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Abstract. Communication is critical to the scalable and efficient per-
formance of scientific simulations on extreme scale computing systems.
Part of the promise of task-based programming models is that they can
naturally overlap communication with computation and exploit locality
between tasks. Copy-based semantics using eager communication pro-
tocols easily enable such asynchrony by alleviating the responsibility of
buffer management from the user, both on the sender and the receiver.
However, these semantics increase memory allocations and copies and
in turn affect application memory footprint and performance, especially
with large message buffers.
In this work we describe how the so-called “zero copy” messaging seman-
tics can be supported in Converse, the message-driven parallel program-
ming framework that is used by Charm++, by implementing support
for user-owned buffer transfers in its lower level runtime system, LRTS.
These semantics work on user-provided buffers and do not semantically
require copies by either the user or the runtime system. We motivate our
work by reviewing the existing messaging model in Converse/Charm++,
identify its semantic shortcomings, and define new LRTS and Converse
APIs to support zero copy communication based on RDMA capabilities.
We demonstrate the utility of our new communication interfaces with
benchmarks written in Converse. The result is up to 91% of message
latency improvement and improved memory usage. These advances will
enable future work on user-facing APIs in Charm++.
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1 Introduction

With the advent of Exascale computing, the importance of efficient data move-
ment is expected to increase greatly. In fact, the underlying technological fac-
tors that led to dramatic increase in within-node computational capacity, with-
out a proportionate increase in communication capabilities entail that even
on small clusters, communication issues present significant challenges. RDMA,
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which stands for Remote Direct Memory Access, is a network capability that al-
lows a machine to read from or write to a remote machine’s memory without the
involvement of the Operating System or CPUs. One sided communication with
the help of RDMA supported hardware is the natural choice for large messages
as it has proven to reduce latencies and increase bandwidth for large payloads
in High Performance Computing (HPC) networks. RDMA also benefits from
so-called “zero copy” semantics, where the data being transferred is not copied
between the layers of the network stack (zero copy means no intermediate copies).
The bypassing of CPU along with the elimination of copies ensure lower latencies
and higher throughput for RDMA enabled networks over regular networks.

Since memory-bound operations are much slower in comparison to the CPU,
it has been observed that memory intensive operations act as the primary bot-
tleneck in numerous applications and thus reduce application performance and
increase energy consumption. For this reason, reducing memory pressure by sav-
ing the cost of allocations and copies helps in improving application performance
significantly.

2 Background, Motivation and Contributions

Converse [1] is a complete but low level message-driven (i.e. task based) parallel
programming system. It supports a scheduler that handles user-level threads
as well as stackless tasks. The latter may be created locally or from remote
processors, which is similar to active messages. Each such task has a handler
reference and a data payload, and possibly other metadata such as priorities. In
its current usage, on the source PE (processing element, typically used to denote
a CPU core), the data payload has to be copied from the user data structure
to a contiguous message that includes the message metadata. Similarly, on the
destination PE, the payload has to be copied from the received message into the
user data structure. It is this copying on both the source and destination that
we wish to optimize.

Converse is designed to be used as a substrate for implementing parallel
languages, but Charm++ is the most well-known system that uses it. Charm++
is an asynchronous parallel programming model and runtime system based on the
idea of overdecomposition and migratable objects [2]. A Charm++ program is
expressed in the form of interacting migratable C++ objects called chares, which
interact via asynchronous method invocations. In such a method invocation, the
passed parameters are copied ("marshaled") into a Converse message along with
required metadata to encode information such as recipient object and handler
references. This copying ensures that the user passed parameters are safe to be
overwritten immediately on the source chare after the entry method invocation.
On the destination chare, such copying from the received Converse message into
the user data structures is again required to use the received data beyond the
scope of the entry method since the runtime system frees the message for safe
memory management. Thus the optimization we aim at is useful (necessary but
not sufficient) to optimize Charm++ and its myriad applications.
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Now consider a situation in which a user of Converse (either end programmer
or the Charm++ runtime) needs to send multiple large data arrays, along with
other scalar data. All the large arrays must be copied into a Converse message
on the sending processor and on the receiving processor they typically have to
be copied into application data structures. With large buffers, these copies come
at the price of increased memory footprint, higher latency, and lower bandwidth.
In this work, we aim to address the limitations of the current messaging seman-
tics in Converse and propose a new zero copy messaging model that will allow
communicating data “in-place”. This will allow the user to avoid additional al-
locations and copies, and facilitate reuse of user buffers while still benefiting as
much as possible from the asynchrony that underlies Converse (and Charm++)
execution model.

3 Design and Implementation

The Charm++ software stack consists of three primary software layers: Charm++,
Converse, and LRTS, with support for various networking layers beneath LRTS.
Charm++ is the high level layer interfacing with the user code to support pro-
cessor virtualization through the idea of coarse grained task and data objects
called chares. Converse is a portability layer beneath Charm++ that supports
message handling and uses a scheduler to enqueue received messages and invoke
message handlers by using an appropriate dequeueing strategy. The networking
layer which is below Converse is called the Low Level Runtime System (LRTS).
The LRTS represents a set of APIs used by Converse to perform networking
operations like sending and receiving messages. Each networking machine layer
implements this set of APIs using provider-specific implementations, hiding their
implementation details from the upper layers of the Charm++ software stack.

3.1 LRTS API

The basic functionality for performing a zero copy transfer of a buffer is de-
pendent on the underlying network and its capabilities. HPC specific networks
like UCX, OFI, GNI, and Verbs provide native support for RDMA operations,
whereas network libraries like TCP and UDP used primarily over ethernet, do
not natively support RDMA operations. Since each networking layer has its own
implementation for supporting zero copy transfers, we define a unified LRTS API
for zero copy transfers and implement the API for each networking layer. We
provide the following LRTS methods for implementing zero copy functionality:

– void LrtsSetRdmaBufferInfo(void *info, const void *ptr, int size, int mode)
– void LrtsDeregisterMem(const void *ptr, void *info, int pe, int mode)
– void LrtsIssueRget(NcpyOperationInfo *ncpyOpInfo)
– void LrtsIssueRput(NcpyOperationInfo *ncpyOpInfo)
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LrtsSetRdmaBufferInfo is used to set the network specific metadata informa-
tion for a buffer or a memory region that is intended to be used for an RDMA op-
eration. For most RDMA supported layers, this involves registration of the mem-
ory region and storing that information in the info object. LrtsDeregisterMem
is used to deregister an already registered region of memory. LrtsIssueRget is
used to perform an RDMA Get or Read operation from a remote buffer. Sim-
ilarly, LrtsIssueRput is used to perform an RDMA Put or Write operation to
a remote buffer. Since buffer information pertaining to both the local and the
remote buffer is required to perform a Get or Put operation, the wrapper ob-
ject NcpyOperationInfo is used to store the metadata information of both the
buffers, including completion handling information which is used to call the reg-
istered higher level completion function on completion of a Get or Put. These
low-level LRTS APIs described above will provide the infrastructure for higher-
level abstractions in Converse and Charm++. In this section, we briefly describe
the implementation of the LRTS APIs for different networking layers and for the
special case of transfers within a physical node.

Networking Layers Native networking layers provide explicit control to the
user to design and tune the usage of the network library’s API as intended.
Such layers also typically require the user to explicitly manage pinned or regis-
tered memory. In our work, we have chosen to implement the basic functionality
for performing zero copy operations on four popular native HPC networking
layers that require explicit pinned memory management. These include Uni-
fied Communication X (UCX) [3], OpenFabrics Interfaces (OFI) [4], uGNI or
GNI, and Verbs. For these networking layers, in our implementation, inside
LrtsSetRdmaBufferInfo, we use the network library provided method to register
the buffer and store the memory handle (or memory region) along with any addi-
tional information (like rkey) in the info object. Similarly, in LrtsDeregisterMem,
we use the method to deregister the buffer using the memory handle available in
the info object. Since all these networking layers natively supports RDMA op-
erations, we directly use the Get and Put methods provided by each of the net-
work libraries to perform RDMA Get and Put operations inside LrtsIssueRget
and LrtsIssueRput respectively. Completion handling is performed by polling
a completion queue and calling an appropriate higher level completion func-
tion using a heap object in the case of OFI, GNI, and Verbs. UCX supports a
ucp_send_callback_t argument provided in the Get and Put calls, which can be
set to a specific function, which is invoked on completion. Inside the ucp callback
function, the common higher level completion function is invoked. In addition to
native networking layers, Charm++ also provides an MPI networking layer to be
used for interoperation with MPI or on new machines without reliable support
yet for a native layer. Since MPI internally manages pinned memory, our im-
plementation is simplified and simply uses matching MPI_Isend and MPI_Irecv
calls to perform “zero copy” reads and writes. For networking layers that do not
natively support RDMA, like TCP and UDP, we have also provided a copy based
implementation in order to maintain API consistency.
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Intra-Node Communication between endpoints that are on the same physical
node is common on many-core nodes. We use Cross Memory Attach (CMA) [5]
for performing reads and writes between processes within the same host. CMA
is a mechanism that was introduced in Linux kernel version 3.2 to improve
communication performance between processes of the same physical node. A
process_vm_readv call is used in LrtsIssueRget and a process_vm_writev call
is used in LrtsIssueRput to perform CMA read and write operations. These
calls are synchronous and complete inline, allowing us to perform completion
handling immediately upon returning from the CMA call. For transfers within
the same process, we further optimize the communication with a user-space
memcpy operation for optimal performance.

3.2 Converse API

The API for zero copy semantics in Converse is built on top of the basic func-
tionality of the lower level, which is unified by the LRTS API. Since the meta-
data information of both the local and remote buffer is required to perform
an RDMA operation, we support a 2-phase protocol: rely on the existing mes-
saging API in Converse to transfer the metadata information, followed by the
one-sided (say, get) API to execute the large data transfer. The metadata associ-
ated with a buffer includes information like the pointer, size, home PE, memory
registration information (which is required for most RDMA networks), and any
other data fields used for notifying the user on completion of the zero copy
transfer. This metadata information in encapsulated into a class we provide
called CmiNcpyBuffer. This class contains methods such as get and put to per-
form RDMA Get and Put operations respectively. Additionally, methods called
registerMem and deregisterMem perform memory registration and deregistra-
tion. registerMem is called from the constructor of CmiNcpyBuffer to perform
memory registration of the buffer during declaration of this object. The user
is responsible for invoking deregisterMem after the completion of the RDMA
transfer.

The above public methods of CmiNcpyBuffer constitute the zero copy API in
Converse. The user is required to first construct and send the metadata object

// Inside a converse method .. Declare a CmiNcpyBuffer object
CmiNcpyBuffer srcMeta(myBuffer , buffSize , srcDoneHandler );

// Invoke a remote method passing my CmiNcpyBuffer object
buffObjMsg *msg = (buffObjMsg *) CmiAlloc(sizeof(buffObjMsg ));
CmiSetHandler(msg , destMetadataHandler );
msg ->buffObj = srcMeta;
CmiSyncSendAndFree(remotePe , sizeof(buffObjMsg), msg);

Fig. 1. CmiNcpyBuffer object creation and handover
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CmiNcpyBuffer of one PE to the other participating PE, using the existing mes-
saging API in Converse. This is illustrated in Figure 1 where destMetadataHandler
is the target handler for the message. This handler on the destination constructs
a local CmiNcpyBuffer and calls the get method as shown in Figure 2.

void destMetadataHandler(buffObjMsg *msg) {
CmiNcpyBuffer *srcMeta = msg ->buffObj;
CmiNcpyBuffer destMeta(myBuffer , buffSize , destDoneHandler );
destMeta.get(* srcMeta );

}

Fig. 2. Remote PE performing Get operation

On completion of zero copy transfers in Converse, the runtime system invokes
the handlers passed by the user in the CmiNcpyBuffer object constructors. When
the source handler srcDoneHandler is called, the buffer can be safely modified
or freed as shown in Figure 3. Similarly, inside destDoneHandler, the user is
guaranteed that the data transfer into the destination buffer is complete and
the user can begin operating on the newly available data as shown in Figure 3.
The runtime invocation of these handler functions on completion enables the
user to be asynchronously notified about reuse of source buffer and arrival of
data in the destination buffer. This is essential to integrate our protocol in a
message-driven execution model and makes it more efficient in comparison to
the MPI model, which requires the user to make a blocking MPI_Wait call or
repeatedly call MPI_Test to determine completion. This scheme also allows one
to wait modularly for multiple data transfers, even across library boundaries.

void srcDoneHandler(char *msg) {
free(myBuffer ); // free the buffer

}
void destDoneHandler(char *msg) {

// received data , begin computing
computeValues ();

}

Fig. 3. Source and Destination Handler function

The implementation of the Direct API is relatively straightforward. The user
is responsible for explicitly sending over the remote metadata information using
a CmiNcpyBuffer object as seen in Figure 1. When the get method is called
on CmiNcpyBuffer by passing the source object, the Converse implementation
creates a NcpyOperationInfo object from the two CmiNcpyBuffer objects and
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simply makes a call to LrtsIssueRget. The converse completion function reg-
istered with LRTS initiates the invocation of both the source and destination
handler functions passed by the user. PUT based one sided operations are sup-
ported in a similar manner.

4 Results

Table 1. Benchmarking machines and their configuration

Machine Cores/Node Memory/Node Network Charm Build
iForge 40 192 GB Infiniband ucx, verbs
Stampede2 68 96 GB Omni-Path ofi
Cori 32 128 GB Aries gni, mpi
Linux Workstation 4 8GB GB Ethernet netlrts(udp)

We conducted our performance experiments on three HPC machines and
one general purpose linux machine as summarized in Table 1. All our converse
builds are configured to use the non-SMP version, which uses one CPU core
as a single PE for one process. For benchmarking, we use 2 PEs on 1 node for
intra-node messaging and 1 PE each on 2 nodes for inter-node messaging. In our
experiments, we use a point-to-point ping-pong benchmark written in Converse.
This measures the one-way messaging latency for different message sizes between
two processes that exchange messages using their user buffers for a fixed number
of iterations. Since our ping-pong benchmark requires exchange of data directly
from the user buffers, in the Regular API we explicitly make a copy from the
received message into the user owned buffer. This is not required in the zero copy
API because the data transfer always happens directly from the sender owned
buffer to the receiver owned buffer. Across iterations, since the same buffers are
used for a particular message size, it is only required to register the buffer at
the beginning of all the iterations corresponding to that size. This allows the
zero copy API to perform the get operation persistently using the same buffer
information objects.

Figures 4 and 5 illustrate the improvements in intra-node and inter-node la-
tency with zero copy API on four different machines. As seen in all the latency
plots, the regular messaging API performs better than the zero copy API for
smaller messages. This is because of the time taken for the extra memory allo-
cation and copy performed in the regular API being small in comparison to the
additional latency incurred in sending the metadata information message for the
zero copy API. Starting from medium to large messages, we see that the zero
copy API begins to perform better than the regular API and the improvement
increases with message size. This can be again explained by the cost of perform-
ing the additional allocation and copy, which begins to proportionally increase
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(a) ofi on Stampede2
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(b) gni on Cori
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(c) netlrts on a Workstation

Fig. 4. Comparison of intra-node latency between regular and zero copy API
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(a) ucx on iForge
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Fig. 5. Comparison of inter-node latency between regular and zero copy API

with message size, whereas the metadata message latency remains constant. The
range of performance improvements in latency and the threshold message sizes
above which the zero copy API begins to perform better than the regular API
is summarized in Table 2 for intra-node transfers and Table 3 for inter-node
transfers.

Cross Memory Attach (CMA) is supported on Stampede2, Cori and the
commodity linux workstation. Figure 4 highlights the performance between the
regular API and the zero copy API with both CMA and RDMA on intra-host
transfers between 2 PEs. On Stampede2, CMA performs better than RDMA (us-
ing ofi) for most message sizes, esp in the medium message size range because
of the expensive network operations in comparison to using shared memory.
However, on Cori, CMA outperforms RDMA (using gni) only upto a threshold
size. Beyond this, the advantage of bypassing the CPU as done in the case of
RDMA outweighs the benefit of using shared memory, which still requires kernel
intervention. On the linux workstation as seen in 4c, because of no support
for RDMA, we use the copy based implementation underneath to maintain API
consistency. The additional overhead of sending the metadata message incurred
in the zero copy API, leads to the poorer performance as compared to the regu-
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Table 2. Improvement in intra-node latency with zero copy messaging API.

Metric Stampede2 Cori Workstation
CMA ofi CMA gni CMA

SpeedUp 1.2x – 3.72x 1.4x – 3.7x 1.13x – 3.5x 1.2x – 5.8x 1.3x – 26x
Threshold Size 8K 16K 1K 16K 512

Table 3. Improvement in inter-node latency with zero copy messaging API.

Metric iForge Stampede2 Cori
ucx verbs ofi gni mpi

SpeedUp 1.1x – 11.4x 1.2x – 8.4x 1.3x – 11.5x 1.2x – 7.8x 1.07x – 4.7x
Threshold Size 16K 32K 32K 16K 32K

lar API for smaller message sizes. As the message size increases, this additional
overhead becomes minuscule in comparison to the cost of allocations and copy-
ing, leading to similar performance between regular and the copy-based zero
copy API, and much better performance for CMA based zero copy API.

5 Related Work

RDMA has been well studied and applied to numerous parallel programming
models over time. MPI’s library model meant it has always operated on user-
owned memory rather than explicit message objects. This has allowed library
implementors to hide eager and rendezvous protocols behind two-sided send/recv
operations [6]. PGAS models, such as UPC [7] and Chapel [8], aim to hide com-
munication from users, so incorporating RDMA into those models has mostly
been done in the lower levels of the runtime system and not in the user-facing
API. GasNet serves as a lower level communication substrate for various task-
based programming systems and has had RDMA incorporated into its design.
Legion [9], which builds on top of GasNet, strives to hide communication from
users and manage data movement automatically based on task dependencies.
HPX [10] is another example of a tasking model that hides communication be-
hind higher-level abstractions such as futures and executors.

6 Conclusion

With the growing complexity of exascale software applications and hardware ar-
chitectures, task-based programming models appear promising. Asynchrony and
the ability to migrate tasks and data around the system to balance computa-
tional load will be important for overall performance and scalability. In this work,
we identified the shortcomings with the current messaging API in Charm++ for
sending and receiving large buffers. We also added support for zero copy mes-
saging in Converse and LRTS to enable the development of zero copy user APIs
in Charm++.
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Future work includes implementing Charm++ user-facing APIs on top of this
work and improving the performance of our new APIs. We plan to implement
two key optimizations. First, by adding a registration cache that will intelligently
handle memory registrations and deregistrations. Second, by developing a generic
memory pool for allocating all the small sized heap objects that we use in our
implementation. We believe these optimizations will allow us to extract better
performance from our new APIs.
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