kokkos.

We distinguish ourselves from other task based run times such as OmpSs [58] by offering

more generality, not requiring entire programs to be explicitly constructed as a DAG. Similar

work has also been carried out in the context of OpenCL [59], [60] with great success, but

our work can be extended to work across multiple nodes in the future, due to the distributed

nature of Charm++.

5.1.4 Methodology

Our execution model builds upon the earlier work of GPU Manager [61], which handles the

delegation and execution of CUDA kernels in the context of the asynchronous message-driven

runtime of Charm++. This allows us to focus our work on higher-level concerns, such as code

generation and dynamic target selection in our framework.

Charm++ GPU Manager

The GPU Manager operates by registering target GPU kernels with the runtime system,

and integrating with the RTS to coordinate data and execution flow between the host and

the device. This integration enables the runtime to asynchronously invoke kernels when data

is available on the device, which automates the overlap of data movement and execution as
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seen in Figure 5.1. Due to the inherent asynchrony of Charm++, it is important to ensure

that blocking operations, such as cudaHostMalloc, are handled by the system and do not

block in user code. GPU Manager also automates some tedious CUDA-related tasks, namely

copying data to and from the device before and after kernel execution.

When using GPU Manager directly, the user must write an explicit CUDA kernel and

denote buffers which need to be moved to and from the device. The programmer must also

register a callback with the runtime, which is called when the kernel is finished and data

has been copied back to the host. This step is necessary since the call to GPU Manager

returns once the runtime has copied the CUDA buffers; it does not block until the kernel has

finished. GPU manager coordinates data movement and kernel invocations through a FIFO

queue. When a PE goes idle and enough time has passed, the runtime invokes a progress

function to issue new requests to the GPU. At this time, GPU Manager attempts to offload

data for a new kernel, launch a kernel with complete data on the device, and move data for

the completed kernel back to the host. Finally, when the data for the completed kernel is

fully copied back, GPU Manager invokes the user supplied callback to continue execution.

Figure 5.1: GPU Manager

Accel Framework

The Accel Framework [62], or accel, extends GPU Manager by adding the functionality

of automatically generating CUDA kernels from specially tagged code.

accel alleviates many of the programmer productivity problems associated with using
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GPUs effectively in parallel applications by virtue of its automatic kernel generation. This

generation occurs only for entry methods annotated with the accel keyword. To improve

performance, additional tags can be applied to methods, such as splittable, which allows

methods to be split into several independent tasks, which can more fully utilize the many

processors on a GPU. Inside splittable methods, splitIndex and numSplits variables are

defined, analogous to the threadIdx and blockDim variables in CUDA. This differs from

CUDA in that the code can be targeted to a variety of platforms. A full listing of other

annotations can be found in [62].

In order to maximize GPU utilization and avoid serialization, accel tries to batch multiple

device method calls into a single kernel launch. This batching occurs when a specified count

is reached or a certain amount of time elapses. The triggered keyword informs the runtime

system that the accelerated entry method (AEM) will be invoked on every chare and that all

chares will invoke said entry method before any chare invokes it a second time. Programmers

can also specify the number of threads to be used per block in a kernel launch instead of

having the runtime automatically determine one.

It is beneficial for the RTS to minimize data movement and overlap it with computation

when possible. Data movement is automatically overlapped with computation as described

in Section 5.1.4. Method parameters are automatically copied to the device, but are not

copied back since the Charm++ model dictates that entry method parameters have no lifetime

beyond the entry method. However, object data used in an accel annotated method must be

marked as readonly, writeonly, or readwrite to indicate whether it should be copied to

the device before the start of the AEM, from the device after the completion of the AEM, or

both. Additional annotations such as shared and persistent allow the user to control the

lifetime of the data on the device. With these annotations, charmxi automatically generates

code to move data to and from the device. The implObj variable seen in the code is required

to refer to the fields of the chare itself due to the lack of a proper Charm++ compiler since

we require a handle to the chare object and its data; it can be thought of as equivalent to

this in a regular C++ object.

Listing 5.1 shows how these annotations may be used in the example AEM doCalculation.

The variables variables matrix and matrixTmp are used as input and output for doCalculation

and are linked to corresponding fields of the chare via implObj. The last token in Listing 5.1,

doCalculation post, specifies a callback invoked when the accel entry method is finished

executing. It is used in the same way as in GPU Manager but is listed here instead of as an

input or member variable due to parsing constraints. The callback is used to send messages
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to invoke other methods since Charm++ messages cannot be sent from accelerator devices.

1 entry [ t r i g g e r e d s p l i t t a b l e (NUMROWS) a c c e l ] void doCalcu la t ion ( ) [

2 readonly : f l o a t matrix [DATA BUFFER SIZE]

3 <implObj−>matrix>,

4 wr i t eon ly : f l o a t matrixTmp [DATA BUFFER SIZE]

5 <implObj−>matrixTmp>

6 ] { . . . } doCa l cu l a t i on pos t ;

Listing 5.1: Accelerated Entry Method Annotations

Host-Device Load Balancing with Accel

As described above, accel produces CUDA kernels from specially tagged entry methods,

but these entry methods can also be executed on the host CPUs of machines. Thus, at

runtime, there are two semantically equivalent compiled versions of these entry methods.

By virtue of generating multiple versions of entry methods targeted at different hardware

resources, accel has the ability to dynamically spread the execution across the available

hardware.

accel has a variety of strategies to determine where to execute particular entry methods.

The strategy is passed to as a runtime argument. Example strategies include +accelHostOnly,

+accelDeviceOnly, +accelPercentDevice, which specify a static division of work between

the computing resources. In our experiments, we manually sweep through different static

divisions to observe the performance behavior of the various configurations. However, there

are several available automated methods to find the best split, such as greedy strategies and

hill climbing. Further description of available strategies is detailed in [62].

5.1.5 Results

We analyze performance for varying distributions of work between the host and device for

two different applications, stencil2d, which implements a two dimensional stencil, and the

more complex md, which simulates electrostatic molecular dynamics. In both applications,

the main compute methods have been annotated with accel and other tuning parameters.

Our tests vary the percentage of work allocated to the device from 0% to 100% in increments

of 5%. Theoretically, hybrid computation will improve performance, since more hardware

can be used, but data transfer and batching costs create performance impediments.
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The experimental results were gathered on the Stampede supercomputer 3. In particular,

we used the visualization nodes of the system, which each feature an NVIDIA K20 GPU and

two Intel Xeon E5-2680 processors. All runs were performed on a single node of the system

with 16 Charm++ processing elements, matching the 16 cores in the node. We measured

elapsed time from the start of the calculation to the end of the last error calculation for both

applications. This does not include startup or other fixed costs.
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Figure 5.2: Timing for stencil2d

5.1.6 Stencil 2D

stencil2d performs a single-precision weighted five point stencil. Given results use a

6144x6096 2D array decomposed into 24 tiles per dimension, a 254x254 section per element.

For work performed on the GPU, the algorithm performs approximately 1.25 single-precision

FLOP per transferred byte (10 FLOP/(1 float in + 1 float out)). As shown in Figure 5.2,

3https://www.tacc.utexas.edu/stampede1/
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this low FLOP/byte ratio causes the host only case to beat the device only case. Optimal

performance occurs in the 30% device case.
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Figure 5.3: Timing for md

5.1.7 Molecular Dynamics

md executes much faster in the device only case than in the host only case. Given results use a

5x5x5 3D array with 256 molecules per array element, a total of 32k molecules. The FLOP per

byte ratio for md is higher than that of stencil2d since each particle has a relatively complex

interaction with every other particle in the simulation, requiring distance, electrostatic force,

position, and acceleration calculation and normalization. Optimal performance occurs in the

65% device case.
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5.1.8 Analysis

For both selected applications, we observe an increase in performance when using both the

host and the device as compared to using only the host or only the device.

There are some clear discontinuities in the performance of the chosen applications; see

the jumps at 60% and 85% device in Figure 5.2. These are likely a performance artifact of

the batching used in the Accel Framework. Since the GPU is a throughput-oriented device,

launching an additional batch takes much longer than adding some work to an existing batch.

This behavior is not seen for smaller allocations of work to the device because the host was

spending more time on the work than the device, so it was the dominant term.

The timing data follows a “bathtub plot”, so termed because it is low in the middle

and high on both sides. When performance follows this pattern, the goal is to set the

parameters such that execution happens in the “floor” region. As shown in Table 5.1, the

best configurations achieve speedups of between 1.46x and 3.09x relative to host only and

device only configurations.

Best Split Host Only Device Only
stencil2d 30% device 1.58x 3.09x

md 65% device 3.02x 1.46x

Table 5.1: Speedup of Best Configuration Relative to Host/Device Only

5.1.9 Caveats

Not all applications benefit from a heterogeneous execution system. Even applications

that are amenable to heterogeneous execution may not see benefit in all configurations. The

most significant reason for this is data movement. Just as HPC applications can slow down

when run on two nodes versus one node due to the effects of adding network communication,

using a GPU can degrade performance unless the application amortizes the costs of data

movement. Additionally, not all algorithms are well suited to run on the GPU. In particular,

programs that make heavy use of branching, that cannot expose enough parallelism to fully

utilize the GPU, or that are composed of a variety of disparate tasks do not perform well on

GPU hardware.

However, large HPC applications often feature a variety of different kinds of work, so it is

likely that some portion will improve when executed heterogeneously.
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5.2 VECTOR LOAD BALANCING FOR NON-RETARGETABLE WORK

5.2.1 Introduction

In this section, we study the issue of load imbalance in non-retargetable heterogeneous

applications. Existing load measurement and balancing approaches often focus solely on

tasks that execute on the CPU, ignoring the existence of accelerator devices altogether.

However, load imbalance afflicts work performed on accelerators in the same way as it does

to CPU work. This problem is increasing in importance and proliferation as GPUs continue

to improve in peak performance at a higher rate than CPUs and applications utilize GPUs

for higher and higher proportions of their entire computation.

GPUs can achieve immense performance, but they are not well suited for all workloads.

GPUs generally provide much higher memory bandwidth than CPUs and can provide higher

throughput for kernels composed of data parallel instructions with regular access patterns.

However, tasks with complicated, irregular control flow, access patterns, or data dependencies

are often better suited for execution on the CPU instead.

As discussed in Chapter 4, many modern science and engineering applications use techniques

such as multiphysics in their implementations. Each of these different physical processes are

simulated in their own particular way, some of which may be more appropriate for GPU

execution, and others for CPU execution. In addition to their core computation, applications

usually have modules for interfacing with external services, such as performing data ingestion,

visualization, or in situ analytics. All in all, applications are comprised of a diverse set of

different computations, and it is likely that a performance maximizing configuration will run

some of these on the host CPU and some on accelerators.

When these different modules execute in an overlapped fashion, with the CPU and GPU

each executing their assigned work simultaneously, iteration time is determined by which

of these resources finished their work last. Thus, rather than sum-based objective and

mapping evaluation functions used for load balancing phase-based applications in Chapter 4,

the maximum-based objective and mapping evaluation functions given in Equations (3.2)

and (3.4) apply in this case.

5.2.2 Motivation

While using retargetable tasks for heterogeneous execution has the benefit of offering scope

for dynamic runtimes to adaptively balance the workload across all of the different available

62



resources based on utilization, there are several good reasons why developers may use a

non-retargetable approach when adding support for heterogeneity to their applications.

First, writing explicit kernels to target a particular architecture allows developers to unlock

higher levels of performance and perform more detailed tuning by using non-portable low

level primitives or vendor-specific proprietary features, analogous to the use of inline assembly

or microarchitecture-specific extensions in code targeting CPUs. Additionally, supporting

only a single target lets developers take advantage of bleeding edge features that may take

much longer to be supported by general frameworks and to use specialized vendor provided

libraries, such as NVIDIA’s collective communication library NCCL [63].

Specifying the location of where to execute a task provides more predictable, consistent

performance, avoiding potential thrashing issues and enabling certain optimizations. A key

factor in achieving high performance from a heterogeneous program is limiting the amount

of data movement between the host and accelerator. This communication occurs across some

sort of bus that links the hardware resources together; for modern systems this is usually PCI

Express, with an approximate round trip time of 2 µs [64]. Higher performance proprietary

connections such as NVIDIA’s NVLink [65] exist and are sometimes used in HPC system,

such as the Summit machine at Oak Ridge National Laboratory4, but these mostly improve

the bandwidth of transfers, while latency improvements are more modest, bounded by the

physical constraints of the distance between the resources and the speed of light. Dynamic

retargeting of work requires data to be accessible from the new resource, meaning that it

must be transferred over this connection. When a task is frequently retargeted between a

CPU and GPU, it induces thrashing, as the associated data is repeatedly moved back and

forth, accumulating a large latency penalty. While researchers have developed methods that

attempt to decrease the number of necessary transfers [66], the best way of avoiding them

is often to restrict tasks to a single type of resource. Separately, when the location of data

is known, internode transfers can use optimized techniques such as remote direct memory

access (RDMA) to move data directly from the memory space of one GPU into the memory

space of a remote GPU without having to copy to and from the host memory first.

It is usually easier to add GPU support to an application in a non-retargetable way. The

official documentation for most accelerators will direct users to write code explicitly for that

platform. Additionally, there are more available training materials and it is easier to find

experienced developers for something like CUDA rather than a retargetable model, and

these retargetable models can be unreliable and lacking in support, as they often come from

4https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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academia or research laboratories lacking the funding of a large corporation.

Finally, it is often less intrusive to integrate into the structure of existing applications.

Support for retargetable work often requires the use of exotic, experimental compilers or

a new runtime system, which may be incompatible with parts of an application or require

significant porting effort, whereas direct use of an GPU may be as simple as using the vendor’s

well tested compiler for the kernel and adding a single additional library to the existing build

process. It also allows for easier use of tools like first party profilers and debuggers.

5.2.3 Related Work

Developers and users have identified CPU-GPU load imbalance as an issue for scaling the

astrophysics application ChaNGa [16] and the molecular dynamics application NAMD [15] on

modern heterogeneous machines. Both of these applications feature non-retargetable work,

determined by the suitability of different parts of their code to GPU execution.

Load balancing for non-retargetable work is well studied in literature, but almost always

only concerning itself only with GPU load balancing, ignoring the CPU. Chen et al. propose

a solution [67] that divides work into fine grain tasks and enqueues them into a set of GPU

task queues, from which GPU threads take work as they become free. This potentially allows

for heterogeneous execution and dynamic load balancing. However, they use a work stealing

approach with a persistent device kernel, instead of a central manager, and they do not show

results for mixed CPU-GPU execution as presented in this section. Fazenda et al. apply the

dynamic load balancers of Charm++ to a fully GPU-accelerated application running on top

of AMPI [68], again only balancing GPU work. Hagan et al. present a scheme [69] to load

balance a mixed simulation and visualization workload across GPUs. There are several other

similar studies [70]–[72].

StarPU [56] and Legion [57], previously discussed in Section 5.1.3, support balancing

non-retargetable work in the case where tasks only have one variant, meaning they can only

execute on a single type of hardware resource. However, compared to our approach, their

balancing schemes are more akin to the work stealing/spreading style, making mapping

decisions on the fly as new tasks become available rather than the periodic remapping we do,

and they are also more tightly wedded to their runtime systems. Additionally, we inherently

support load balancing for distributed systems, while other systems may require additional

modules or mappers to do so.
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5.2.4 Synthetic Results

Using the same configurations and parameters detailed in Section 4.4.1, with the addition

of a new exponentially distributed case where each dimension of the load vector is sampled

from an exponential distribution with λ = 0.15, we evaluate our load balancers for the

overlapped execution case. Mappings are evaluated using the maximum evaluation function

given in Equations (3.2) and (3.4). The results show the minimum, maximum (indicated

by bars), and median across one hundred runs with different RNG seeds. Note that while

these tests use up to six dimensions, load balancing across a host and accelerator in practice

generally only uses two dimensions, one for each hardware target. It is possible that future

machines may necessitate the use of more than two dimensions for load balancing by virtue

of having more complex structures than current systems, such as the use of accelerators from

different vendors on the same node or the adoption of FPGAs or other specialized hardware

in addition to the GPUs commonly used today,

Results are shown in Figures 5.4 to 5.7. In general, the rk-d and METIS strategies perform

the best for the normally distributed and complex three dimensional load scenarios at all

scales except the largest scale for the latter load scenario. The exponentially distributed case

is more interesting, with the rk-d and METIS strategies showing stepwise scaling behavior

and losing to scalar greedy in the two dimensional runs at large scale from 4,096 PEs onward.

The (exponentially, normally) distributed case is the most interesting of the lot in that

METIS performs very poorly, much worse than both of the greedy strategies for the large

scale two dimensional runs and comparably for all other cases. Meanwhile, rk-d delivers a

maximum Max : Avg ratio of approximately 1.1 across all numbers of dimensions and scales.

5.2.5 Practical Results

We evaluate the utility of our vector load balancing methods for non-retargetable heteroge-

neous work on the Delta supercomputer5 at NCSA with the mpi-linux-x86 64-cuda build

of Charm++. In particular, we use the nodes containing four Nvidia A40 GPUs and AMD

Milan 7763 CPUs, running with four Charm++ PEs per node, one per GPU.

Tests shown here use the same 3D 7-point stencil mini-app used in Section 4.5.1, modified

to add support for GPU execution and GPU load measurement. Two paradigms of work

distribution are used in the tests, separate chares and unified chares. In the separate chare

paradigm, each chare is assigned only one task per iteration, half of the chares only performing

5https://www.ncsa.illinois.edu/research/project-highlights/delta/
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Figure 5.4: Quality Comparison with 2/4/6-Normally Distributed Vectors, 8 Objects/PE
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Figure 5.5: Quality Comparison with 2/4/6-Exponentially Distributed Vectors, 8
Objects/PE
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Figure 5.6: Quality Comparison with 2/4/6-(Exponentially, Normally) Distributed Vectors,
8 Objects/PE
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Figure 5.7: Quality Comparison with 3-(Normally/Normally, Exponentially, Exponentially)
Distributed Vectors, 8 Objects/PE

CPU-based work and the other half only performing GPU-based work. By contrast, in the

unified chare paradigm, every chare has two tasks, one CPU-based and one GPU-based,

which can run concurrently with each other. The workload of each task is sampled from a

normal distribution with µ = 10 in all tests and either σ = 1 or σ = 5, depending on the test.

The tests perform weak scaling with a fixed ratio of eight objects per PE and the provided

timings are the mean of five runs with a fixed RNG seed.

As “load” is now coming from two different hardware resources in these tests, we evaluate

several different scalar load metrics with the scalar greedy strategy, only CPU timings (SG-

CPU), only GPU timings (SG-GPU), the maximum of the CPU and GPU timings (SG-Max),

and the sum of the CPU and GPU timings (SG-Sum).

Results for the tests with separate chares are shown in Figure 5.8, with σ = 1 in Figure 5.8a

and σ = 5 in Figure 5.8b. SG-CPU and SG-GPU performed very poorly in these tests; for

the sake of keeping the visualization intelligible, full results for these LBs are provided in

Table 5.2. These results are so poor because they each completely ignore one of the two

approximately equally contributing dimensions of work. The times for SG-CPU are generally

better than SG-GPU because the GPU-only chares have a small CPU workload due to kernel

launching, communication, and synchronization, preventing SG-CPU from placing all of the

GPU chares on the same PE, whereas the CPU-only chares have essentially no GPU load,

allowing SG-GPU to concentrate them onto the lightest GPU-loaded PE.

SG-Max and SG-Sum provide much better results since the resulting loads have some
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Figure 5.8: Average Iteration Time with Separate Tasks, 8 Objects/PE
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PEs Avg. Iter. Time (s)
SG-CPU SG-GPU

32 0.23 1.31
64 0.27 2.59

128 0.31 5.16
256 0.27 10.34

(a) σ = 1

PEs Avg. Iter. Time (s)
SG-CPU SG-GPU

32 0.49 0.48
64 0.50 1.40

128 0.55 0.24
256 0.64 2.71

(b) σ = 5

Table 5.2: Average Iteration Time with Scalar Greedy-CPU and Scalar Greedy-GPU

correspondence to the actual workload of the chares, but these are generally worse than the

vector-aware strategies because the scalar balancer is not aware of which hardware target the

load corresponds to. The METIS strategy is inconsistent in these tests, providing reasonably

good results competitive with the other vector LBs at 32 and 256 PEs, but giving rather

poor balance quality at 64 and 128 PEs. Vector greedy and the norm-based rk-d strategies

provide the best results for these tests overall. The greedy strategy’s weakness of making

placement decisions based on only one dimension is not an issue in these tests due to nature

of the work distribution of the separate chare paradigm. The slightly worse results given by

rk-d with the ∞ norm are likely due to noise or variability in the non-significant dimension

preventing improved placements (as an exaggerated example, placing an object with load

〈.05, 5〉 on a PE with load 〈10, 4〉 instead of one with load 〈10.05, 0〉).

Results for the tests with unified chares are shown in Figure 5.9. The different metric

variants of scalar greedy perform much better with the unified chare paradigm than they

did with separate chare paradigm, as all of the different metrics now reflect at least some

meaningful portion of the total load of each chare. All of the load balancers provide

approximately similar results in the σ = 1 case shown in Figure 5.9a, with all results being

8.5% of the best performing LB at every PE count. This is expected, as the CPU and GPU

workload for each chare should be very similar to each other due to the equivalent mean

and small standard deviation of the generating distribution. When every dimension of a

set of vectors highly correlate with each other, the problem consists of essentially only one

dimension (see Section 8.2.3 for discussion on exploiting this property in general). However,

for the σ = 5 case in Figure 5.9b, results are more similar to those seen in the separate chare

case, albeit less extreme. The scalar greedy strategy performs poorly, especially the myopic

SG-CPU and SG-GPU variants. SG-Max is the best of the scalar strategies, as the total wall

clock execution time of a chare in this test is the maximum time taken between its CPU

and GPU tasks. The vector strategies beat the scalar strategies in all cases (except for the

anomalous METIS LB at 128 PEs).
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Figure 5.9: Average Iteration Time with Unified Tasks, 8 Objects/PE
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CHAPTER 6: LOAD BALANCING WITH CONSTRAINTS

The work of the previous chapters was driven by developing load balancing strategies for

applications where runtime performance is primarily characterized by a load vector consisting

of time measurements of portions of the program. In this chapter, we study the load balancing

problem for cases where application performance or execution feasibility also depends on

non-temporal measurements.

6.1 INTRODUCTION

The load vectors to objective functions defined in Chapter 3, more specifically, Equa-

tions (3.1) and (3.2) apply when the quantities making up the dimensions of the vector

are of the same type. In particular, in a typical use case where Equation (3.1) applies, the

dimensions correspond to sequential phases of a parallel computation, each measured in units

of time, such as seconds. In that case, it is clearly sensible to add the maximum times for

each phase and to use this sum as the overall metric to assess the quality of the resulting

object mapping. Similarly, for Equation (3.2), a typical use case is for applications comprised

of tasks with overlapping execution, for example a program with some tasks that execute on

the CPU while other tasks execute on the GPU or other accelerator. Even though these are

executing on different targets, since these loads can both be measured in units of time, if the

loads may execute concurrently, the equation makes sense because taking the maximum of

the two different dimensions of load accurately describes the makespan of the application

and the combined load presented to the hardware resources of the system.

These assumptions break down when the load vector is composed of values measured

in different units, such as when the dimensions of the load vector do not all represent a

measurement of execution time. In this chapter, we will focus on how vector load balancing

can be used to deal with these situations. As we demonstrate, measuring and tracking the

load of individual objects across different types of metrics, combined with modifications to

vector load balancing algorithms to support new balancing objectives allow us to beneficially

apply load balancing to an expanded set of application and resource scenarios.

6.2 RELATED WORK

The Dynamic Resource Utilization Model (DRUM) [73], [74] assesses the demand and
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availability of multiple system resources, such as CPU time and network usage, via a

combination of static benchmarking and dynamic monitoring of applications. The model uses

a weighted sum to distill these characteristics into a scalar value they call “power”, which

it then uses as input for scalar load balancing. In their tests, DRUM provides improved

execution time over traditional methods. Reducing the problem down to scalar load balancing

allows DRUM to be used with any of the wide variety of extant scalar LB techniques, but it

also fundamentally prevents the load balancer from distinguishing the unique imbalances of

different resources.

Merkel et al. develop a system to estimate the temperature impact and power consumption

of tasks and create a scheduler that avoids overheating CPUs in [75]. By avoiding overheating

induced CPU throttling, they are able to improve the performance of their target applications,

but this is not an explicit goal and they do not explicitly consider the computational load of

tasks when making placement decisions.

Sarood et al. [76], [77] combine adjustable dynamic voltage and frequency scaling (DVFS)

with a custom temperature-aware load balancing strategy to constrain processor temperatures

and reduce cooling energy while minimizing performance loss. Similar ideas of load balancing

under frequency, power, and/or thermal constraints are explored in [78]–[80].

Bremer et al. apply constraint-based load balancing to a storm surge simulation in [81],

developing a semi-static scheme to balance cells in their application in terms of computational

load while remaining below a memory threshold, borrowing the multi-constraint refinement

algorithm from [82].

The multi-criteria graph partitioning schemes in [30] are constraint-based, not minimization-

based, allowing the caller to provide an array specifying the desired maximum threshold for

each dimension. However, in practice, these thresholds may be relaxed during the refinement

phase [31], resulting in mappings which violate the specified constraints.

6.3 MOTIVATION

When balancing with dimensions of disparate measurements, there are several problems

with the utilizing vector load balancing as we have in previous chapters:

Comparability The most glaring of these issues is that values of different types are not

necessarily comparable. Consider a set of object load vectors consisting of one dimension

measuring CPU time utilized by the object and another measuring the number of
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network messages sent by the object. When balancing with these vectors, how should

the strategy respond when faced with a situation where decreasing the maximum load

in one dimension causes an increase in the other? This question is easy to answer for

vectors where each dimension measures time spent in phases: choose the option that

maximizes the difference between the decrease and increase, as that will provide the

largest net benefit to the makespan. However, when the dimensions are of different

types, the answer to this question is much less clear. Increasing the number of messages

sent from a node may have no significant impact on application performance because

the latency will be hidden, or perhaps it may cause a large and sudden reduction in

performance because the extra messages may now cause a link to saturate or fill up a

router buffer.

In a vector with mixed types, the impact of changes in a dimension varies depending

on the dimension and overall composition of the vector. Some dimensions may tolerate

changes within some margin without affecting performance at all, whereas changing

others may cause a linear or non-linear impact on performance. Fundamentally, it is

the load balancing equivalent of trying to compare apples and oranges; there is no

meaningful way to compare such vectors without providing a customized objective

function, which we do not support as it would greatly complicate the design and

performance of load balancing strategies.

Scale While every value in a load vector must be a number by definition, the values in each

dimension may be of vastly different scale, depending on the units of the measurement

provided by the user or runtime system. Suppose the user passes in a dimension

representing the time an object has spent in a critical section in terms of clock ticks

and that is placed in the vector alongside runtime measured phase time in seconds. For

the same interval of time, the two measurements will vary by a factor of a billion! Such

a large disparity will cause a norm-based balancer, for example, to likely ignore the

dimension denominated in seconds, as its impact on the norm of the load vector will

be negligible. Thus, even when two dimensions are semantically comparable, different

scales can prevent meaningful comparison.

This can be avoided by normalization, rescaling values so that the sum of each dimension

across all vectors in the set equals one or some other constant. In order to effectively

solve this issue, normalization must be done to every dimension in the vector, but it is

unacceptable for cases with multiple dimensions of the same type where the difference

in scale is intentional and significant, such as the CPU times of a very small and a very
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large phase.

Performance Impact The formulations of the objective functions defined in Equations (3.1)

and (3.2) assume that minimizing the maximum value in a dimension (any dimension in

Equation (3.1), the largest dimension in Equation (3.2)) will improve the performance

of the application. However, this is not the case in general; take a load vector in

which one dimension represents the memory footprint of an object. Reducing the

maximum value of this dimension will reduce the amount of memory occupied by that

PE, but will likely not improve application performance (ignoring cache effects). For

such dimensions, it suffices to ensure that the maximum value merely does not exceed

the available capacity.

6.4 CONSTRAINT-BASED LOAD BALANCING

We introduce constraint-based load balancing as a solution to these problems. In constraint-

based load balancing, rather than minimizing holistically across the whole load vector, we

alter the optimization problem, instead only aiming to find a mapping that minimizes across

a subset of the dimensions such that the other dimensions remain below some specified

thresholds.

We illustrate the utility of constraint-based load balancing by examining the case of

balancing with a memory utilization constraint: A good assignment of objects to PEs in

terms of the balance of computational load may be infeasible if the objects assigned to one

of the nodes cumulatively require more memory than is available on the node, as it would

lead to a capacity induced memory allocation failure.

Although one can easily keep track of the computational load and the memory footprint

of each object, strategies based on Equation (3.1) do not make sense here since adding up

time units and memory units is clearly futile. A similar argument disqualifies the utility of

Equation (3.2) for this situation as well. One way out of this conundrum is to recognize the

total memory capacity of each load as a constraint, and then to use a constraint-aware load

balancing strategy to maintain this constraint while balancing.

We develop a new variant of our rk-d load balancing algorithm, modified to add support

for constrained load balancing, called rk-d-constraint. The design of this load balancer is

provided in Algorithm 6.1, with changes from the original version highlighted in yellow.

This new load balancing strategy accepts an additional parameter, a list of constraint
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Algorithm 6.1: rk-d Constraint Algorithm

Input: Set of objects O, set of PEs P , list of constraints C

Output: New mapping in sol

1 tree←MakeTree(P );

2 forall o ∈ sorted(O) do

3 pmin, ← FindMinNormPEConstrain(tree, o, C);

4 tree← Remove(tree, pmin);

5 sol.Assign(o, pmin);

6 tree← Add(tree, pmin);

7 end

8 Function FindMinNormPEConstrain(tree, o, C, bounds = 〈0, . . . , 0〉):
9 datamin ← tree.data[: |C|]; /* Part of the vector to minimize */

10 datacon ← tree.data[|C| :]; /* Part of the vector to constrain */

11 if tree.left 6= NULL then

12 pbest ← FindMinNormPEConstrain(tree.left, o, C, bounds);

13 end

14 if datacon[i] ≤ C[i] ∀i ∈ {1, . . . , |C|} ∧ ‖datamin + o[: |C|]‖ < normbest then

15 normbest ← ‖tree.data+ o‖;
16 pbest ← tree.data;

17 end

18 if tree.right 6= NULL then

19 oldBound← bounds[tree.dim];

20 bounds[tree.dim]← tree.data[tree.dim];

21 boundsmin ← bounds[: |C|];
22 boundscon ← bounds[|C| :];
23 if boundscon[i] ≤ C[i] ∀i ∈ {1, . . . , |C|} ∧ ‖boundsmin + o[: |C|]‖ < normbest

then

24 pbest ← FindMinNormPEConstrain(tree.right, o, C, bounds);

25 end

26 bounds[tree.dim]← oldBound;

27 end

28 return pbest
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values C. In this implementation, without loss of generality, we assume that the dimensions

to be constrained are at the end of the load vector, ergo in the last |C| positions. We split the

load vector into two parts, the first containing dimensions to be minimized and the second

containing dimensions to be constrained. Only the part used for minimization is used for

calculating norms. When performing search, a PE is only considered a viable candidate if

the post-placement norm is less than the current best norm and the constrained portion

post-placement load vector does not violate any of the constraints in C. The same applies

when deciding whether or not to prune or search the right child of a node in the tree; we use

the space partitioning properties of the tree to determine a minimum bound vector bounds for

all of the PEs contained in the right subtree and decide to pursue it only if the hypothetical

placement of the object onto bounds results in a better norm than the current best and

satisfies all of the constraints in C.

This scheme guarantees that the resulting mapping satisfies all provided constraints. This

may not be possible if C overconstrains the problem or if the search algorithm happens to

get into a state where no satisfactory PEs remain, even if the problem itself is feasible. We

intend to study how to make the search process more robust against this in the future.

6.5 RESULTS

6.5.1 Practical Evaluation

We evaluate the utility of the constraint-aware strategy in practice via testing a memory

constrained load balancing scenario with 3D stencil mini-app on the KNL partition of

Stampede26 with the mpi-linux-x86 64 build of Charm++.

The program consists of two type of objects: compute-heavy/memory-light and compute-

light/memory-heavy. The results in the figure are from a 4 node run with 28 objects, 14

compute-heavy/memory-light, with a computational load sampled from µ = 12, σ = 4 and a

memory footprint sampled from µ = 1 GB, σ = 100 B and 12 compute-light/memory-heavy,

with a computational load sampled from µ = 1, σ = 0.1 and a memory footprint sampled

from µ = 12 GB, σ = 100 B. Each node of Stampede2 has 96 GB of memory, but due to

the fact that the asynchrony of migration means that incoming objects may arrive before

outgoing objects are removed after load balancing occurs, the memory constraint provided to

rk-d-constraint was 45 GB, meaning that the physical constraint will not be violated even in

the worst case (the remaining 6 GB is reserved for the operating system, daemons, and other

6https://www.tacc.utexas.edu/systems/stampede2
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Figure 6.1: Performance Results for Memory Constrained Scenario

system services). An example configuration file showing how to express a constraint to the

load balancer is provided in Listing 6.1. Note that the constraint has no expressed units or

semantics in the configuration file, it is currently assumed that the user passes in the values

to be constrained as the last entries in the load vector with the same units specified in the

configuration file. We plan to create a more structured and expressive syntax for specifying

constraints in the future.

Figure 6.1 shows the performance results of this experiment in terms of average iteration

time. Only the run with no load balancing and the run using the rk-d-constraint strategy

1 {
2 "tree": "PE_Root",

3 "root":

4 {
5 "pe": 0,

6 "strategies": ["rKdConstraint"],

7 "rKdConstraint": {"constraints": [45] }
8 }
9 }

Listing 6.1: Example Constraint Configuration File
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completed successfully. The rk-d-constraint strategy provides a 1.37x speedup over the no

LB case. The other runs, using the greedy and rk-d strategies, resulted in mappings that

attempted to allocate memory in excess of the available capacity and crashed. These crashes

are somewhat non-deterministic, as noise or other minor variances in the actual measured

load may by chance lead to a mapping that does not violate the memory constraint.
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CHAPTER 7: SCALING VECTOR LOAD BALANCING

In previous chapters, we have focused on the improvements in load balancing quality

that vector load balancing can provide. However, another important consideration is the

runtime of the load balancing strategy itself, particularly in scenarios where load balancing is

performed several times during the execution of an application, as is the norm with dynamic

load balancing in HPC.

In this chapter, we discuss the performance characteristics of load balancing algorithms,

the performance differences between scalar and vector load balancing, our approach to and

results from creating a load balancing strategies that optimize for performance, and the

tradeoffs between performance and balance quality.

7.1 OVERVIEW

Vector load balancing is innately a more complex problem than scalar load balancing.

Scalar load balancing itself is already an NP-complete problem [83] when solving for the

optimal solution, and vector load balancing is NP-hard [20]; thus, for practical applications,

we focus on using heuristics or approximation algorithms to perform load balancing.

As compared to scalar LB, the vector case has the additional difficulties of having load

data be larger in size (as each object now has d, the number of dimensions, load entries

per object instead of 1) and, more significantly, having to organize, compare, and search

through a multidimensional space and optimize for a multidimensional objective function

when performing load balancing.

In the scalar case, strategies can exploit the fact that scalar values can be totally ordered

to use optimized data structures to quickly get the minimum or maximum object or PE, a

common operation in load balancing strategies. In the vector case, load vectors can only be

partially ordered in general, and thus there is usually no globally minimum or maximum

object or PE, but rather a set of Pareto optimal candidate objects or PEs. Finding this

Pareto frontier in the first place can be costly, and even once it is found the strategy must

still search through the frontier to find the best candidate. Our implementations use what

our testing identified to be empirically the best performing specialized data structures for

each strategy, but even so, the innate difficulty of the problem means that runtime is still

relatively long.
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Further, supercomputers continue to grow in size as measured by core count as we grow

into the nascent exascale era and inexorably march toward larger and faster machines. For

example, over the past decade, the highest core count for a machine in the top ten of the

TOP5007 list has gone from 1,572,864 for Sequoia in November 2012 to 10,649,600 for Sunway

TaihuLight in November 2022, an increase of approximately an order of magnitude. As the

number of PEs used in a job increases, load balancing correspondingly takes more time. We

can break this increase in time down into two components: managing the data structure

used to store PEs and searching the PE search space for deciding an object placement. In

the scalar case, when using the common paradigm of using a heap to store PE data, at each

step the management cost increases by a logarithmic factor of the increase in the number of

PEs, while the search cost remains constant since accessing the minimum element of a heap

is O(1). However, the cost increase for vector load balancing can be particularly acute due

to the lack of total ordering described above. Assuming the use of a balanced k-d tree to

store PE data, at each step the management cost increases by a logarithmic factor of the

increase in PE count, but the search cost may increase by a linear factor in the worst case

where every PE is in the Pareto frontier.

Exacerbating this issue of performance is the phenomenon called the curse of dimensionality.

As the number of dimensions of the problem increases, data tend toward increasing sparsity

because the hypervolume of the space grows very quickly. Additionally, due to this sparsity,

the runtime of performing spatial point queries such as searching for the nearest neighbor of

a point grows with the dimension; the distances between points are likely to be similar and

more a larger portion of the candidate space must be searched before identifying a candidate

that satisfies the search criteria.

Due to the combined impact of these factors, the execution times of the vector load

balancing strategies explored in this thesis can sometimes be multiple orders of magnitude

longer than those of the extant scalar load balancing strategies in Charm++. Even with

this additional strategy cost, vector load balancing can still show benefit with a variety of

applications in practice, as demonstrated in previous chapters. However, this runtime cost

can limit scalability or useful load balancing frequency, limiting the utility of vector LB for

large runs or very dynamic applications. The performance benefit provided by load balancing

should not be eclipsed by the cost of running load balancing itself, otherwise it is preferable

to not use load balancing at all.

An additional factor with regards to scalability is the use of parallel execution. In previous

7https://www.top500.org/

82



chapters we have discussed the design and applications of load balancing strategies and the

quality of their mapping decisions, but not how and where load balancers themselves are

actually executed. The simplest way to execute a load balancer is using a centralized scheme,

in which all of the PE and object data is gathered onto a single PE, where the load balancing

strategy is then executed serially. Due to Amdahl’s Law, for an otherwise scalable application,

this serial execution becomes an increasingly large portion of runtime as core count increases.

This is worsened by the fact that the runtime of the strategy grows with core count, meaning

this issue afflicts both strong scaling and weak scaling. In order to be suitable for large scale

parallel applications, load balancing strategies should also run in parallel as much as possible.

Taken together, all of this means that the performance and parallelism of vector load

balancing is a critical factor in its utility for applications. In the remainder of this chapter, we

describe the baseline performance of our vector load balancing strategies and the modifications

and optimizations we have developed to improve strategy performance.

In practice, load balancing time consists of three components:

1. Statistics collection, gathering load information and preparing it for balancing

2. Strategy execution, the runtime of the actual balancing algorithm

3. Object migration, the movement of objects to apply the new mapping

In this chapter, we focus on the analysis and optimization of the time spent in strategy

execution, as this component is where the largest disparity between similarly structured

scalar and vector load balancers arises. Collection time is invariant for load balancers that

run using the same execution scheme (e.g. centralized) and require the same input data

(collection can take longer if an LB needs the communication graph, for example). Migration

time can vary depending on the design of the strategy, some are specifically designed to

minimize migrations for scenarios where moving objects is costly. However, none of the load

balancers examined in this chapter take migrations into account, so we ignore migration

time in our analysis. We leave the consideration of statistics collection and migration cost as

future work, pending the inclusion of distributed or refinement-based vector load balancers.

7.2 EXPERIMENTAL SETUP

All experiments in this chapter, unless otherwise noted, were performed on a dedicated

ARM Ampere A1 CPU at a frequency of 3 GHz. Code was compiled with gcc 11.3.0

using -O3 and the -ffast-math flag, as we do not require strict conformance with IEEE 754
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floating-point specifications within the load balancing strategies.

7.3 BASELINE PERFORMANCE

We examine the baseline performance of the scalar greedy strategy, vector greedy strategy,

vector rk-d norm-based strategy, and the vector METIS strategy. Full details of the different

strategies are provided in Section 3.2. All strategies are executed in a centralized manner.

The experiments presented here range from 8 to 16,384 PEs and use a fixed overdecompo-

sition ratio of eight (meaning there are eight objects per PE), mimicking a weak scaling test.

Both axes are given in log scale. Plotted values are the median runtimes of one hundred runs

with different RNG seeds for each configuration. Two plots are shown for each load pattern,

the left one shows runtime and the right one shows runtime normalized to that of the scalar

greedy strategy.

The baseline performance of the load balancing strategies with normally distributed load

vectors of dimension two, four, and six is shown in Figure 7.1. Each dimension of the load

vector for every object is sampled from a normal distribution with µ = 10, σ = 3.

The baseline performance of the load balancing strategies with alternating exponentially

and normally distributed load vectors of dimension two, four, and six is shown in Figure 7.2.

Each exponential dimension of the load vector (i.e. first dimension in the 2D case, first and

third in the 4D case, and first, third, and fifth in the 6D case) is sampled from an exponential

distribution with λ = 0.15 and each normal dimension of the load vector is sampled from a

normal distribution with µ = 10, σ = 3.

Finally, baseline performance of the strategies with a three dimensional load problem is

shown in Figure 7.3. In this case, the first dimension of each object has an 80% chance of

being sampled from a normal distribution with µ = 1, σ = 0.1 and a 20% chance of being

sampled from a normal distribution with µ = 5, σ = 0.1. The second and third dimensions

are sampled from an exponential distribution with λ = 0.1.

7.3.1 Analysis

Across all of the different configurations, the scalar greedy strategy is the fastest in general,

as expected, since it is solving an inherently simpler problem than the other strategies. As

discussed in previous chapters, the resulting mappings of scalar load balancing for vector

problems are often poor, so we use the scalar greedy baseline not as a viable alternative
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Figure 7.1: Baseline Performance with 2/4/6-Normally Distributed Vectors, 8 Objects/PE
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Figure 7.2: Baseline Performance with 2/4/6-(Exponentially, Normally) Distributed Vectors,
8 Objects/PE
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Figure 7.3: Baseline Performance with 3-(Normally/Normally, Exponentially, Exponentially)
Distributed Vectors, 8 Objects/PE

for vector LB, but as a comparative upper bound on the maximum performance one can

reasonably achieve for LB in general. Scalar greedy runs in O(n log p) time in the worst case,

where n is the number of objects and p is the number of PEs. Regardless of the dimension

of the problem, scalar greedy treats everything as one dimensional, so increasing dimension

does not affect its performance, modulo the overheads of bookkeeping and data movement of

the larger load vectors.

The vector greedy strategy is the next fastest, slower than scalar greedy but faster than

every other vector strategy for every configuration. This is expected, since it is essentially the

same as the scalar greedy strategy, except selecting from and updating multiple PE heaps,

one per dimension, while computing object placements. Vector greedy runs in O(dn log p)

time, where d is the dimensionality of the load balancing problem. The performance gulf

to the scalar greedy strategy grows as d increases, as each additional dimension brings with

it an additional heap to update. While this provides scalable performance approximately

within a factor of d of the scalar greedy strategy, the quality of the resulting mapping is often

subpar as compared to the more holistic norm and partitioning based vector LB strategies.

The METIS strategy is the slowest strategy at small scales for all configurations. However,

as we scale the number of PEs, it matches and then outperforms the rk-d strategies. The

crossover point where METIS begins to beat the best of the rk-d strategies happens at

smaller scales as the number of dimensions in the problem increases; in Figure 7.1, we see

that the crossover point for the 2D case is 16k PEs and that it shrinks to 2k PEs for the 4D

case. As indicated by the slightly decreasing values of the METIS entries in the normalized
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runtime plots for all configurations ≥ 128 PEs, the runtime for the METIS strategy scales at

approximately the same rate as scalar greedy, but from a larger starting point, staying within

a factor of 100x. We use the multi-constraint multilevel recursive bisection scheme of METIS

in our LB strategy; internally, the coarsening, bipartitioning, and refinement performed

by METIS [30] run with a complexity of O(dn log p). In practice, the impact of changing

dimension is rather small: similar to vector greedy, METIS uses a heap per dimension, but

unlike vector greedy, each element is only in a single heap, that of the largest dimension in

its load vector. This provides METIS with scalable performance, albeit one much slower

than the greedy strategies, with runtime on the order of about one second for the 16,384

PE case across all tested load distributions. However, the quality of the mapping produced

by METIS can be somewhat inconsistent, in our testing, it generally provides good results

in cases where each dimension is similarly distributed, but it can atrophy in cases where

dimensions have different distributions, particularly at large scale.

While the norm-based strategies using rk-d have good performance for small PE counts,

their scalability is quite poor. For every tested load configuration, the rk-d strategies are

either the slowest or tied for the slowest at the largest tested scale of 16,384 PEs. Also

notable is their degree of performance degradation as dimensionality increases; as shown in

Table 7.1 at 16,384 PEs, the four dimensional case is over an order of magnitude slower than

the two dimensional case for both the normal and Pareto variants, and the six dimensional

case over 40x and 300x slower than the two dimensional case for the normal and Pareto

variant, respectively. No other tested strategy has close to the same dropoff in performance

with increasing dimensionality as these do.

A final takeaway from this set of results is that different load distributions have less

impact on performance than the dimensionality of the problem. Using the timings shown in

Figures 7.1 and 7.2, we see the same trends in scaling performance for each LB and almost

identical orderings of strategies when comparing between the data for the same dimensionality

at every PE count (the sole exception being in two dimensions with METIS outperforming

rk-d Pareto at 16k PEs for the normally distributed case but underperforming it for the

(exponentially, normally) distributed case).

Since the rk-d strategies result in the most resilient solutions in terms of quality, providing

reasonable mappings across all tested load distributions, we would like to improve the

performance of these strategies to make them tenable for use at large scale and with high

dimensional load vectors. In the remainder of this chapter, we discuss our efforts to solve

this problem and the results of these optimization efforts on the rk-d strategy.
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7.4 PARETO SEARCH

7.4.1 Motivation

In order to place each object, the norm-based strategy searches through the PEs to find a

PE with the minimum post-object placement load vector norm. While the norm-minimizing

PE changes depending on the load vector of the object, it is always a member of the Pareto

frontier of the set of PEs, as shown in Lemma 7.1.

Lemma 7.1. A norm-minimizing PE pemin for an object o is a member of the Pareto frontier

F of the set of PEs for any p-norm ‖ #»x‖p with 1 ≤ p <∞.

Proof. Recall that
#»

lo ,
#»

l pemin
,

#»

l pedom ∈ Rd
≥0. Suppose pemin /∈ F . Then pemin is dominated

by some other PE, pedom, meaning:
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Then, calculating the post-placement load vector for o:
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∥∥∥
p
<
∥∥∥ #»

l pemin
+

#»

lo

∥∥∥
p

(7.7)

Meaning pemin is not a norm-minimizing PE for o. Thus, our supposition is false and

pemin ∈ F . QED.

Remark 7.1. For the ∞-norm case, since ‖ #»x‖∞ = max( #»x 1, . . . ,
#»x d), a PE peout /∈ F may

have the same post-placement norm as the PE pein ∈ F that dominates them. However,
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peout cannot have a post-placement norm less than pein since:

0 ≤
(

#»

l pein +
#»

lo

)
i
≤
(

#»

l peout +
#»

lo

)
i

∀i ∈ {1, . . . , d} (7.8)∥∥∥ #»

l pein +
#»

lo

∥∥∥
∞
≤
∥∥∥ #»

l peout +
#»

lo

∥∥∥
∞

(7.9)

Thus, searching only through F is sufficient to find a norm-minimizing PE. QED.

Figure 7.4: Iteration of rk-d Strategy Search Process

However, the rk-d strategy may search through elements outside of the Pareto frontier, as

it has no knowledge of which PEs comprise the frontier. Figure 7.4 shows a representative

search iteration of the rk-d strategy for a two dimensional problem with 16 PEs. The x-axis

represents the first dimension of the load vector, the y-axis the second dimension, and each

point a PE, plotted based on the state of its current load vector. In this particular search

iteration, the algorithm is looking for a PE to place an object with load vector 〈10.09, 15.01〉.
Black points represent PEs that were skipped during the search, ruled out by being in a

region of the tree eliminated by some discovered candidate. Red and green points represent

PEs that were searched, red points being eventually discarded and the green point being the

final returned solution. Points circled in purple are the members of the Pareto frontier for

the given state of the PEs. There are only five PEs in the Pareto frontier, yet the algorithm

searches through a total of ten PEs.
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7.4.2 Implementation

To exploit this observation that merely searching through the Pareto frontier is sufficient to

find a norm-minimizing PE, we created a new variant load balancing strategy built atop the

rk-d strategy called rk-d Pareto. The idea behind the Pareto variant is to reduce the space

traversed by the search algorithm when placing each object by only searching through the

Pareto frontier, with the supposition that the cost of maintaining the Pareto frontier would

be less than the benefit from the smaller search space. Mapping quality does not change,

as the resulting mapping of this variant is the same as that of the regular rk-d strategy

(excepting rare situations where norms are tied, unlikely to arise in practice); the search logic

and objective are identical to the original version.

Algorithm 7.1: rk-d Pareto Algorithm

Input: Set of objects O, set of PEs P

Output: New mapping in sol

1 T ←MakeTree(P );

2 F ←MakeFrontier(T );

3 forall o ∈ sorted(O) do

4 pmin ← FindMinNormPE(F, o); /* Search only through frontier F */

5 T ← Remove(T, pmin);

6 F ← Remove(F, pmin);

7 nn← NearestNeighbor(F, pmin);

8 sol.Assign(o, pmin);

9 T ← Add(T, pmin);

10 F ← UpdateFrontier(T, nn);

11 end

Algorithm 7.1 describes the execution of the rk-d Pareto strategy; highlighted lines indicate

new additions to the baseline implementation. The frontier F is a second rk-d tree containing

only the PEs on the Pareto frontier, such PEs are contained in both the frontier F and the

overall tree T . For every object, the algorithm searches through the frontier for the PE pmin

with minimum post-placement norm, then removes it from both the frontier and the overall

tree. Then, after placing the object on pmin, pemin gets added back to the overall tree, but

not to the frontier, as it is now carrying the additional load from the object’s load vector
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and is thus no longer likely to be a member of the frontier. Finally, the frontier is updated to

include any new members, such as those that were dominated by the previous load of pmin

and no other PEs in T (note that the updated pmin may be added back to the frontier in

this step, particularly when objects with small loads are being placed).

To improve the performance of the update procedure, we find the nearest neighbor in the

frontier nn ∈ F to the pre-placement version of pmin. When updating the frontier, we first

check if candidate PEs are dominated by nn before checking if they are dominated by any

member of the frontier, as elements that were dominated by the now removed pre-placement

pmin are more likely to be dominated by nn than any other member of F .

7.4.3 Performance Results

The performance results in Figures 7.5 to 7.7 show that the Pareto variant does not provide

an improvement over the regular version in general. The Pareto variant only outperforms

regular rk-d at large scale (4,096 PEs at minimum) and, further, only for small dimensions

(two and three). For all other tested configurations, the Pareto variant is slower than its

progenitor, at times by up to an order of magnitude. Based on the shape of its scaling curve

at the high end, the Pareto variant will likely outperform regular rk-d for dimensionality

greater than three at larger PE counts than were tested, but both strategies perform so

poorly in the large scale regime that they are likely disqualifying for production use.

Table 7.1 compares the performance of the regular and Pareto rk-d strategies for load

vectors of the (Exponentially, Normally) distributed case at 16,384 PEs with increasing

dimension. As dimensionality increases, the Pareto variant goes from beating the regular

version at two dimensions to being 5.12x slower at six dimensions. In absolute terms, spending

over 100 seconds for strategy execution is untenable for many applications, particularly those

with quickly changing load patterns requiring frequent load balancing. As a point of stark

comparison, the scalar greedy strategy takes 0.03 s and vector greedy 0.24 s for the same

configuration.

Strategy Runtime (s)
2D 4D 6D

rk-d 0.81 13.19 33.22
rk-d Pareto 0.55 16.60 170.14

Table 7.1: rk-d Family Runtime at 16k PEs for (Exponentially, Normally) Distributed Load
Vectors
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(a) Two Dimensional Pareto
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(b) Four Dimensional Pareto
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Figure 7.5: Pareto Performance with 2/4/6-Normally Distributed Vectors, 8 Objects/PE
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Figure 7.6: Pareto Performance with 2/4/6-(Exponentially, Normally) Distributed Vectors, 8
Objects/PE
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Figure 7.7: Pareto Performance with 3-(Normally/Normally, Exponentially, Exponentially)
Distributed Vectors, 8 Objects/PE

The Pareto variant is also slower than all other tested strategies across all tested configura-

tions with the exception of METIS at low core counts or with low dimensionality.

Thus, while the Pareto variant does provide speedups over the baseline rk-d strategy in

certain low dimensionality, large scale situations, the improvements are relatively meager

and insufficient to allow for viable use at scale.

7.5 EARLY EXIT

7.5.1 Motivation

The Pareto variant attempts to provide performance improvement by reducing the search

space while maintaining the same quality and solution as the baseline rk-d version, analogous

to a lossless compression scheme that reduces space requirements without sacrificing fidelity

to the input data. However, in load balancing, we can tolerate loss in the quality of solutions

(in fact, as discussed in Section 7.1, every practical load balancing strategy is already using

some heuristic or approximation as balancing is NP-hard). Thus, we can afford to use the

load balancing equivalent of lossy compression, strategies that degrade quality as compared

to the baseline but which have performance improvements beyond “lossless” schemes.

To that end, we designed another variant of rk-d called early exit. In the early exit variant,

rather than thoroughly searching through the entire PE search space to determine each object

placement, the search is terminated early, trading off quality for performance. The search
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termination criterion is that some fixed number of “suitable” PEs have been found, from

which the “best” is used as the destination for the object being considered.

7.5.2 Implementation

Algorithm 7.2 describes the operation of the early exit strategy; the highlighted lines

indicate the new additions as compared to the baseline.

We take a suitable solution to be a PE such that each dimension of the post-placement

load vector of the PE does not exceed the global maximum value for that dimension across

all PEs. Or, in other words, a solution that does not increase the makespan of the mapping.

Of course, such a solution may not exist, in which case early termination does not occur and

the search space is examined to its full extent. To determine if a PE satisfies this criterion,

we maintain a maximum load vector loadmax, against which we compare the load vectors of

candidate PEs. Every time a suitable solution is found, the variable limit is decremented,

and when it hits zero, the algorithm terminates and returns the best candidate PE found so

far.

The value of limit corresponds to the number of suitable solutions that must be found

before initiating an early exit. This value can be provided by the user; larger values perform a

more thorough search of the space at the cost of decreased performance. Results for limit = 1,

5, and 10 are shown in the provided figures (denoted as Early-{1,5,10}).

In our examination of this variant, there are a few questions we would like to answer:

1. Is the suitability criterion too strict to provide a performance benefit?

2. How do different values of limit affect the scalability of the strategy?

3. Given that our suitability criterion limits early exit to cases where the makespan does

not increase, is there any appreciable benefit in using limit > 1?

7.5.3 Performance

Figures 7.8 to 7.10 compare the runtime performance of the early exit variant against the

baseline load balancers. The same pattern emerges in each of the tested load distributions

and dimensionalities: the early exit strategy performs only negligibly differently from the

standard rk-d strategy at eight PEs, but as the number of PEs increases, the early exit variant

begins to outperform the regular version. This performance delta grows with scale, as one
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Algorithm 7.2: rk-d Early Exit Algorithm

Input: Set of objects O, set of PEs P

Output: New mapping in sol

1 loadmax ← 〈0, . . . , 0〉;
2 tree←MakeTree(P );

3 forall o ∈ sorted(O) do

4 pmin, ← FindMinNormPEEarly(tree, o);

5 tree← Remove(tree, pmin);

6 sol.Assign(o, pmin);

7 loadmax ← 〈max(loadmax[i], pmin[i])〉 ∀i ∈ 1, . . . , d;

8 tree← Add(tree, pmin);

9 end

10 Function FindMinNormPEEarly(tree, o, limit, bounds = 〈0, . . . , 0〉):
11 if tree.left 6= NULL then

12 pbest, limit← FindMinNormPEEarly(tree.left, o, limit, bounds);

13 end

14 if limit > 0 ∧ ‖tree.data+ o‖ < normbest then

15 normbest ← ‖tree.data+ o‖;
16 pbest ← tree.data;

17 if (tree.data+ o)[i] ≤ loadmax[i] ∀i ∈ 1, . . . , d then

18 limit← limit− 1; /* Candidate found, so reduce limit */

19 end

20 end

21 if limit > 0 ∧ tree.right 6= NULL then

22 oldBound← bounds[tree.dim];

23 bounds[tree.dim]← tree.data[tree.dim];

24 if ‖bounds+ o‖ < normbest then

25 pbest, limit← FindMinNormPEEarly(tree.right, o, limit, bounds);

26 end

27 bounds[tree.dim]← oldBound;

28 end

29 return pbest, limit
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(b) Four Dimensional with Early Exit
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(c) Six Dimensional with Early Exit

Figure 7.8: Early Exit Performance with 2/4/6-Normally Distributed Vectors, 8 Objects/PE
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(b) Four Dimensional with Early Exit
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Figure 7.9: Early Exit LB Performance with 2/4/6-(Exponentially, Normally) Distributed
Vectors, 8 Objects/PE
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Figure 7.10: Early Exit LB Performance with 3-(Normally/Normally, Exponentially,
Exponentially) Distributed Vectors, 8 Objects/PE

would expect, since the fixed count early termination condition means that the proportion

of total PEs that the early exit variant avoids searching grows with the number of PEs.

In the experimental data, this culminates with the early exit variant with limit = 1 being

approximately an order of magnitude faster than the regular rk-d strategy at 16,384 PEs for

each of the tested load distributions. Thus, as opposed to the Pareto variant, the early exit

variant does indeed provide an effective method to improve load balancing performance at

scale.

With regards to our earlier questions, based on these results, it is clear that the strictness

of the suitability criterion is not excessively restrictive, the early exit variant is able to

improve upon the performance of rk-d. In fact, Figure 7.11, described in more detail below,

shows that the early exit pathway is used by almost every placement for the two tested six

dimensional cases.

Varying the value of limit affects the observed performance of the early exit variant. A

smaller value causes performance to decouple from that of the base version at a smaller PE

count and results in a lower runtime across all tested scenarios. The best performance is

achieved when limit = 1, but all tested values result in performance benefits at large scale,

reducing the slope of the performance curve at the high end of scaling.

Interestingly, unlike the results of the Pareto variant, here the load distribution has an

effect on the ranking of strategies by performance at the high end of scale. Namely, in the

six dimensional tests at 16,384 PEs, early exit with limit = 1 is faster than METIS for the
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normally distributed case, taking 1.12s and 1.46s, respectively, while early exit is slower

than METIS for the case with alternating exponentially and normally distributed loads,

taking 3.82s and 1.49s, respectively. A similar reversal occurs for the same strategies and

distributions in the four dimensional case.

0 25000 50000 75000 100000 125000

Iteration

0

20000

40000

60000

80000

100000

120000

C
um

ul
at

iv
e

N
um

be
ro

fE
ar

ly
E

xi
ts

0 25000 50000 75000 100000 125000

Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
um

ul
at

iv
e

N
um

be
ro

fP
E

s
S

ea
rc

he
d

×108

Optimization Indicators vs. Iteration

normal
exp normal

Figure 7.11: Comparison of Cumulative Early Exit Performance Indicators for 6-Normally
and 6-(Exponentially, Normally) Distributed Vectors, 8 Objects/PE, 16,384 PEs

Figure 7.11 compares the median, minimum, and maximum of the cumulative number of

early exits and cumulative number of PEs searched across one hundred runs of the early exit

variant with limit = 1 for the two different six dimensional distributions at 16,384 PEs. As

the figure shows, the progressions of the number of early exits for both load distributions are

almost identical, with a median of 114,535 for the (exponentially, normally) distributed case

and 114,387 for the normally distributed case (note that in our actual implementation, the first

|P | objects are each placed on separate PEs without performing a search, clearly visible in the

figure as the flat section during the first |P | iterations, so only 8 ∗ 16, 384− 16, 384 = 114, 688

iterations are eligible for the early exit optimization in this configuration). However, there is

a sizable gulf in the number of PEs searched, with a final cumulative median of 1.17× 108

for the (exponentially, normally) distributed load vectors and 3.55× 107 for the normally

distributed load vectors.

The difference in the number of PEs considered is likely caused by disparities between the

distributions of each dimension. When the dimensions have different distributions or use

different parameters for the same distribution, the search algorithm tends to more thoroughly

search PE along the “smaller” or less variable dimensions than in uniform cases. This occurs

because changes in such dimensions have a smaller effect on the norm than changes in

101



the “larger” or more variable dimensions, due to the non-linearity of the norm calculation

(excepting the 1-norm, which we do not consider since it is equivalent to scalar load balancing

and leads to poor quality mappings). This phenomenon is exacerbated by the fact that

the early exit variant only allows early termination when it also finds a new candidate

that improves upon the PE with the current best post-placement norm, meaning that if a

candidate with a relatively small norm that violates the early exit suitability criterion is

found, often many criterion satisfying PEs will be searched but rejected because they do not

improve upon the current best post-placement norm. As the number of dimensions increases,

this becomes increasingly likely and may exponentially increase the number of rejected PEs

as it searches through each such dimension.

Se
ar

ch
 O

rd
er

Figure 7.12: Early Exit Long Search Example

This effect is illustrated in Figure 7.12. The color gradient indicates searched PEs and

their search order, dark blue PEs were searched first, and dark red PEs were searched last.

Black PEs were never searched. The dark green PE with a larger marker at the bottom of

the plot is the PE chosen for placement. The figure shows a single iteration of the algorithm

processing a two dimensional (exponentially, normally) distributed problem, placing an object
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of load 〈8.51, 11.36〉 and the maximum load vector is 〈84.81, 50.51〉. Thus, any PE with load

less than or equal to 〈76.30, 39.15〉 satisfies the suitability criterion for this object, shown as

the shaded gray region in the figure. However, because of the extant structure of the tree,

the search algorithm begins searching in the top left of the plot, where it finds a candidate

PE that exhibits the problematic combination of a small norm and violation of the early exit

criterion. The algorithm then searches through many PEs in the satisfactory region before

finally finding a PE with a smaller post-placement norm and returning it.

7.5.4 Quality

Because the early exit variant has different return conditions than the regular rk-d strategy,

the resulting mappings differ from those of the regular version in most cases.

Figures 7.13 to 7.15 compare the quality of the early exit variant against the baseline load

balancers, scored via the sum-based metric defined in Equation (3.1). Broadly, the quality

of the mappings produced by early exit are very similar to those produced by regular rk-d,

with only minor degradations.

Table 7.2 shows quality results for the early exit variant normalized to the median of

regular rk-d. The results in the table are aggregated across all experimental configurations,

meaning the reported minimum value is the minimum across all of the different tested load

distributions, likewise for the maximum, and the reported median is the median of each load

configuration’s median. Lower values are better, indicating a more balanced mapping.

At worst, the maximum Max : Avg ratio observed for early exit is approximately 15%

worse than the corresponding median result given by the rk-d baseline, and the median ratio

is at most 2% worse than the baseline.

Table 7.2 indicates that the value of limit affects the quality of the results, with quality

generally improving as limit increases and the search space is more thoroughly searched,

meaning PEs with smaller post-placement norms are found before performing the early exit.

Ignoring the small scale regime < 128 PEs where the early exit performance optimization

is much less impactful, moving from limit = 1 to 5 to 10 improves the maximum observed

normalized Max : Avg ratio from 15% worse than the median of rk-d to 7% and then to 6%,

respectively. However, the median solutions for each tested value of limit have a much tighter

spread, with only the limit = 1 case differing from the baseline, and even then only by 2%

at worst. The same applies for the minimum values, with all of the early exit strategies are

within 1% of each other.
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(c) Six Dimensional with Early Exit

Figure 7.13: Early Exit Quality Comparison with 2/4/6-Normally Distributed Vectors, 8
Objects/PE
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Figure 7.14: Early Exit LB Quality Comparison with 2/4/6-(Exponentially, Normally)
Distributed Vectors, 8 Objects/PE
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Figure 7.15: Early Exit LB Quality Comparison with 3-(Normally/Normally, Exponentially,
Exponentially) Distributed Vectors, 8 Objects/PE

These results indicate that the early exit variant generally provides high quality results

while also providing a performance benefit over normal rk-d, as discussed in Section 7.5.3.

While there are some cases where our testing reveals that quality may suffer relative to the

baseline, this degradation is generally small and can be tuned by the user via altering the

limit parameter.

7.6 HIERARCHICAL LOAD BALANCING

7.6.1 Motivation

The previous two optimizations, Pareto search and early exit, are based on modifying

the behavior of the load balancing strategy itself, attempting to improve performance by

reducing the search space via algorithmic adjustments. However, altering the algorithm is

not the only way to reduce the search space, one can also change the inputs to the strategy,

providing a smaller set of PEs, for example.

Figure 7.16 shows the performance impact of using a smaller set of PEs with the baseline

LB strategies. As opposed to previous scaling plots in this chapter where the number of

objects is a fixed multiple of the number of PEs, here the number of objects remains fixed

at 128k for all PE counts (128k objects corresponds to the value used at 16k PEs in the

other plots, which use eight objects per PE). Analyzing the figure, we see that all of the

strategies decrease in runtime as the number of PEs decreases and that the rk-d strategy has
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Strategy
PEs

8 16 32 64 128 256 512 1K 2K 4K 8K 16K

rk-d
Min 0.94 0.93 0.94 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max 1.10 1.08 1.06 1.07 1.06 1.04 1.04 1.03 1.05 1.05 1.05 1.03

Early-1
Min 0.94 0.92 0.91 0.97 0.98 0.96 0.98 0.98 0.97 0.99 0.99 0.99
Median 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.01 1.02
Max 1.09 1.09 1.11 1.13 1.13 1.13 1.14 1.15 1.10 1.12 1.10 1.08

Early-5
Min 0.94 0.93 0.93 0.96 0.97 0.96 0.98 0.98 0.98 0.98 0.98 0.98
Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max 1.10 1.08 1.05 1.06 1.06 1.06 1.07 1.07 1.07 1.06 1.06 1.07

Early-10
Min 0.94 0.93 0.94 0.95 0.97 0.97 0.98 0.97 0.98 0.98 0.98 0.98
Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max 1.10 1.08 1.06 1.07 1.06 1.04 1.04 1.04 1.05 1.04 1.05 1.04

Table 7.2: Quality of Early Exit with Varying limit Normalized to Median of rk-d

the highest rate of change as the number of PEs changes.

While reducing the number of PEs improves performance, in doing so, we solve a smaller

problem than the one we need to solve, so how can we apply this approach to the LB problem

at hand? Such smaller problems can be hierarchically composed to provide a solution to

the original problem. To do so, we coarsen the original input data, combining multiple

PEs from the original set of PEs to a single virtual “PE”. The number of PEs to combine

is configurable, specified by setting the value of a coarsening factor variable fcoarse. The

coarsening process thus creates a new set of virtual “PE”s of size |P |/fcoarse. Objects placed

on these virtual “PE”s will eventually be mapped to one of the corresponding original PEs.

After coarsening, we use this new smaller virtual “PE” dataset as an input argument

along with the entire set of objects for an invocation of the LB strategy. Then, we use

the resulting object mapping and the corresponding uncoarsened PEs as input for multiple

invocations of the strategy, one for each of the |P |/fcoarse coarsened “PE”s. Each of these

invocations takes as input the set of objects assigned to the coarsened “PE”, a set of average

size |O|/(|P |/fcoarse), and the subset of the original PEs that were combined to form the

corresponding coarsened version, of size fcoarse; each of these input sets is orthogonal to

those of all other such invocations. Then, the union of the resulting mappings from these

invocations is a solution to original problem, mapping all of the objects to non-virtual PEs.
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Parallelism

Because the invocations which use the results of the invocation with coarsened data all

operate on orthogonal sets of PEs and objects, another benefit of this hierarchical execution

scheme is that they can run in parallel, and, further, can be run in a distributed manner. A

centralized scheme where the strategy is only invoked once with all of the relevant input data

can only utilize multiple cores if the algorithm itself is parallelized. Doing so can be tricky

from both the correctness and performance perspectives, especially for algorithms in which

each iteration operates on the same shared data structure, such as via the modification of a

tree or a heap, as LB strategies are wont to do. Also, it requires invasive modification of the

logic of the LB strategy, while the hierarchical execution scheme requires no code changes.

Finally, even if the algorithm is parallelized, it can likely only take advantage of shared

memory parallelism, limiting the scope of the potential performance benefit. Strategies can

be restructured to run in a distributed way, but this is a decidedly non-trivial paradigm shift,

necessitating the addition of potentially costly network communication and additional logic

to coordinate the decision making process among all of the distributed participants.

To explore the viability of parallelism for non-hierarchical vector load balancing, we

implemented a shared memory parallel version of the regular rk-d strategy which operates in

a batched manner, first searching for norm-minimizing PEs mappings for a batch of objects

in parallel without actually placing any of them, then placing each one serially, performing

another search on the current updated state of the tree if any previous object in the batch

was mapped to the same PE. The quality results were in line with the serial version (albeit
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slightly different due to a different exploration order), but we were never able to observe a

significant performance benefit.

7.6.2 Related Work

Ahmad et al. introduce the idea of hierarchical task placement in an attempt to create a

hybrid of the centralized and fully distributed approaches. In [84], they describe a hierarchical

(which they call “semi-distributed”) task placement scheme wherein the system is partitioned

into orthogonal regions. The scheduler first attempts to place tasks within their originating

region, but will place tasks into other regions if the load of the lightest loaded local node

exceeds some threshold.

Zheng et al. develop tree-based hierarchical load balancing methods with Charm++ in

[85]. These hierarchical load balancing methods are used to improve the load balancing

performance at large scale for NAMD in [86]. Our implementation builds upon this work,

modernizing and reimplementing it to increase its flexibility and add support for vector load

balancing.

Bak et al. create a hierarchical load balancing approach combining the periodic load

balancing of Charm++ with intra-node work stealing via OpenMP tasks in [87].

Teresco et al. use a hierarchical balancing scheme to apply different load balancers at

different levels of the system, using a graph partitioner which minimizes communication

between nodes, but potentially leaves some compute imbalance at the inter-node level, and

then applying a faster geometric partitioner for intra-node balancing in [88].

Lifflander et al. compare the performance and quality of a hierarchical persistance-based

balancing scheme to a centralized scheme and balancing via retentive work stealing [89],

finding that the hierarchical scheme delivers good performance, especially at scale, and

deficiencies in quality can be mitigated via coupling it with a performance work stealing

scheme.

7.6.3 Implementation

To support hierarchical execution, we implemented a new load balancing framework

calledTreeLB. TreeLB fully decouples the algorithmic part of the strategy from execution

structure, statistics collection, and object migration. This separation simplifies the imple-

mentation of load balancing algorithms and provides tremendous flexibility in terms of how
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strategies are utilized.

TreeLB, as the name suggests, consists of a tree-based execution structure. Leaf nodes

correspond to PEs, and each non-leaf node in the tree is responsible for the set of PEs formed

by the union of the domains of its children. The top level always consists of a solitary root

node and the bottom level always consists of |P | nodes, one for each PE, but the number of

and branching factor for the intermediate levels in the tree are configurable by the user.

In the parlance of programming languages, TreeLB is essentially an abstract class. It is not

in itself a load balancing strategy, rather, it offers a way to create a customized LB strategy

by composing different load balancing algorithms into a tree of the specified structure. Each

non-leaf level of the tree requires the user to select a load balancing algorithm for use at that

level.

At a high level, a TreeLB-based strategy proceeds as follows:

1. PE level load information is gathered at the leaves.

2. Load data are passed up to the parent node. The data are potentially coarsened at

each level, and data continue to be passed up until reaching the root or a disabled level

(coarsening and disabled levels are explained in the description of per-level LB options

given below).

3. The highest enabled level runs its specified load balancing algorithm with the data

passed in from its children.

4. The resulting mapping is passed down the tree until reaching the leaves. Uncoarsening

and further invocations of load balancing occur at each level if coarsening is enabled.

5. Leaf nodes process the new mapping, issuing migration requests for resident objects

that have a new PE assignment.

There are two ways in which these per-level load balancers may be used:

Step Interval The user may specify a interval for each level of the tree more than one level

removed from the leaves. By default, the load data from the PEs are passed all the

way up to the top of the tree whenever load balancing is called, running the algorithm

specified at the root and proceeding back down the tree as configured. However, when

a step interval is provided for a level, data and control flow only pass to that level

and beyond if the number of the load balancing step is divisible by the given interval.

When the step number is not divisible by the specified interval of the parent level, each

node at the current level uses the load balancer of the current level to independently
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and concurrently balance load among the PEs in its subtree. This enables use cases

such as performing LB across the PEs of a physical node at high frequency (migrations

are local and thus cheap, but only intra-physical node imbalance can be corrected),

and performing global LB at low frequency (migrations are more expensive, but system

wide imbalance can be fixed).

Coarsening When the user enables coarsening at a given level, load data are coarsened when

passed up the tree, and the resulting mapping received from its parent is uncoarsened

when being passed down the tree. When a level performs uncoarsening, it has to

execute its given LB algorithm to map the objects it receives to the uncoarsened PEs

(we assume here that we are only coarsening PEs; it is also possible to coarsen objects).

When coarsening is used, load balancing consists of a series of sequential phases starting

at the top of the coarsening hierarchy (usually but not necessarily the root, depending

on the configuration) and progressing down the tree, since uncoarsening cannot run

until the parent provides a mapping.

These two options are not exclusive, users may both enable coarsening and specify intervals,

in which case coarsening is performed and data are passed up when the parent level is enabled,

otherwise coarsening does not occur and load balancing proceeds for the subtree as described

above.

Figure 7.17 shows example two level and three level trees. The two level tree in Figure 7.17a

runs in a centralized manner, collecting all load data onto a single root PE, executing the

selected load balancing algorithm on that PE with a global view of the load data, and finally

broadcasting the new mapping back to each of the PEs. The three level tree in Figure 7.17b

runs in a hierarchical manner, the intermediate level performing coarsening and/or subtree-

only balancing depending on the configuration. We have assigned labels to the intermediate

level of the tree assuming that it is being used for coarsening, denoting each node with its

virtual “PE” (VPE) index, each corresponding to four actual PEs.

Trees consisting of more than three levels are also supported, although the logarithmic

nature of tree decomposition and the allowance of arbitrarily large branching factors means

that it is unlikely that trees with many levels will be useful. Additionally, using a tree with

fewer levels and/or a larger branching factor tends to improve load balancing quality, as

increasing subtree sizes at low levels provides the load balancer a broader view of the state

of imbalance and increased scope to mitigate it. We corroborate this claim via the results

in Section 7.6.5.

TreeLB is configured by passing in a configuration file at runtime, such as the example shown
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Figure 7.17: TreeLB Structure Diagrams

in Listing 7.1. This configuration creates a three level tree, the size of the intermediate level

automatically determined by the number of processes in the job. The top and intermediate

levels use the rk-d strategy with the 4-norm and coarsened hierarchical execution is enabled.

7.6.4 Performance

Figures 7.18 to 7.20 compare the performance of hierarchical execution against the baseline

strategies. The hierarchical executions all use three level PE-intermediate-root trees configured

to use the normal rk-d balancing algorithm with the 4-norm at the intermediate and root

levels. Coarsening is enabled at the intermediate level, and the coarsening factor fcoarse varies

from 64 to 1024, as labeled in the legend.

To reiterate from Section 7.6.3, because these experiments are using three level trees with

hierarchical coarsening, load balancing consists of two sequential phases. In the first phase,

the root level balancer runs using coarsened PE data (e.g. in the hierarch-256 case, the root

level balancer assigns every object to one of |P |/256 virtual PEs; each virtual PE corresponds
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(b) Four Dimensional with Hierarchical Execution
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(c) Six Dimensional with Hierarchical Execution

Figure 7.18: Hierarchical Performance with 2/4/6-Normally Distributed Vectors, 8
Objects/PE
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(b) Four Dimensional with Hierarchical Execution
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(c) Six Dimensional with Hierarchical Execution

Figure 7.19: Hierarchical LB Performance with 2/4/6-(Exponentially, Normally) Distributed
Vectors, 8 Objects/PE
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1 {
2 "tree": "PE_Process_Root",

3 "root":

4 {
5 "pe": 0,

6 "strategies": ["rkd4"]

7 },
8 "process":

9 {
10 "strategies": ["rkd4"],

11 "coarsen": true

12 }
13 }

Listing 7.1: Example TreeLB Configuration File
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Figure 7.20: Hierarchical LB Performance with 3-(Normally/Normally, Exponentially,
Exponentially) Distributed Vectors, 8 Objects/PE

to 256 real PEs). After the first phase completes, the mapping from objects to virtual PEs

is given to the intermediate level. Each node in the intermediate level then concurrently

uncoarsens, running the intermediate level load balancer to remap the objects assigned to

its virtual PE to real PEs (e.g. continuing the earlier case, each of the |P |/256 nodes of the

intermediate level remaps its objects across the 256 PEs in its subtree).

Thus, the reported time for the hierarchical executions in Figures 7.18 to 7.20 is the sum

of the time taken for the root level load balancer invocation and the maximum time taken by

any of the invocations of intermediate level load balancers. Even though we are making more

calls to load balancing algorithms when executing hierarchically, performance is markedly

than the centralized rk-d strategy, as each invocation works on a smaller set of input data

and concurrency at the intermediate level allows for parallel execution.
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The performance of the hierarchical and centralized rk-d are effectively at par when

|P | ≤ fcoarse, modulo minor overhead for hierarchical execution in the small scale of 8-32

PEs. This is expected, as coarsening leads to only a single PE at the root level, resulting in a

trivial mapping, and the intermediate level only consists of a single node, which performs load

balancing with the same inputs as the centralized case receives. However, when |P | > fcoarse,

the performance of the hierarchical and centralized versions decouple, with the runtime of

the hierarchical version growing much more slowly than the centralized version. This same

pattern occurs across all tested load configurations and values of fcoarse. The runtime growth

rate of the hierarchical version slowly increases as we scale upward from the decoupling

point, but both growth rate and absolute runtime remain well under the centralized version

universally post-decoupling. The performance gulf between the centralized and hierarchical

versions exceeds two orders of magnitude for both tested six dimensional load vector cases at

16,384 PEs.

Interestingly, for the four and six dimensional cases at large scale, hierarchical rk-d is

faster than even the centralized greedy strategy (but it never outperforms the centralized

scalar greedy strategy). The hierarchical strategies also outperform the METIS strategy in

all tested cases. This would likely not hold at larger PE counts, as the runtime of hierarchical

cases with small fcoarse is growing faster than METIS at large scale.

7.6.5 Quality

Figures 7.21 to 7.23 compare the quality of the results of hierarchical executions of rk-d to

those of the baseline strategies.

Using coarsened hierarchical load balancing trades off performance for quality. No single

invocation of the load balancing strategy ever sees a detailed global view of the entire PE

space, its scope either limited to only a subset of PEs or the coarsened representation of

the whole PE space. The size of both of these views is dependent on the coarsening factor

fcoarse. As fcoarse increases, the root sees fewer virtual PEs, but each leaf invocation of the

load balancer has a larger subset of PEs to assign its allotment of objects to, increasing the

quality of the resulting mapping.

The dimensionality of the problem also affects the decrease in quality. As our results show,

as the number of dimensions increases, the quality of the hierarchical LB mappings decreases

relative to those of the the centralized version.

For the normally distributed load vectors, the quality of the mappings from the hierarchical
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(a) Two Dimensional with Hierarchical Execution
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(b) Four Dimensional with Hierarchical Execution

8 16 32 64 128 256 512 1k 2k 4k 8k 16k
PEs

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
ax

/A
vg

R
at

io

LB Quality vs. PEs (sixphase-normal, 8x)

scalargreedy
greedy
rkd-4
metis
hierarch-64
hierarch-128
hierarch-256
hierarch-512
hierarch-1024

(c) Six Dimensional with Hierarchical Execution

Figure 7.21: Hierarchical LB Quality Comparison with 2/4/6-Normally Distributed Vectors,
8 Objects/PE
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(a) Two Dimensional with Hierarchical Execution
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(b) Four Dimensional with Hierarchical Execution
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(c) Six Dimensional with Hierarchical Execution

Figure 7.22: Hierarchical LB Quality Comparison with 2/4/6-(Exponentially, Normally)
Distributed Vectors, 8 Objects/PE
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Figure 7.23: Hierarchical LB Quality Comparison with 3-(Normally/Normally, Exponentially,
Exponentially) Distributed Vectors, 8 Objects/PE

executions becomes progressively worse beyond its decoupling point, with the Max : Avg

ratio increasing roughly logarithmically (note that these are semi-log plots). Even with this

degradation, the quality is still better than that of the greedy strategy in all tested cases.

The quality discrepancies for the (exponentially, normally) and (normally/normally, expo-

nentially, exponentially) cases are smaller, with all hierarchical executions delivering better

quality mappings than every other tested strategy outside of centralized rk-d.

Overall, hierarchical LB provides a dramatic performance improvement at the cost of a

low to moderate degradation in quality, depending on the distribution of the load vector.

Both performance and quality depend on the selected value of fcoarse, providing users with a

degree of tunability to adjust this tradeoff according to their preferences.

7.7 CONCLUSIONS

Performance is a critical aspect of load balancing for parallel applications using HPC. Such

applications are often specifically crafted and tuned to eke out every bit of performance

possible from the machine. Even if the use of load balancing improves the application

mapping and resource utilization, it is usually untenable if that comes at the cost of lengthy

strategy runtime; the benefit provided by balancing should be higher than its cost. Such

considerations are particularly acute for vector load balancing, given the increased complexity

of the problem. Luckily, the optimizations explored in this chapter show that the performance
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of load balancing can be improved by a variety of techniques.

Interestingly, the results shown in this chapter indicate that the performance characteristics

of the tested load balancing strategies largely do not vary across different distributions of

load vectors (with the notable exception of the early exit variant as dimensions increasingly

vary), whereas differences in the dimensionality of load vectors have a significant impact on

performance.

One potential future line of work is to analyze the impact of combining the different

approaches from this chapter. Searching through only the Pareto frontier, terminating early

when promising results are found, and executing with hierarchical coarsening are all mutually

compatible optimizations and thus can be applied simultaneously.
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS

8.1 CONCLUDING REMARKS

In this thesis, we analyze the causes, structure, and mitigation of complex load imbalance in

parallel applications. We propose using vector load balancing as a way to improve application

performance in a variety of scenarios. Specifically, we provide an overview of the concepts and

history of scalar load balancing and its application in the parallel programming framework

Charm++ in Chapter 2, formulate the mathematical background and design new load balancing

strategies that support vectors of load in Chapter 3, discuss the factors giving rise to phase-

based applications and their need for vector load balancing in Chapter 4, consider the benefits

of runtime support for malleable vector scheduling and vector load balancing for programs

that use accelerators in Chapter 5, examine scenarios with disparate load measurements and

the addition of constraint support to vector load balancing schemes in Chapter 6, and finally

analyze the scalability of vector load balancing and introduce performance optimizations in

Chapter 7. We show that vector load balancing offers advantages that scalar load balancing

fundamentally cannot provide and validate our techniques with simulated and practical runs

of benchmarks, miniapps, and production applications. Vector load balancing improves upon

the applicability, utility, and resilience of scalar load balancing, enriching the landscape of

parallel computing and enabling ever greater performance as software and machines grow in

scale and complexity.

8.2 FUTURE DIRECTIONS

8.2.1 Alternative Data Structures

As discussed in Section 3.2.2, we tested several different implementations for a norm-based

load balancer before ultimately settling on using the relaxed variant of the k-d tree as the

core data structure. However, there are other potential data structure candidates that we

did not fully evaluate in our prototyping process. The family of data structures useful for

this problem are called metric trees, introduced by Uhlmann in [90], of which the k-d tree

and its variants are members. This family of trees should be more thoroughly explored in

the context of vector load balancing; such experimentation may be able to improve upon the

performance of the rk-d tree-based version.
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One particular data structure of interest is the range tree, developed by Bentley in [91].

Range trees allow for multidimensional range-based queries, returning all entries which fall

within the specified range. This data structure, coupled with a search optimization called

fractional cascading [92], may be usable for implementing a high-performance alternative

version of the norm-based load balancing algorithm.

8.2.2 Communication-Aware and Migration-Aware Load Balancing

In this thesis, we focus on load balancing in the “pure form”, i.e. we consider only the data

contained in the load vector, ignoring other factors that affect overall performance in practice,

such as the cost of migrating objects when applying load balancing decisions and the effect

of object mappings on communication cost. Empirically, for certain classes of applications

such as those with heavy communication, these other factors often are more important to

total execution time than improving the mapping from a computational load perspective.

Thus, new load balancers that take vector loads into account while also considering these

factors of communication and migration cost should be constructed. Existing communication-

aware load balancers using techniques such as layout based on space-filling curves (SFC),

orthogonal recursive bisection (ORB), and graph partitioning (such as METIS) can be

extended to use vector loads when making placement decisions, changing the resulting load

distribution without sacrificing the contiguity of their partitions. A similar integration is

possible with migration-aware load balancers, as well, avoiding migration when each dimension

is within some factor of the average load in that dimension, for example.

However, the additional limitations imposed by this communication or migration awareness

can make it difficult for a vector load balancer to realize benefits over a scalar load balancer,

as certain mapping choices that improve computational or other vector balance may worsen

the communication locality. We implemented a vector-aware version of an ORB strategy to

use with ChaNGa [16], but testing showed no improvement over the extant scalar version.

One potential solution to this lack of improvement is to relax the strictness of the partitioning

requirements; rather than strictly bisecting along a hyperplane as in ORB, one may bisect more

fuzzily, allowing elements within some threshold distance of the splitting hyperplane to be

placed in either partition depending on their load vector, potentially worsening communication

cost while improving computational load balance. This technique of trading off one factor for

another is essentially the main idea behind vector load balancing itself, and it seems likely

that it can provide benefits here as well.
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8.2.3 Dimensionality Reduction

As discussed in Chapter 7, a significant difficulty with vector load balancing is managing

the performance of load balancing strategies. The hierarchical schemes developed in that

chapter reduce strategy runtime by running the LB strategy multiple times at different

levels of a hierarchical tree and shrinking the set of PEs considered by each invocation via

partitioning and coarsening, reducing the size of the PE search space. While this hierarchical

approach is effective in reducing runtime, there are other complementary techniques that can

also provide speedups by reducing search time, such as dimensionality reduction.

Rather than reducing the number of PEs to be searched, dimensionality reduction shrinks

the search space and search complexity by reducing the number of dimensions of the problem

itself. One of the core concepts in dimensionality reduction is the difference between the

representational dimension and intrinsic dimension of a dataset [93]. The representational

dimension is the actual number of dimensions a given dataset uses in its representation,

whereas the intrinsic dimension is the number of dimensions that an embedding of the

same dataset requires in order to maintain distances between points. For example, a dataset

D = {p ∈ R3|pz = 1.0} where the z coordinate of every point is the same has a representational

dimension of three, but an intrinsic dimension of two (assuming the data are not arranged

along a single line or at a single point; in these degenerate cases, the intrinsic dimension

would be one or zero, respectively).

While embedding a dataset into its intrinsic dimension maintains the distance between

points in the dataset, meaning it does not affect the results of computations such as clustering

or nearest-neighbor search, it does not necessarily preserve the distance between points and

the origin, and so is not a norm-preserving transformation in general.

For load balancing applications, since we are concerned about the sums and norms of

load vectors, we prefer to utilize norm-preserving dimensionality reduction methods, such

as principal component analysis (PCA) [94], which only uses norm-preserving rotational

transformations. Since the resulting components of PCA are sorted by the amount of variance

they represent in the underlying data, a dimensionality reduction scheme may keep only the

first few components, potentially reducing the representational dimension of the new dataset

below the intrinsic dimension of the original. While this can lead to a loss of information,

the transformation ensures that this loss is small, and the degree of loss can be quantified by

calculating how much variance is explained by the discarded dimensions.

Using such methods as a preprocessing step before load balancing should maintain reason-

able fidelity between the reduced and original data while also ameliorating the difficulties of
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searching through a multi-dimensional space. Cases such as the fourteen dimensional load

vector presented by EMPIRE-VT in Section 4.5.3 may need to use dimensionality reduction

for load balancing at large scale.

8.2.4 Dimension Selection

Muszala et al. study using an application derived load metric for NAMD in [95], replacing

the automatically measured timings of objects with an application specified parameter, the

total atomic mass contained within a object, after identifying that it correlates with timed

load. They show this to be beneficial in that it allows load balancing to happen immediately

at launch time since no timesteps have to be instrumented to discover the load distribution

and it removes the overhead of calling timers around the execution of every method. However,

even with these benefits, using atomic mass as the load metric does not always outperform

the original CPU time-based metric.

In [96], Mikida explores load balancing parallel discrete event simulations (PDES) using

different application derived properties as the load metric. For optimistic PDES [97], CPU

time is often not an accurate representation of load because it involves speculative execution,

leading to rollbacks and reevaluation. Because of this speculation, an object that spends

more time executing than another may not actually be doing more useful work than the

other. The efficacy of the different load metrics tested in this work vary depending on the

underlying model, there is not one universal best choice.

The unifying factor of these two examples is the use of application-derived metrics in

load balancing to provide improvements over the default measurement-based load balancing.

However, in both cases, the applicability and choice of alternative metrics is determined

by manually modifying the application to use the new metric, and empirically testing and

performing offline analysis of the resulting performance. This approach requires multiple

training runs with the same configuration and input dataset and needs to be repeated for

new inputs, wasting the limited compute time available to users on HPC systems.

One potential way to improve these cases is via dimension selection. In dimension selection,

multiple potential load metrics are provided to the runtime system through a load vector, allow

the runtime system to automatically perform the formerly manual evaluation of alternate

metrics. The RTS can then dynamically detect if any of the provided metrics correlate well

with CPU load and switch to using that instead to remove timer overhead, as done in the

case with NAMD, or the RTS can test the impact of using different metrics in place of CPU

load on the performance of the resulting mapping, automating the selection scheme done
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with PDES. Note that this would work with scalar load balancing; a load vector is presented

to the RTS, but only one of these candidate loads is chosen to be used by the balancer.

Separately, there may be situations where using multiple metrics simultaneously with vector

load balancing provides a benefit over what scalar load balancing can provide. Selecting

multiple metrics that correlate with runtime or application progress and using them to

construct a load vector for holistic balancing may more fully capture the properties of an

application than a single one of them can. As suggested in [98], this is likely the case in

PDES, where both differences in the amount of work per event and an uneven distribution of

events contribute to load imbalance.

The application of online machine learning techniques to discover and predict which

combinations of metrics can be used to represent load is another interesting area of exploration.

In particular, one goal is to train a model to derive a function f : Rd → Rk with k < d, to

map an input load vector to an output load vector of a reduced dimension, both reducing

the dimensionality of the problem and doing so by combining the dimensions of the original

input load vector in arbitrary ways.

8.2.5 Broadening Applicability

While we have developed the methods in this thesis for use with Charm++, the insidious

problem of load imbalance afflicts parallel applications at large, not merely those using

Charm++. None of the algorithms and techniques for vector load balancing explored here

are inherently limited for use only with Charm++, and we have already demonstrated their

applicability for VT and MPI (via Adaptive MPI) applications.

In personal discussions, the developers of AMReX [99] have expressed interest in using

our vector load balancing methods to address imbalance they have observed in their own

phase-based AMR applications, and there are many other applications that may benefit from

the use of vector LB, but do not use Charm++ and are too large or established to be easily

ported.

To this end, we intend to encapsulate our techniques and strategies into a library for

general use. The library will contain only the load balancing algorithms themselves, with

an API taking sets of objects/tasks and PEs as input and returning a balanced mapping as

output. In order to use this library, users will have to implement statistics collection and

migration support for their specific application or framework.

Outside of the context of load balancing parallel applications, multi-objective partitioning
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has been suggested for or used in fields as disparate as legislative redistricting [100]–[102],

component layout for FPGAs [103], and offloading for mobile pervasive systems [104]. A

commodity library allowing for the easy use of our methods by researchers outside of the

HPC community may be beneficial for other such diverse uses, as well.
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[45] L. Kalé and A. Sinha, “Projections: A preliminary performance tool for charm,” in

Parallel Systems Fair, International Parallel Processing Symposium, Newport Beach,

CA, Apr. 1993, pp. 108–114.

[46] J. Lifflander, P. Miller, N. L. Slattengren, N. Morales, P. Stickney, and P. P. Pébaÿ,
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[100] E. Rincón-Garćıa, M. Gutiérrez-Andrade, S. de-los-Cobos-Silva, P. Lara-Velázquez,

A. Ponsich, and R. Mora-Gutiérrez, “A multiobjective algorithm for redistricting,”

Journal of Applied Research and Technology, vol. 11, no. 3, pp. 324–330, 2013, issn:

1665-6423. doi: https://doi.org/10.1016/S1665-6423(13)71542-6.

[101] D. B. Magleby and D. B. Mosesson, “A new approach for developing neutral redis-

tricting plans,” Political Analysis, vol. 26, no. 2, pp. 147–167, 2018. doi: 10.1017/

pan.2017.37.

[102] R. Swamy, D. M. King, and S. H. Jacobson, “Multiobjective optimization for politically

fair districting: A scalable multilevel approach,” Operations Research, vol. 0, no. 0,

null, 0. doi: 10.1287/opre.2022.2311.

[103] N. Selvakkumaran, A. Ranjan, S. Raje, and G. Karypis, “Multi-resource aware

partitioning algorithms for fpgas with heterogeneous resources,” in Proceedings of

the 41st Annual Design Automation Conference, ser. DAC ’04, San Diego, CA, USA:

Association for Computing Machinery, 2004, pp. 741–746, isbn: 1581138288. doi:

10.1145/996566.996768.

[104] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning algorithm

for offloading in pervasive systems,” in Fourth Annual IEEE International Conference

on Pervasive Computing and Communications (PERCOM’06), 2006, 10 pp.–125. doi:

10.1109/PERCOM.2006.7.

137


