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Abstract—Task-based programming models promise improved
communication performance for irregular, fine-grained, and load
imbalanced applications. They do so by relaxing some of the
messaging semantics of stricter models and taking advantage
of those at the lower-levels of the software stack. For example,
while MPI’s two-sided communication model guarantees in-
order delivery, requires matching sends to receives, and has
the user schedule communication, task-based models generally
favor the runtime system scheduling all execution based on
the dependencies and message deliveries as they happen. The
messaging semantics are critical to enabling high performance.

In this paper, we build on previous work that added zero
copy semantics to Converse/LRTS. We examine the messaging
semantics of Charm++ as it relates to large message buffers,
identify shortcomings, and define new communication APIs
to address them. Our work enables in-place communication
semantics in the context of point-to-point messaging, broadcasts,
transmission of read-only variables at program startup, and
for migration of chares. We showcase the performance of our
new communication APIs using benchmarks for Charm++ and
Adaptive MPI, which result in nearly 90% latency improvement
and 2x lower peak memory usage.

Index Terms—Charm++, AMPI, RDMA, Parallel Program-
ming, Asynchronous Tasking, Communication Optimizations

I. INTRODUCTION

Exascale systems are composed of increasingly powerful
compute nodes composed of many-core CPUs and multiple
GPUs. This in turn stresses the network to be able to keep up
with the fast compute capability. Asynchronous and efficient
data movement is key to overall application performance.
Task-based models excel in their ability to overlap commu-
nication with computation and to intelligently schedule work
so as to avoid busy waiting on the network. But the com-
munication performance of such models does not necessarily
translate across all use cases.

At the same time as task-based programming models are
becoming increasingly popular, hardware systems and appli-
cations are both evolving. Remote Direct Memory Access
(RDMA) support is commonplace in HPC networks, and
being able to exploit it is key to communication performance.
RDMA enables communication of data in-place, without the
involvement of the CPU in the transfer. Applications are
also becoming more complex and demand efficient support
for a wide array of communication patterns and message
sizes. In light of both these trends, we re-examine Charm++’s
communication semantics.

II. BACKGROUND

A. Charm++

Charm++ is an asynchronous parallel programming model
and runtime system based on the idea of migratable C++
objects called chares, [1] that interact with each other by
sending messages. Chares execute in parallel on Processing
Elements (PEs, typically referring to CPU cores or nodes) as
scheduled by the runtime system. The object-centric approach
also enables overdecomposition, where the problem domain is
decomposed into a larger number of chares than the number
of available PEs empowering the adaptive runtime system
to overlap computation and communication, and dynamically
balance load. Program execution in Charm++ is driven by
interactions between chares that occur through asynchronous
entry method invocations. An entry method is a remotely invo-
cable version of a local function call performed on an object
where the caller does not wait for a reply or a return value
from the function. Entry method invocations are Charm++’s
equivalent of a task, they execute without interruption on the
arguments passed into them and any chare-owned state. For
each entry method invocation, the runtime system serializes
the user passed data creating a message on the sender chare’s
PE and sends it to the PE of the receiver chare. On each
PE, incoming messages are stored in a message queue, using
which a scheduler regularly iterates over these messages and
executes the appropriate entry method on the receiver chare.
A chare gets execution time on the PE when its message has
been picked up by the scheduler and that corresponding entry
method is executed. The entire control flow of a Charm++
program happens through chares generating entry methods
invocations, which in turn can create other entry method
invocations until a special exit routine is invoked by any of
the chares, which causes program termination.

B. Motivation for a Zero Copy Messaging Model

In Charm++, interactions between chares are performed us-
ing entry method invocations, which are carried out tradition-
ally using two messaging models: a) Parameter Marshalling,
and b) Custom Messages.

Parameter marshalling is used when parameters are passed
in an entry method invocation and a message is created
internally by the runtime system on behalf of the user. On
the sender side, the marshalling of these parameters requires



the runtime system to copy individual parameters passed by
the user into a single contiguous buffer which is sent across
the network as a message. This is done to ensure safe reuse
or freeing of the passed parameters after the entry method
call. On the receiver side, the parameters are unmarshalled out
of the message and passed to the entry method. This allows
the runtime system to use pointers directly to contiguous
parameters in the message and pass them to the entry method
without copying them. To ensure safe memory management
of this message, i.e. to avoid a potential memory leak, the
message is freed by the runtime system after the entry method
completes. For this reason, these parameters have a lifetime
only until the end of the scope of the entry method. In order
to use the received data beyond this scope, the user must copy
the data into their own data structure. Therefore, two copies
are required for sending data from a chare to another remote
chare: one at the sender side and another at the receiver side.

The other messaging model is to use Custom messages.
Custom messages are data structures that inherit from a base
message data structure and encapsulate all the parameters
required by an entry method. The key difference between
parameter marshalling and custom messages is with regard
to ownership of the buffer. On the sender side, after invoking
an entry method with a custom message, the runtime system
takes ownership of the message and the user cannot access
the encapsulated parameters or reuse that buffer. Additionally,
unlike parameter marshalling, the semantics of not allowing
buffer reuse allow the runtime system to avoid making copies
on the sender side. On the receiver side, the ownership of the
received message is given to the user. This allows the user
to directly use the received message as if it were the user’s
data structure without requiring an additional copy. However,
if the user forwards the received message to another chare, the
message ownership is again handed back to the runtime system
and the buffer is inaccessible. For iterative applications, using
this model requires that the user make a new allocation and
copy of the custom message for each iteration, which in turn
adds to the cost of communication.

In order to transfer data from one chare’s buffer to another
chare’s buffer, both the traditional messaging models have their
limitations and neither of these allow for communicating data
“in-place” generally. With large buffers, the extra allocations
and copies implicit in these models result into higher latency
and increased application memory footprint. In this work, we
propose a new zero copy messaging model in Charm++ to
address these messaging latency and memory consumption
issues caused by the existing messaging semantics. This will
facilitate reuse of user buffers, and eliminate the need to
make additional large allocations and copies while still taking
advantage of the asynchronous nature of the Charm++ model.

III. API DESIGN AND IMPLEMENTATION

The Converse and LRTS zero copy API [2] added support
for performing RDMA operations across different network-
ing layers and unified it under LRTS and added zero copy
functionality in Converse. In this work, we build on top

of that to support different user-facing zero copy API in
Charm++. As discussed in [2], all the metadata information
associated with a buffer is encapsulated in a Converse level
class called CmiNcpyBuffer. Since this object only provides
completion handling for converse handlers, in our Charm++
API, we add another class CkNcpyBuffer, which derives from
CmiNcpyBuffer. This class adds a data member, called a
CkCallback object, which is used for completion handling
to invoke a user entry method after the completion of the
zero copy operation. To effectively use zero copy semantics
in applications and higher level libraries, we have designed
and and implemented several higher level user-facing API
in Charm++. These user level APIs primarily work with the
two buffer information objects that encapsulate the metadata
as discussed above: CmiNcpyBuffer and CkNcpyBuffer. To
perform an RDMA operation, since the metadata information
of both the local and remote buffer is required, we rely on the
existing messaging API in Charm++ to transfer the metadata
information from the remote target chare (on a remote PE)
to the local initiator chare (on the local PE). In a zero copy
transfer, the initiator chare is invoking the Get or Put call and
the target chare is the remote participant of that transfer.

A. Direct API

The zero copy Direct API allows users to explicitly invoke
a standard set of methods on the CkNcpyBuffer objects to
avoid both sender and receiver side copies for point-to-point
messages. It is the Charm++ equivalent of the Converse level
API [2], where Charm++ entry methods are used instead of
Converse message handlers. To use the Direct API, the user
creates a local CkNcpyBuffer object and sends it to the other
participating chare in a remote entry method invocation as
illustrated in Figure 1.

// Inside an entry method ...
CkCallback srcCb(CkIndex_Ping1 :: sourceDone (),

thisProxy[thisIndex ]);
CkNcpyBuffer source(myBuffer , size * sizeof(int),

srcCb);

// Invoke a remote method
// passing my CkNcpyBuffer object
arrProxy [1]. recvNcpySrcObj(source);

.Fig. 1. Direct API object creation and handover

void recvNcpySrcObj(CkNcpyBuffer source) {
CkCallback destCb(CkIndex_Ping1 :: destDone (),

thisProxy[thisIndex ]);
CkNcpyBuffer dest(myBuffer , size * sizeof(int),

destCb);

// Call get on local dest object
// passing the received source object
dest.get(source);

}

.Fig. 2. Direct API performing Get operation

On receiving the remote CkNcpyBuffer object, the other
participating chare creates a local CkNcpyBuffer object and



calls the standard get method on it by passing the remote
object to perform a zero copy read operation as shown in
Figure 2. After the completion of the get operation, the
callbacks specified in both the objects are invoked. Inside the
source callback, sourceDone, the source buffer can be safely
modified or freed. Similarly, inside the destination callback,
destDone, the user is guaranteed that the data transfer into
the destination buffer is complete and the user can begin
operating on the newly received data. These callback functions
are illustrated in Figure 3.

void sourceDone(CkDataMsg *msg) {
delete myBuffer; // free the buffer

}

void destDone(CkDataMsg *msg) {
// received data , begin computing
computeValues ();

}

.Fig. 3. Direct API source and destination callbacks

Using this API, after the preliminary handover of one of the
CkNcpyBuffer objects to the other end, the user can exploit the
persistent nature of iterative applications to perform zero copy
operations using the same buffer information objects across
iteration boundaries. The implementation of the Charm++
Direct API is an extension of the Converse zero copy API
where the same functionality is used [2] and charm callbacks
are supported instead of handler functions because of the use
of CkNcpyBuffer objects.

B. Entry Method API

The zero copy Entry Method API extends the capabil-
ity of the existing entry methods in Charm++ with slight
modifications in order to send and receive buffers without
copies. It supports both point-to-point and optimized broadcast
operations and allows users to send and receive previously
received copy based buffers as special “zero copy” buffers.

To send a buffer using the Entry Method API, the user is
required to annotate the buffer parameter as nocopypost in
the entry method declaration in the .ci charm interface file
as shown in Figure 4.

// .ci declaration
entry void recvBuffer(int size , nocopypost int

buffer[size]);

.Fig. 4. Entry Method API: Method Declaration

On the sender side, the user needs to wrap the buffer and
an optional callback object inside a CkSendBuffer wrapper
and invoke the remote entry method as shown in Figure 5.
Figure 5 illustrates a point-to-point invocation. A broadcast
call can be made in a similar manner by using the entire chare
array proxy arrProxy instead of a chare array element proxy
like arrProxy[1].

On the receiver side, the user is required to have two over-
loaded definitions of the same entry method. The first defini-
tion, called the Post Entry Method uses the same argument list

// Create a callback
CkCallback srcCb(CkIndex_Ping1 :: sourceDone (),

thisProxy[thisIndex ]);

// Invoke the remote method
// passing myBuffer in CkSendBuffer
arrProxy [1]. recvBuffer(size , CkSendBuffer(myBuffer ,

srcCb));

.Fig. 5. Entry Method API: Remote Invocation

with an additional CkNcpyBufferPost * parameter. The Post
Entry Method is invoked first, allowing the user to match the
sender/source buffers with corresponding receiver/destination
buffer using tags. This is done using the CkMatchBuffer
call where the user supplies the CkNcpyBufferPost * pointer
along with the index of the operation and a user provided inte-
ger tag. The index corresponds to the index of the nocopypost
parameter among multiple nocopypost parameters, i.e. the

first nocopypost parameter will have an index of 0, the next
will be 1 and so on. This is illustrated in Figure 6.

// post entry method
void recvBuffer(int size , int *buffer ,

CkNcpyBufferPost *post) {
// Match 0th source buffer with tag1
CkMatchBuffer(ncpyPost , 0, tag1);

}

.Fig. 6. Entry Method API: CkMatchBuffer call inside Post Entry Method

For every CkMatchBuffer call with a tag, there should be
corresponding CkPostBuffer call with the same tag that is
used to post the receiver/destination buffer. This call can be
made from any entry method: before, after, or inside the Post
Entry Method. This is equivalent to an MPI_IRecv call that is
made when the receiver is ready to receive a buffer. This is
illustrated in Figure 7.

// in some other entry method ...
// ready to post buffer
CkPostBuffer(myBuffer , mySize , tag1);

.Fig. 7. Entry Method API: CkPostBuffer call

After the execution of a CkPostBuffer (occurring from
any entry method) and the corresponding CkMatchBuffer
(executed inside the Post Entry Method), the runtime system
performs the zero copy operation. On completion of all the
zero copy operations of a particular entry method, the actual
entry method is invoked. The actual entry method is the
other overloaded definition of the same entry method, without
the CkNcpyBufferPost * parameter. Inside the actual entry
method, it is guaranteed that all the posted buffers have
received the data from the send buffers. This is illustrated in
Figure 8. Similar to the Direct API, the source/sender callback
is invoked to signal that the buffer is ready to be reused or
freed.

The implementation of the Entry Method API primarily re-
lies on the tag matching functionality and the source-to-source
code generation that uses the .ci file. On the sender side, the



// actual entry method
void recvBuffer(int size , int *buffer) {

computeValues (); // data ready in buffer
}

.Fig. 8. Entry Method API: Regular Entry Method

user invoked CkSendBuffer is converted to CkNcpyBuffer
using a simple macro. The implementation uses the source-
to-source code generator to generate the marshalling code on
the sender side and the unmarshalling code on the receiver
side. On the sender side, this generated marshalling code
for the Entry Method API copies the smaller CkNcpyBuffer
information object into the message, as opposed to copying
the entire buffer (which is much larger in size) as done in
the case of the regular messaging API. On the arrival of the
message, the generated unmarshalling code first executes the
Post Entry Method allowing the user to match the receiver
buffer with a tag. The CkMatchBuffer call uses the tag to
check if the receiver has already posted a buffer with the same
tag. This is done by searching a hash table postedBuffMap
that is used to store any posted receiver buffer information
with the tag as the key when the user calls CkPostBuffer. If
the receiver buffer has already been posted, a Get operation
is issued by internally calling LrtsIssueRget. If the receiver
buffer is not posted, the matching source buffer information
is stored in another hash table matchedBuffMap with the tag
as the key. On the user calling CkPostBuffer at a later point
in time, matchedBuffMap is searched to find the source buffer
information and a Get operation is issued in the same manner.
Thus, using two hash tables allows us to flexibly tag match
and pair any CkMatchBuffer and CkPostBuffer call. After
the Get operation is completed, the source callback method is
invoked and the received message is enqueued again in order
to execute the actual entry method to signal to the receiver
that the data transfer is complete. For implementing zero copy
transfers in a broadcast call, we use a spanning tree, where
each node of the spanning tree represents a Charm++ process.
The spanning tree is rooted at the process that contains the
source buffer and all the other nodes represent the recipient
processes. Get calls are performed in a top-down order, where
each parent node serves as the source process for Get calls
made by its immediate children. The root node’s source
callback is invoked when the first level of child nodes have
completed their Get calls. Similarly, the entry method on each
non-root parent node is invoked when its immediate child
nodes have completed their Get calls. The entire broadcast
call is complete when all the leaf nodes of the spanning tree
have received the source buffer.

C. Pup Buffer API for Migrations

Aside from inter-task communication, another major source
of communication in task-based programs is that of moving
the persistent data owned by migratable objects. In Charm++,
chares can migrate during execution across nodes, usually for
the purposes of dynamic load balancing or checkpointing for
fault resilience. Charm++ provides a Pack-UnPack (pup) API

that enables users to write a single simple routine per chare
class that handles both sides of the migration process. For
each migration, the size of the chare’s data must be assessed,
a message must be allocated to that size, the chare’s state
copied into the message, and then the message transferred
and unpacked on the destination PE. As a consequence of
the existing pup API, during migrations the memory usage
of a Charm++ program can transiently spike if many chares
are relocating simultaneously, as is common in greedy rebal-
ancing algorithms. Consequently, we sought to use the zero
copy infrastructure we have built for the purpose of efficient
migrations. The current pup API proved to be limiting in
terms of not separating the allocation and transfer of data
from the completion of the transfer. Thus, we added a new
pup API called “pup_buffer” which operates asynchronously
on the unpacking side of the protocol. This allows users to
mix regular pup and pup_buffer objects in the same chare,
using only pup_buffer for large arrays of data.

To use this API, the user has to call pup_buffer on the PUP
::er object inside the chare’s pup method. The pup method is
the standard method that is written with a PUP::er object as an
argument. This method is called by the runtime system when
the chare is about to be migrated (for sizing and packing)
or when the chare has just been migrated (for unpacking).
The pup_buffer method as shown in Figure 9 takes two
arguments: buffer pointer and size. Optionally, the user could
also pass a custom allocator and deallocator in this call.

// standard pup routine
void pup(PUP::er &p) {

p | iteration; // pup using the copy -based scheme
p.pup_buffer(buffer , size);

}

.Fig. 9. Pup Buffer API

Our implementation uses a similar approach to the Entry
Method API, where instead of packing the entire buffer,
a CmiNcpyBuffer object is created out of it and packed
instead. Similarly, on the receiver side, the source buffer’s
CmiNcpyBuffer object is unpacked and a Get is invoked
into the newly allocated buffer. CmiNcpyBuffer is used over
CkNcpyBuffer because there is no use of the additional
CkCallback object added to CkNcpyBuffer. Unlike the copy
based pup API, since the pup_buffer API executes asyn-
chronously, there is no guarantee of the data transfer being
complete during unpacking. To avoid entry methods of a chare
with an active pup_buffer call executing on incomplete data,
we buffer messages targeted to this chare in the runtime system
until the issued Get completes. On the completion of the
Get call, all buffered messages are released to execute the
appropriate entry methods. The source buffer on the previous
home PE (where the chare migrated from) is deallocated.

D. Read-only Data

To avoid the duplication of read-only data, Charm++ pro-
vides a special “read-only” data abstraction. Users declare
such data in the .ci interface file and set its value in the



main chare’s constructor before creating chare arrays whose
elements will use it. Read-only data can range in size and
complexity from simple integers to custom singleton objects to
STL containers of objects. The only requirement is that these
objects have PUP methods so that they can be communicated.
Internally, Charm++ performs a broadcast of the read-only
data from PE 0 to all other nodes and stores a single copy of
the read-only data per node. We replaced the implementation
of large, contiguous memory read-only types with a zero
copy broadcast. This minimizes memory usage and speeds
up startup on all nodes for applications with large read-only
data. There were no changes needed for the user-facing API
since the control flow of creating read-only data members on
all nodes was already hidden from users. This broadcast is
implemented using the same spanning tree scheme as used
in the broadcast call for the Entry Method API. The runtime
system decides to use the zero copy scheme to broadcast a
large contiguous read-only buffer if the buffer size exceeds a
predefined networking layer dependent threshold size.

IV. RESULTS

TABLE I
BENCHMARKING MACHINES AND THEIR CONFIGURATION

Machine Cores/Node Memory/Node Network Charm Build
iForge 40 192 GB Infiniband ucx
Stampede2 68 96 GB Omni-Path ofi
Cori 32 128 GB Aries gni
Quartz 36 128 GB Omni-Path ofi

We use four HPC machines for all our performance ex-
periments. These details including the Charm build used is
summarized in Table I. We use the non-SMP version in all
our Charm++ and AMPI builds, which uses one CPU core as
a single PE for one process.

A. Charm++ Benchmarks

To evaluate the performance of the zero copy API in
Charm++, we have used two benchmarks that compare the
performance of the regular messaging model with the zero
copy messaging model.

1) Point-to-Point Performance: We use a ping-pong bench-
mark for the evaluation of point-to-point messaging perfor-
mance in Charm++. The benchmark exchanges messages for
a fixed number of iterations (1000 iterations for up to 256
KB and 100 iterations for 512 KB to 32 MB) and measures
the one-way messaging latency to send and receive data from
user buffers of two chares on two different PEs. The one-way
latency is determined by averaging out the total time across
all iterations and dividing that value by 2. This entire process
is repeated for different message sizes. Using this benchmark,
since we aim to determine the time taken for send and receive
directly from user buffers, in the Regular API we make an
explicit copy from the received message into the user buffer.
On the other hand, this is unnecessary for the zero copy API
because this direct transfer happens implicitly.

Improvements in intra-node and inter-node latency with zero
copy Direct API and zero copy Entry Method API on three
different machines are illustrated in figures 10 and 11. As
seen in all the latency plots, for small messages, the regular
messaging API performs better than the zero copy API because
of the extra memory allocations and copies being inexpensive
in comparison to the time taken to send the metadata message
for the zero copy API. However, we see that the zero copy API
begins to outperform the regular API for medium and large
messages, with the improvement increasing with message size.
This is because of the metadata message latency remaining
constant, whereas the cost of additional allocations and copies
increases proportionally with message size.

The small performance difference seen between the Direct
API and Entry Method API in all p2p latency plots can be
attributed to two additional overheads in the entry method API.
First, memory registration and deregistration is performed for
every iteration. Second, there is some additional processing
which includes tag matching and packing/unpacking. These
overheads are not incurred in the Direct API because it
only requires memory registration and deregistration once,
and separately, there is no requirement for tag matching or
packing/unpacking. Cross Memory Attach (CMA) is supported
on both Stampede2 and Cori. The zero copy API executions on
these machines take advantage of this for intra-node transfers
and this results into a smaller performance difference between
Direct API and Entry Method API as seen in 10b and 10c.
For these transfers, since registrations are not required, the
Entry Method API only incurs the overhead associated with
the additional processing. The range of speedups, percentage
improvements, and threshold message sizes over which the the
two variants of point-to-point zero copy API outperform the
regular API are summarized in Table II.

2) Broadcast Performance: To evaluate the performance of
broadcast operations, we use a ping-all and reduce benchmark
written in Charm++. The benchmark measures the latency for
a broadcast and reduction across all PEs for different message
sizes. The average time for a single broadcast and reduction
operation is determined by averaging the total time across
many iterations (100 iterations up to 256 KB and 10 iterations
for 512 KB to 32 MB). Similar to the ping-pong benchmark,
since we aim to determine the time taken for send and receive
directly form user buffers, in the Regular API we make an
explicit copy from the received message into the user buffer.

Figure 12 illustrates the weak scaling performance of the
broadcast version of the zero copy Entry Method API over
the regular API. The figure plots broadcast and reduction
latency for four different message sizes on three different
machines. As seen in the plots, the improvement achieved
with the zero copy API increases for the larger message sizes.
This can be explained with the same analysis conducted for
the point-to-point ping-pong experiments i.e. as the message
size increases, the cost of the extra allocation and copy
increases, making the regular API perform poorly for large
messages. Additionally, it is also seen that in most cases,
the improvement increases proportionally to the number of
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Fig. 10. Comparison of intra-node latency between regular and zero copy messaging API
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Fig. 11. Comparison of inter-node latency between regular and zero copy messaging API

TABLE II
IMPROVEMENT IN POINT-TO-POINT LATENCY WITH ZERO COPY MESSAGING API.

Improvement Metric Intra-node Inter-node
iForge Stampede2 Cori iForge Stampede2 Cori

ZC Direct API SpeedUp 1.2x – 10.9x 1.3x – 4.2x 1.15x – 8x 1.3x – 11.5x 1.5x – 9.1x 1.2x – 6.5x
% Improvement 22% – 90% 23% – 69% 13% – 70% 25% – 9% 33% – 89% 18% – 83%
Threshold Size 8K 8K 1K 32K 32K 16K

ZC Entry Method API SpeedUp 1.1x – 10.9x 1.2x – 4.2x 1.1x – 8x 1.4x – 11.5x 1.2x – 9x 1.1x – 5.5x
% Improvement 5% – 90% 19% – 69% 9% – 70% 28% – 91% 18% – 90% 8% – 81%
Threshold Size 128K 8K 8K 128K 256K 128K

TABLE III
IMPROVEMENT IN BCAST LATENCY WITH ZERO COPY MESSAGING API.

Metric iForge Stampede2 Cori

SpeedUp 1.3x – 17x 1.8x – 5.6x 2.9x – 9.2x
% Improvement 23% – 94% 30% – 82% 67% – 89%

nodes or PEs. This indicates that zero copy entry method
API scales better than the regular API. On all machines, the
regular API performs better for the 1K size but the zero copy
API performs better for larger message sizes in most cases as
seen in Figure 12. Unlike iForge and Stampede2, it can be
observed that the regular API performs better than the zero
copy API on Cori for a 32K message for up to 32 nodes. We
believe that this is primarily due to the relatively expensive
memory registration and deregistration operations on GNI,
that are performed for every iteration of the zero copy API.
These operations outweigh the benefits of the zero copy API
at 32K message size. A similar pattern can be seen in the

point-to-point case in Figure 11c. The range of speedups and
percentage improvements achieved by the zero copy API over
the regular API are summarized in Table III.

B. Adaptive MPI

Adaptive MPI (AMPI) is an MPI implementation developed
on top of Charm++ [3]. It provides the dynamic runtime
capabilities of Charm++ behind the familiar API of the MPI
standard, meant as a drop-in replacement for other MPI li-
braries. It does this by virtualizing MPI ranks, usually assumed
to be identical to Operating System processes, as User-Level
Threads (ULTs). Each rank runs until it reaches a blocking
communication call, at which point it yields to the scheduler
who is free to schedule another virtual rank that has work
to do. The Charm++ runtime system schedules AMPI ranks
cooperatively as it does tasks or entry method invocations.

In its implementation, AMPI consists of a 1D chare array
of all the virtual ranks in MPI_COMM_WORLD. Communication
was previously handled via explicit Charm++ message passing
(using custom messages, not parameter marshalled entry meth-
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Fig. 12. Comparison of Broadcast and Reduction Latency between regular and zero copy messaging API

ods). This meant that, regardless of the locality of the receiver,
AMPI would first serialize the message buffer into a Charm++
message, then hand that message off to Charm++ which would
route it to the receiving rank’s chare array element. The chare
array element would take ownership of the message and when
it was matched with a request, would deserialize the message
into the receive buffer. In [4] AMPI was optimized for within-
process transfers using direct userspace memory copies in a
rendezvous protocol.

1) AMPI Communication Optimizations: In this paper we
extend that previous work by providing AMPI with general
zero copy or in-place communication capabilities. Internally
AMPI now uses the zero copy Direct API, though it could be
rewritten to use the Entry Method API just as well. We support
migrations of virtual ranks during execution, so long as they
do not have any pending messages. Normally load balancing
is conducted at a synchronization point at the end of timestep,
so this is not a problem, though handling migrations leads to
complications in the rendezvous protocol.

AMPI now chooses its communication protocol based on
both the message size and the expected locality of the receiver
from the sender. We say expected because Charm++ uses
a distributed location management protocol that does not
generally guarantee knowledge of all object’s places at a given
time on any given PE. It does guarantee eventual delivery
of messages, but the receiver may not be where the sender
initially thinks it is if it has recently migrated. Consequently,
we must handle the case where we expect a receiver is on
our same node but has actually migrated away. In this case
we choose not to pin the memory upfront for same-node
transfers in order to avoid the memory registration cost, and
fall back to a slower put-based protocol where the receiver
pins its memory and sends back a CkNcpyBuffer object to
the sender, who then uses it to perform a put of the data after
pinning its own buffer. Otherwise, if the receiver is where the
sender expected, the receiver does a get from the sender’s
buffer to its own. Because Charm++’s distributed location
management is generally only ever out of date the first iteration
after load balancing, and load balancing is usually infrequent,
the slower protocol is rarely used in practice but is necessary
for correctness.

Figure 13 shows the results of the OSU MPI point-to-point
latency benchmark for original AMPI compared to the new one
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Fig. 13. OSU MPI Point-to-point latency benchmark on Quartz at LLNL.

with the zero copy API. The benefit of the zero copy API is
seen when we switch from an eager protocol using Charm++
custom messages to a rendezvous one with the Direct API,
avoiding unnecessary memory copies.

2) AMPI Memory Optimizations: We also modified AMPI
to use the zero copy pup_buffer API for migrations. AMPI’s
memory allocator, Isomalloc, ensures that all stack and heap
data are migratable by allocating each virtual rank’s data from
within unique slices of the global virtual memory address
space. This ensures that after migrating a virtual rank’s data,
all pointers remain valid because all memory remains allocated
at the same virtual address.

Fig. 14. Memory usage on PE 0 of a three dimensional stencil benchmark
on the Skylake partition of Stampede2 (TACC).



Figure 14 shows the the memory usage over time on PE
0 of a three dimensional Jacobi solver run on AMPI with 8x
overdecomposition on 8 Skylake nodes of TACC’s Stampede2
machine. The plot shows four timesteps of execution, with
dynamic load balancing happening between the second and
third iterations. AMPI-new includes three notable memory
optimizations. First, the static memory footprint– the floor
of memory usage– was reduced with optimizations done to
AMPI’s internal storage, hoisting read-only, per-rank storage
to the node-level. Second, the smaller per-timestep peaks seen
in the original AMPI result were eliminated by use of in-
place communication. The zero copy Direct API is used for
all point-to-point messages in this application, and the small
metadata messages and per-message matching queue entries
inside AMPI are all pooled. Third, the largest spiked in
memory usage–that due to virtual rank migrations resulting
from dynamic load balancing– is decreased by use of the
pup_buffer API. This reduced the peak memory usage almost
in half for the same number of virtual rank migrations.

The memory optimizations, taken together, allow users to
run applications with larger memory sizes without running out
of memory during rebalancing. Also, when migrating within
shared memory we avoid any copies by passing ownership
over the buffers. Copy avoidance also means faster messaging
for large buffers. The overall result is a 7% faster run time of
Jacobi-3D with nearly 2x lower peak memory usage.

V. RELATED WORK

RDMA has been incorporated into numerous programming
models for HPC over the past two decades plus. MPI, with
its library-based implementation, has always favored commu-
nication of user-owned memory buffers rather than first-class
message structures, allowing implementors to hide eager and
rendezvous protocols inside the runtime [5] [6]. FG-MPI [7]
and HMPI [8] have explored true zero copy message passing
semantics in MPI. PGAS models similarly hide protocol
choice behind the language’s abstractions, so that RDMA
usage becomes an implementation issue [9] [10]. HPX [11]
and Legion [12] similarly hide communication from users
behind higher-level data and synchronization abstractions.
GasNet [13], a communication layer for several task-based
programming models, has incorporated RDMA and remote
atomic operations into its design.

VI. CONCLUSION

Task-based programming models are gaining importance
because of both increasingly complex software applications
and hardware architectures. Their ability to overlap communi-
cation and computation, and balance load is key to extracting
good performance and scaling on HPC machines. However,
some of their simplicity in messaging semantics leads to
degraded messaging latency and increased memory footprint.
In this paper, we extended our previous work on enabling
zero copy support in Converse and LRTS, and defined and
implemented new messaging semantics in Charm++ in order
to accelerate large message transfers in multiple contexts. For

point-to-point messages, broadcasts, read-only data handling,
and data migration, we identified the sources of data copies
in Charm++’s existing APIs and designed new alternatives to
avoid the copies wherever possible. This work built on top of
our previous work in the lower level communication runtime
[2].

For future work, we would like to extend the zero copy
semantics to other collective operations in Charm++ and
AMPI, like reduction, gather, scatter, and all-to-all. We plan
to incorporate the zero copy entry method API inside AMPI
to implement broadcast operations. We also plan to extend the
zero copy support in the networking layers to incorporate and
improve our lower level implementations. As a part of this
effort, we plan to improve our MPI layer implementation by
using the improved one-sided RMA operations. We also aim
to support RDMA over Converged Ethernet (RoCE).

REFERENCES

[1] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” ser. SC,
2014.

[2] N. Bhat, S. White, and L. Kale, “Enabling support for zero copy
semantics in an Asynchronous Task-based Programming Model,” ser.
AMTE, Euro-Par, 2021.

[3] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), LNCS 2958, College Station, Texas,
October 2003, pp. 306–322.

[4] S. White and L. V. Kale, “Optimizing point-to-point communication
between adaptive mpi endpoints in shared memory,” Concurrency
and Computation: Practice and Experience, pp. n/a–n/a. [Online].
Available: http://dx.doi.org/10.1002/cpe.4467

[5] M. P. I. Forum, MPI: A Message-passing Interface Standard,
Version 3.1 ; June 4, 2015. High-Performance Computing Center
Stuttgart, University of Stuttgart, 2015. [Online]. Available: https:
//books.google.com/books?id=Fbv7jwEACAAJ

[6] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based MPI
implementation over infiniband,” Int’l Journal of Parallel Programming,
2004.

[7] H. Kamal and A. Wagner, “FG-MPI: Fine-grain MPI for multicore
and clusters,” in IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010, April 2010,
pp. 1–8.

[8] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C. Ma,
“Ownership passing: Efficient distributed memory programming on
multi-core systems,” SIGPLAN Not., vol. 48, no. 8, p. 177–186, Feb.
2013. [Online]. Available: https://doi.org/10.1145/2517327.2442534

[9] T. S. Tarek El-Ghazawi, William Carlson and K. Yelick, UPC: Dis-
tributed Shared Memory Programming. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2005.

[10] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl.,
vol. 21, pp. 291–312, August 2007. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1286120.1286123

[11] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel
execution model for scaling-impaired applications,” in ICPPW ’09: Pro-
ceedings of the 2009 International Conference on Parallel Processing
Workshops. Washington, DC, USA: IEEE Computer Society, 2009, pp.
394–401.

[12] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: expressing
locality and independence with logical regions,” in Proceedings of the
international conference on high performance computing, networking,
storage and analysis. IEEE Computer Society Press, 2012, p. 66.

[13] D. Bonachea and P. H. Hargrove, “Gasnet-ex: A high-performance,
portable communication library for exascale,” in Languages and Com-
pilers for Parallel Computing, M. Hall and H. Sundar, Eds. Cham:
Springer International Publishing, 2019, pp. 138–158.

http://dx.doi.org/10.1002/cpe.4467
https://books.google.com/books?id=Fbv7jwEACAAJ
https://books.google.com/books?id=Fbv7jwEACAAJ
https://doi.org/10.1145/2517327.2442534
http://dl.acm.org/citation.cfm?id=1286120.1286123
http://dl.acm.org/citation.cfm?id=1286120.1286123

	Introduction
	Background
	Charm++
	Motivation for a Zero Copy Messaging Model

	API Design and Implementation
	Direct API
	Entry Method API
	Pup Buffer API for Migrations
	Read-only Data

	Results
	Charm++ Benchmarks
	Point-to-Point Performance
	Broadcast Performance

	Adaptive MPI
	AMPI Communication Optimizations
	AMPI Memory Optimizations


	Related Work
	Conclusion
	References

