
c© 2020 Michael P. Robson

TECHNIQUES FOR COMMUNICATION OPTIMIZATION OF PARALLEL
PROGRAMS IN AN ADAPTIVE RUNTIME SYSTEM

BY

MICHAEL P. ROBSON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kalé, Chair
Professor Josep Torellas
Associate Professor Craig Zilles
Professor Thomas Quinn, University of Washington

ABSTRACT

With the current continuation of Moore’s law and the presumed end of improved single core

performance, high performance computing (HPC) has turned to increased on-node paral-

lelism in order to address ever growing challenges and numbers of transistors. While this has

resulted in a continued increase in overall computing performance, supercomputer networks

have lagged far behind in their development and are now oftentimes the singular bottleneck

in achieving performance and scalability in modern HPC applications. New machines are

consistently built with ‘deeper’ nodes that improve the single node compute performance, as

measured by the achievable floating point operations per second (FLOPs), relative to ear-

lier generations with a corresponding increase in network bandwidth or sufficient decrease

in latency. This unequal increase has previously partially been addressed by partitioning

duties between runtimes at the shared memory node level, e.g. OpenMP, and distributed

memory communication level, e.g. MPI, to create a model known as MPI+X. In this work,

we present an alternative approach to improving the performance of modern HPC applica-

tions utilizing current generation supercomputer networks. We focus on the combination

of several of the benefits of the Charm++ programming model, namely overdecompsition,

with OpenMP and the ability to ‘spread’ work across several cores. This allows applications

to smoothly inject messages onto the network, constantly overlapping their communication

requirements with their compute phases, our overall focus for this work. We further describe

a complementary suite of techniques to fully utilize modern supercomputers and balance

FLOPs and communication. We extend these techniques through micro-benchmark studies

and integration into the production scale Charm++ runtime. We also turn our attention

from internode communication optimization to apply these same techniques to intranode

communication between various hardware devices, i.e. CPUs and graphics processing units,

as well. We also discuss many of the tradeoffs of these approaches and attempt to quantify

their general effect. While embodied in the Charm++ runtime system, these ideas are ap-

plicable to a wide swath of communication bound applications, a class of programs that we

expect to only grow over time with the continuing trend of increased differential between

node and network performance.

ii

To my wife, Halie, without whom this would not have been possible. To my parents, for

their love and support. To my gaming group, friends, and all other loved ones who helped

me along the way.

iii

ACKNOWLEDGMENTS

The author would like to thank Kavitha Chandrasekar, Jaemin Choi, and Halie Rando

as well as the following sources of support. This research used resources of the Oak Ridge

Leadership Computing Facility, which is a Department of Energy (DOE) Office of Science

User Facility supported under Contract DE-AC05-00OR22725. This work used the Ex-

treme Science and Engineering Discovery Environment (XSEDE), which is supported by

National Science Foundation grant number ACI-1548562. This work used the Extreme

Science and Engineering Discovery Environment (XSEDE) Stampede2 and Bridges at the

Texas Advanced Computing Center and Pittsburgh Supercomputing Center through allo-

cation TG-ASC050039N. We gratefully acknowledge the support of NVIDIA Corporation

with the donation of GPUs used for this research. This work used the Extreme Science

and Engineering Discovery Environment (XSEDE), which is supported by National Science

Foundation grant number OCI-1053575.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Hypothesis . 6
1.2 Bounding Factors . 8
1.3 Outline . 8

CHAPTER 2 BACKGROUND . 10
2.1 Parallel Programming Systems . 10
2.2 TraceR . 11
2.3 Projections . 11

CHAPTER 3 FLEXIBLE HIERARCHICAL EXECUTION OF PARALLEL TASK
LOOPS . 13
3.1 Introduction . 13
3.2 Background . 15
3.3 Methods . 16
3.4 Evaluation . 19
3.5 Related Work . 26
3.6 Future Work . 27
3.7 Conclusion . 28

CHAPTER 4 TECHNIQUES FOR IMPROVING APPLICATION COMMUNI-
CATION PERFORMANCE . 30
4.1 Introduction . 30
4.2 Motivation . 30
4.3 Techniques . 31
4.4 Experiments . 33
4.5 Results and Evaluation . 34
4.6 Extensions . 39

CHAPTER 5 RUNTIME COORDINATED HETEROGENEOUS TASKS IN
CHARM++ . 43
5.1 Introduction . 43
5.2 Background and Related Work . 43
5.3 Methodology . 45
5.4 Results . 47
5.5 Future Work . 50
5.6 Conclusions . 51

v

CHAPTER 6 FUTURE WORK . 52
6.1 Application Case Study . 52
6.2 Re-Examining the Folk Theorem About Communication Costs 53
6.3 Adaptive High-Performance Computing System Design for Next Genera-

tion Scalable Workloads . 56

CHAPTER 7 CONCLUSION . 80

CHAPTER 8 REFERENCES . 83

vi

CHAPTER 1: INTRODUCTION

Since the 1920s, there has been significant interest in engineering computing machines that

can solve complex problems. In the 1960s, Seymour Cray identified that silicon transitors

that used the planar process could, with refrigeration to cool them down, run computations

extremely fast. He built the CDC 6600 which ran computations ten times faster than existing

computers and was thus deemed a “supercomputer”. Thus, since its inception, the field of

supercomputing has revolved around the goal of generating the computational power needed

to solve increasingly complex problems.

Over time, however, society’s conceptualization of complex problems has changed, in part

because the field of supercomputing has evolved. Success was originally framed in terms

of floating point operations per second (FLOPS). In 1964, Cray’s CDC 6600 was able to

sustain 500 kiloflops per processor while addressing standard mathematical problems. A

decade later, machines could sustain computation on the megaflop scale, such as the CDC

STAR-100 in 1974, and then a decade after that, on the gigaflop scale, such as M-13 in 1985.

In the 1990s, the Top500 list began to track advances in supercomputing speed by recording

the peak speed (Rmax) on record worldwide.

The trends in the rate of change of computing speed was described in 1965 by Gordon

Moore and is known as Moore’s Law. Moore’s Law states that the number of transistors on a

microchip will double every 18 months to two years [1]. This trend has borne out not only in

computing, but also in other fields. In line with the early emphasis on transistor speed as the

primary influence on computing power, the field of supercomputing has tended to emphasis

the construction of ‘deeper’ nodes, which are machines that have more computational power

relative to their memory and bandwidth capacities [2, 3]. Other technological advances

have also worked to increase computation speed. For example, within the past two decades,

graphics processing units (GPUs) were introduced for general-purpose computing and have

shown a rapid increase in popularity. As of this writing, GPUs compromise upwards of 35%

of FLOPS in the list of the 500 fastest supercomputers, driven primarily by the ten fastest

machines on the planet [4]. Partially as a result of this trend computational power is no

longer the major issue constraining performance for many applications.

Early in supercomputing, the emphasis for performance was on standard mathematical

operations. Today, however, in the age of big data, there are additional concerns that must be

considered beyond how quickly a machine can, for example, multiply two matrices. Instead,

for most analyses that seek to utilize high-performance computing, there are significant

considerations about data movement and storage, which is dependent on both memory and

1

Figure 1.1: Trend of diminishing network performance relative to increasing computational
performance in leaders of the Top500 list over time.

bandwidth. There is thus a significant disconnect between the shape of modern research

questions well-suited to high-performance computing analysis, and the tasks supercomputers

have been optimized to perform. A typical analysis is likely to involve many steps of moving

data either from a CPU (host) to GPU (device), DRAM to CPU, GPU to GPU, node to

node, etc., depending on experimental and cluster designs. Due to the myopic focus on

computating speed, modern scientists find themselves in a regime where data movement

costs are the dominant considerations in terms of both energy and computation time. In

this dissertation, we primarily focus on inter-node communication. Figure 1.1 shows how

injection bandwidth (i.e. number of bytes each node is able to inject into the network per

second) has evolved in relation to the floating point performance of a node. As you go from

left to right, from older machines to newer machines, GFLOPs/node increases, whlle the

ratio of injection bytes to FLOP/s decreases. Instead of remaining constant, which would

be ideal notion of balance, it actually decreases dramatically, by almost a factor of thousand!

2

This imbalance between computational power (FLOPS) and network capacity, in terms of

both latency and bandwidth, is likely only to get worse.

This disconnect introduces trade-offs that influence how users are able to interface with

supercomputers and other performant machines. Looking forward, there are a few possible

strategies for how machines could be optimized to confront these challenges. One potential

solution would be to build machines, i.e. (super)computers, with more inter-node bandwidth.

However, our current network technologies are already over engineered and expensive relative

to their use. Assuming a fixed budget, improving network performance would therefore likely

come at the cost of the compute power of a machine. Given the constraints on engineering

machines that better balance processing, memory, and bandwidth, a more realistic question

may therefore be how application performance can be improved to better match the current

balance of network performance to computing power available. Phrased another way, are

supercomputers currently using their networks effectively, and are there ways to design

applications that balance the optimization of processing and networking? Today, many

opimization efforts still tend to focus on FLOPs utilization. Network utilization is likely to

present an increasingly critical challenge. Indeed, current parallel programming approaches

typically lead to bursty communication, relying on networks for short durations of the critical

path. See Figure 1.2 for an example. The horizontal axis is time. The two processes P1

and P2 alternate between computation and communication phases. The network is heavily

utilized and is on the critical path during the communication phase, but is idle during the

computation phase. These considerations are relevant not only to computer scientists and

engineers looking to the future of supercomputing machinery, but also to all fields that utilize

big data and high-performance computing.

Figure 1.2: Example of bulk synchronous approach without overlap.

P1

P2

An alternative possible solution to this problem is to consider overlap of communication

and computation as a critical consideration in application development. This will reduce the

importance of the network as a critical path component. It will also, as we will show, spread

the communication over time, thus allowing for a less bursty, if not continuous, utilization

of the network. Overlap would thus allow application developers to optimize performance

3

Figure 1.3: Example of overdecomposed approach with overlap.

P1

P2

of their applications given existing computing infrastructures and network constraints.

One could accomplish this by re-writing codes using languages that natively promote over-

lap, such as Charm++. In the Charm++ model, the data and computation are partitioned

into a large number of objects, with typically many objects per processor. This is called

“overdecomposition”. Communication is addressed to objects, rather than processors, thus

creating an object-to-object communication graph. Charm++ is able to dynamically bal-

ance load by migrating objects across processors. However, such load balancing is not the

focus of this dissertation. From our point of view, what is important is the effect overdecom-

position has on communication. Overdecomposition automatically creates adaptive overlap

of communication and computation without any additional programmer effort. Figure 1.3

demonstrates this approach in action. Since there are multiple objects on a processor, they

inject the messages into the network multiple times during a timestep. Even when each

object injects only once, at the end of its computation phase, but together they end up

spreading the injection of communication. Further, since the runtime system is scheduling

objects based on availability of the data they are waiting for, no single objects blocks the

processor waiting for communication. In this context, however, the question of how best

to utilize existing computing infrastructure while minimizing memory and network consid-

erations can be reframed in terms of (over)decomposition, i.e. to what degree a problem

should be overdecomposed? Since the scheduling of an object is based on availability of data

(messages), such overlap is adaptive, and essentially “free” from a programmer’s perspective;

however, there is overhead associated with overdecomposition as we will describe later in

this section.

MPI is the most popular traditional parallel programming model for distributed memory

machines. One can increase the extent of communication-computation overlap in MPI pro-

grams by using non-blocking send and receive operations, and moving send operations earlier

in the code, and delaying waiting for the receive operations to as late as possible. Although

this improves communication performance, notice that a program still injects data into the

network only once, as before (retaining the burstiness of communication). One can also

4

explicitly program the overdecomposition approach in an MPI program, by using multiple

blocks of data per processor, and using non-blocking communication and possibly event-

driven loops to interleave execution of different blocks. Structured AMR applications are

examples of such an approach with MPI. The reasoning and the techniques developed in this

dissertation are applicable to such programs as well, although we will focus on Charm++

approach.

An alternative approach could be to rely on some higher level programming language,

which, possibly with a compiler-assisted manner, can create programs that solve the prob-

lem of spreading communication over time and adaptively overlapping communication and

computation. The long-term solution to addressing this problem then would be to re-write

the large collection of existing high performance computing (HPC) applications using such a

new language or framework. Is such a paradigm shift feasible? An illustration of a successful

adoption of this approach is seen in CUDA for GPU programming. CUDA was designed

by Nvidia to provide a parallel environment that facilitates the use of NVIDIA’s GPUs for

general purpose processing. In spite of the skepticism about the user community adopting

a new way of writing programs, CUDA has succeeded spectacularly. However, this is ar-

guably a unique case, where the process of adapting existing code to the GPU environment

offered obvious computational gains for developers. A wider-scale shift would take a decade

or longer at best. We therefore explore the more natural approach of identifying ways to

shape the current and future applications in Charm++ (or even MPI as mentioned above)

to optimize communication.

Overdecomposition could, by itself, have been an adequate solution for communication

optimization, but for a significant and relatively recent challenge. The modern parallel ma-

chine consists of nodes that have a large number of cores working with a shared memory.

One of the reasons for the imbalance between injection bandwidth and computational ca-

pabilities of a node, depicted in Figure 1.1, is indeed the fact that modern “nodes” include

multiple processor chips, each with a large number of cores. To understand this challenge,

let us visit the issue of overhead of overdecomposition mentioned earlier.

As the number of overdecomposed pieces increase, the overhead of scheduling each one of

them also increases. Many common applications in science and engineering (such as stencil

computations) involve communicating halos, or boundaries, with neighboring objects. The

amount of memory dedicated to storing such halo regions, as well as the copying cost in-

curred for communicating halos, also adds to the overhead of overdecomposition. Further,

in several applications, there is significant algorithmic cost to overdecomposition. For exam-

ple, domain-decomposition based linear system solvers incur a higher number of iterations

to reach convergence as the number of domains is increased. It is therefore important to

5

limit the degree of overdecomposition as much as possible.

In this context, the so-called “Charm++ everywhere” approach employed in the naive

usage of Charm++ creates a large number of objects, which exacerbates the overheads

mentioned above. Assuming a conservative ten objects per core, on a forty-core machine,

the Charm++ everywhere approach would spawn four hundred objects. While this may

sound like a large number of objects, it is in fact a very realistic situation given that the

leading US supercomputer Summit contains 42 user-visible cores per node and can manage

up to 800 objects (or more) on an 80 core machine. Similarly, Stampede2 at TACC has

at least 96 cores not including hyperthreads. The hyperthreads would lead to a two- or

four-fold increase again in the number of objects.

One potential alternative is to aggregate the work in a single per-node object, as in the

MPI+X/OpenMP model, and spread the work across all cores using threads. However,

thinly spreading this work can create its own problems with respect to OpenMP overheads.

This dissertation addresses the challenge of dealing with large number of cores, while using

overdecomposition to adequately spread communication injection over time and achieve good

communication computation overlap so as to optimize overall program execution time. The

basic idea, and the research hypothesis resulting from this, is described below.

1.1 HYPOTHESIS

The current state of supercomputing is therefore such that communication-related issues

significantly affect application performance. While some techniques have been developed

to allow programmers to modulate overlap, these methods can either be challenging to use

(OpenMP) or can present high memory demands. However, there are an array of under-

explored software techniques that hold significant potential for mitigating these issues and

even improving the performance of large parallel applications that are currently limited by

network demands. The main goal of this work is to develop techniques that will allow ap-

plication users and developers to develop frameworks that perform efficient analyses using

large datasets on existing supercomputing infrastructures, without requiring users to invest

significant time in manually tuning application communication, overburdening machines’

memory, or rewriting large code bases.

The main hypothesis explored in this dissertation is that using carefully controlled overde-

composition combined with strategies for spreading the work of objects to cores can increase

performance on existing computing infrastructure without the need to rewrite large code-

bases associated with parallel applications. Our (primary) proposed alternative is to reduce

the total number of objects per node while simultaneously increasing the number of cores a

6

Figure 1.4: Different spreading configurations, showing both data decomposition and core
assignment.

1 2

Time
C

or
es

0

 1

 2

 3

1 3

Time

C
or

es

4

Time

C
or

es
0

 1

 2

 3 21

3

8

Time

C
or

es
0

 1

 2

 3

43

7

5 6

1 2
0

 1

 2

 3

2 4

5 7

Time
C

or
es

0

 1

 2

 3

6 8

1 2 3 4

Time

C
or

es
0

 1

 2

 3

5 6 7 8

1 2 3 4

9

Time

C
or

es
0

 1

 2

 3

Time

C
or

es
0

 1

 2

 3

Time
C

or
es

0

 1

 2

 3
Injection frequency

S
pr

ea
d

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

910111213141516

10 11 12

13 14 15 16

single object can execute on at a given time (slice). We term this process ‘spreading’ and

demonstrate how it can be accomplished through shared memory libraries (e.g. OpenMP)

used in conjunction with pure Charm++. This approach allows us to ‘shape’ the applica-

tion execution and adapt to the configurations of current and future machines. Figure 1.4

presents a pictorial description of this idea, demonstrating both problem domain decompo-

sition of a two-dimensional grid on the left and several possible approaches for ‘spreading’

the execution in time and space of the various grids across a representative single node. This

approach utilizes bandwidth spread over time, both in terms of network bandwidth used for

cross nodes communication as well as within node data transfer bandwidth, as well as good

efficiency for the compute portion of the application’s execution, thus leading to improved

overall application performance

7

1.2 BOUNDING FACTORS

In this work, I explore a variety of communication-oriented problems. As discussed pre-

viously, computational performance has and continues to improve faster than communica-

tion performance. While computational performance has long been the focus of supercom-

puting, here I prioritize communication to identify novel opportunities to improve perfor-

mance. I focus on a suite of applications, benchmarks, and mini-applications whose perfor-

mance is limited by their communication patterns, e.g. communication-bound as opposed

to computation-bound applications. For this subset of problems, advances in hardware gen-

erally do not translate to performance gains. These communication-bound codes usually

fall into one or several sub-categories based on the network property that currently impedes

their performant execution. These main sub-classifications include applications whose per-

formance is slowed due to high network latency, e.g. is latency bound, and this effect is often

due to communication on the critical path. Another class, bandwidth-bound applications,

are slowed by a lack of available bandwidth to send information during crucial periods of

the application iteration. A third category, contention-bound applications, arise not due to

any particular parameter of the network but rather its general configuration contributing to

congestion and thus overall application slowdown [5].

It is important to bear in mind that, although applications can generally be classified into

these three categories, the categories exist only when considering a specific set of machines.

A theoretical future machine with perfect ratios of latency, bandwidth, FLOPS, memory, etc.

would see none of these issues. Unfortunately, when clusters are built for general purpose

use, no single application is totally suited to their configuration. Thus, indentification of

communication-related limitations to performance hold continuing importance.

The techniques described above serve to alleviate some of the issues of each of these sub-

types of problems as well as communication-bound problems generally. They are outlined

in the next section and detailed further as they are employed.

1.3 OUTLINE

We first illustrate this idea in the context of multicore nodes and inter-node bandwidth.

We also present initial work on the exploration of the analogous idea of overlap of CPU and

GPU execution and the importance of maximizing the use of internal bandwidth between

these two devices. In the rest of this work, I discuss the following chapters in order. Chapter

2 continues with a description of the specific software tools and techniques used in this work.

We first review a single technique, spreading, in depth in Chapter 3 and demonstrate the

8

effectiveness of our techniques in general. Chapter 4 details focused study of the commu-

nication techniques, namely spreading and its potential extensions (e.g. aggregation and

simulation), as well as exploring other techniques, e.g. staggering, and prioritization. We

then discuss some of our earlier work in overlaping communication and computation on a

nodes with accelerators in Chapter 5. Finally, Chapter 6 describes a proposed large-scale

study of current modern performance HPC applications, analyzes and classifies them. Chap-

ter 6 futher describes and formalizes a well-known common sense theorem about the limits

of performance improvement due to communication optimizations We also examine the non-

linear effects and impacts of overheads in runtimes and communication layers that helps

support overturning the folk theorem. Chapter 7 concludes this analysis with a description

of further extensions of this work, as well as general observations applicable to a wide swath

of communication-intensive parallel applications.

9

CHAPTER 2: BACKGROUND

2.1 PARALLEL PROGRAMMING SYSTEMS

This work relies on a variety of programming systems and software. They are described

in more detail below.

2.1.1 OpenMP

Throughout this work, I utilize OpenMP [6] to automate shared memory programming.

In this use case, I place a simple set of ‘pragmas’ around the hot loop in the primary

computational kernel. This allows for the control of the ‘width’ of the parallelism, as well

as other factors including scheduling and collapse decisions. I leverage OpenMP instead of

other shared memory models due to its overwhelming ubiquity, good support, ease of use,

and non-interference with serial code.

2.1.2 MPI

For some of the distributed memory experiments, I take advantage of the Message Passing

Interface (MPI) [7]. MPI was originally developed to standardize various communication

layers sending messages in across nodes in machines with single core ’nodes’. Here, it is

used in conjunction with OpenMP to provide two levels of differing parallelism, shared and

distributed. MPI is also used to facilitate both levels simultaneously, but recent work has

shown success in combining both models [8, 9].

2.1.3 Task-based Models

Alternatives to traditional MPI or MPI+X (e.g. MPI+OpenMP models), task-based

programming models, including Charm++, are gaining popularity in the HPC community.

Their emerging popularity stems from a variety of differences with MPI that lead to the

relative strengths detailed below.

First of all, in these tasking models, the programmer is responsible for making logical

divisions of work (and potentially data) instead of focusing on the direct physical mapping

present in MPI. This allows the programmer to write code that matches their problem

structure. Additionally, this flexibility provides several advantages. For one, the programmer

is able to easily scale their code to different problem and machine sizes without altering

10

their fundamental algorithms and can alter grain size [10] to improve performance. This

performance improvement can come in a variety of ways, including through improved load

balancing characteristics and responsiveness, a key area of study in this work. Finally, task-

based models allow the programmer to focus their efforts on writing serial code within tasks

and then orchestrate those tasks in a broader framework by defining their dependencies on

both data and other tasks; in contrast, MPI requires the programmer to intermix parallel

and serial elements. Charm++, an adaptive runtime system, embodies these key principles

of task-based models in a proven community framework for parallel programming.

2.2 TRACER

Another key aspect of this work is the examination of current and projected supercomputer

network configurations and their possible effects on application performance. We model

these supercomputer networks via TraceR [11] and its constituent components ROSS [12]

and CODES [13]. The TraceR framework allows us to compare current and future runs of the

same traced application on varying machine configurations. This comparison is accomplished

by tracing the original application, in our case using the BigSim layer in Charm++[14] and

providing those traces to TraceR in addition to machine configuration parameters. TraceR

support both BigSim (Charm++) and DUMP (MPI) trace formats, which I plan to explore

in the application case study, see Chapter 6.1. TraceR then simulates the performance of

this application using a packet-level network simulator and simulated execution times. I

installed TraceR and its dependencies on both local and remote machines via the Spack

package manager [15], which ensures consistent versions across machines for both generation

and simulation and allows us to run simulations at various scales. TraceR itself can be run

in parallel, drastically decreasing the time required to simulate the application’s execution

and also allowing for larger scale experiments.

2.3 PROJECTIONS

Charm++ provides its own performance visualization tool, Projections. Users can au-

tomtically instrument Charm++ codes by enabling the correct flags at compile and run

time, see the Charm++ runtime guide for detailed instructions. This does contribute to

a slight performance overhead, and is not turned on during production runs. Once col-

lected, Projections traces are used for post-mortem performance analysis and visualization

of application behvaior and characteristics. These automatically generated logs can be sup-

11

plemented by user tagged events, called user events, which are then displayed on rendered

execution timelines along the normally traced portions.

12

CHAPTER 3: FLEXIBLE HIERARCHICAL EXECUTION OF PARALLEL
TASK LOOPS

In this work, we demonstrate the effectiveness of combining the techniques of overde-

composition and work-sharing to improve application performance. Our key insight is that

tuning these two parameters in combination optimizes performance by facilitating the trade

off of communication overlap and overhead. We explore this new space of potential opti-

mization by varying both the problem size decomposition (grain size) and number of cores

assigned to execute a particular task (spreading). Utilizing these two variables in concert, we

can shape the execution timeline of applications in order to more smoothly inject messages

on the network, improve cache performance, and decrease the overall execution time of an

application. As single-node performance continues to outpace network bandwidth, ensuring

smooth and continuous injection of messages into the network will continue to be of crucial

importance. Our preliminary results demonstrate a greater than two-fold improvement in

performance over a naive OpenMP-only baseline and a thirty percent speedup over the pre-

viously best performing implementation of the same code. The contributions of this work

include the examination of the interaction of these two parameters and their potential to

increase application performance.

3.1 INTRODUCTION

One of the persistent trends in modern supercomputer architectures is a significant, even

dramatic, increase in computational power of an individual node without a corresponding

proportionate increase in across-node communication bandwidth. One can see this trend in

the decrease in the number of nodes in supercomputers combined with a substantial increase

in total flop count, e.g. from 100,000 nodes of BlueGene/P, to 25,000 nodes of Blue Waters

(and Titan), to 4,000+ nodes on Summit. This trend is often described by the phrase “fat

nodes”, and it puts increasing pressure on the network. This is further exacerbated by

a common compute-communicate-compute pattern followed by many applications. Since

the compute finishes fast, the long communication latencies start impacting performance

negatively.

Overdecomposition has emerged as a useful technique for automatically overlapping com-

munication and computation. Explored and popularized by systems such as Charm++ and

Adaptive MPI, overdecomposition is a technique that involves partitioning the data and com-

putation into a large number of chunks. During each iteration, or time-step, each processor

schedules and executes many such chunks one after the other, depending on the availability

13

of data. To do this, such systems are driven by the availability of messages (and are also

called task based runtimes for this reason). No individual chunk can hold the processor

hostage and block it for the data it wants to receive. Instead, a user-space scheduler allows

those chunks to proceed that have the data that they need. This method automatically over-

laps communication with computation, and allows effective use of the network by spreading

communication injection over the duration of the time-step.

However, the narrative gets more complicated due to another factor: modern nodes have

tens of cores and multiple accelerators. This parallelism combined with complex memory

hierarchies creates new challenges that the basic overdecomposition technique may not be

able to handle. In particular, if we overdecompose with respect to cores, we make too tiny

a set of chunks, leading to high overhead both in terms of memory (e.g. ghost regions) and

scheduling time. Should we instead spread the work of a single chunk to all the cores? Or

to a subset of them? This is the question that we address in this chapter.

We will focus on nodes with multiple CPU cores for this chapter. However, we believe

that our techniques can be extended to the accelerators as well. A multicore node presents a

more controllable environment for our user-space scheduling techniques for now. Accelerators

with their built-in runtime schedulers present additional challenges that we plan to address

in future work. Further, some of the upcoming large-scale architectures do not employ

accelerators, where this work will be directly applicable.

The approach we propose and advocate for here involves flexibly combining overdecom-

position with “spreading” the work of an overdecomposed chunk onto a subset of cores.

By combining the power of both task granularity and flexible resource execution, we

can achieve a variety of new goals including: creating a new optimization space, mapping

applications to run on a variety of hierarchical hardware platforms, improving performance

via work set size reduction and the steady injection of messages on an otherwise overtaxed

interconnect network. In this work, Charm++ provides overdecomposition parameter space

and OpenMP allows us to spread tasks amongst various threads and cores. We tested our

approach on a variety of platforms and configurations in order to validate its performance

and utility. One caveat emerged via this testing: as with most forms of parallelism, the

application must have adequate work to justify the overhead of parallelism. Under these

ideal conditions, we achieve a four-fold speedup over a naive, but commonly used, baseline

in the best-case and a 30% speedup over the current state of the art. These results hold for

up to 256 nodes of Summit under weak scaling.

In the next section, we review the supporting technologies. We continue in Section 3.3 to

further describe our approach. Section 3.4 describes our evaluation methodology and their

implications. We then conduct a survey of similar and related approaches in the next section

14

before highlighting future directions and conclusion in Sections 3.6 and 3.7.

3.2 BACKGROUND

We rely on several existing technologies to implement our hierarchical approach to the

flexible execution of parallel tasks. These include parallel programming libraries such as

OpenMP and Charm++, discussed below, as well as supporting tools for analysis and sim-

ulation.

3.2.1 OpenMP

OpenMP [6] is used generally (and here) to divide potentially parallel regions of code into

tasks that can be then executed on OpenMP-spawned worker threads. The OpenMP library

provides many useful utilities, including scheduling and data privatization directives, as well

as commands to limit the number of executing threads. In this work, we utilize OpenMP

to create and execute the thread-level parallelism of our main compute kernel. This is what

we refer to as the spreading factor, which is described in more detail in Section 3.3.1.

3.2.2 Charm++

Charm++ [16, 17] is a parallel programming framework for both distributed and shared

memory machines. It divides a problem space into work and data units, named chares,

and then schedules their execution on the system resources as the data becomes available

through asynchronous messages. Charm++ provides many tools to assist program analysis

and simulation, namely Projections, discussed below.

3.2.3 Overdecomposition

One of the central tenets of programming in Charm++ is the idea of overdecomposition,

i.e. decomposing your problem domain into more tasks than the number of hardware cores

or threads[18]. In a typical problem, the user thinks of each core as a separate stream

of execution responsible for a subset of the data that depends on both the problem and

machine size. Using Charm++, a programmer is free to decompomse their problem domain

into as many logical units as makes sense given the structure of their data and the overhead

associated with separate logical units. We refer to the size of this work and data unit (i.e.

15

chare) as the grain size of the application, which is now a user-, and potentially runtime-,

configurable parameter.

3.3 METHODS

Traditional MPI-focused models typically partition problems across a set of ranks on a

single compute node. While this provides the programmer some flexibility in determining

an appropriate grain size and decomposition for the problem, it often forces them to pro-

gram directly to the hardware. Overdecomposition represents a conceptual pivot from the

hardware-centric programming model towards an emphasis on creating logical work units,

freeing the programmer to divide their work in the most logical manner.

In this work, we propose a possible extension of this approach. This single axis of opti-

mization, grain size, can be projected onto two dimensions with the addition of a second

parameter, the spreading factor. By writing programs that are expressed using their logical

work granularity and then flexibly running those tasks on one or more cooperating threads,

we can shape the execution timeline of an application to improve performance. This im-

provement is achieved specifically by spreading the injection of messages on to the network

smoothly over time as opposed to concentrating them at the end of a time step. As we show

in Section 3.4, this approach can have the added benefit of improving cache performance

through smaller work set sizes for each core.

3.3.1 Spreading

For our initial implementation, we leveraged the capabilities of the OpenMP runtime

to generate work chunks from our tasks. In order to control our process-to-thread ratio,

we run Charm++ in non-SMP mode, which spawns a single process per scheduler. We

map these schedulers to separate cores that are spaced by the number of threads that we

plan to generate. During the execution of each run, we pass the number of threads per

process to spawn as a command line parameter to the application. This allows us to test

different process-to-thread ratios without recompiling the code and within a single batch

job execution. We then set the number of OpenMP threads to execute programmatically

using omp set num threads(int). While this is an upper bound, we have found that given

correct mapping of processes and threads to cores (below) we always generate the requested

number of threads per scheduler. In general, we choose our process and thread numbers such

that: num procs∗num thds = num cores, where num cores is the total number of hardware

cores visible to the executing program, optionally including hyperthreading, num procs is the

16

number of processes, i.e. schedulers or PEs, spawned by Charm++ directly, and num thds

corresponds to the number of threads passed as a runtime parameter to the program and set

as the number of OpenMP threads to be spawned in the parallel section. As execution of our

application progresses from initialization to simulation, we annotate our intensive compute

kernels with OpenMP pragmas in order to generate work chunks. In the future, we also plan

to integrate this functionality with Charm++’s loop scheduling library, CkLoop[19]. We also

plan to test this with applications that exhibit variability in their per-iteration workloads,

both within and across iterations. This approach serves as a hierarchical alternative to

Charm SMP mode, which spawns a single process and then a thread per core, such that the

total is equal to the total number of hardware cores. Note that a further optimization is

possible with additional implementation work: one could have a process covering (say) an

entire NUMA domain, but have multiple schedulers within them covering a subset of cores.

This will allow read-only sharing and more efficient communication via shared memory, at

the cost of more elaborate CPU affinity specifications for OpenMP loops, possibly using

teams.

Our key insight is that we can provide more computational resources to a compute kernel

to decrease its runtime and consequently inject messages on to the network quicker and more

smoothly. This approach does involve overhead in spreading work across multiple threads

on separate cores; however, assuming the grain size is sufficiently large, we have shown that

this technique can significantly improve performance.

3.3.2 Affinity

In order to ensure our threads spawned via OpenMP do not compete for the same resources

(cores) on a node, we utilize a mixture of affinity libraries to pin processes and threads to

cores. Inside each process we create a CPU SET for that scheduler’s (process) exclusive use and

we use Linux’s sched setaffinity command to bind any threads spawned by the process

to this domain. On Summit, we also rely on the jsrun job launcher to correctly allocate

and place our processes and threads in coordination with our application. Correctly setting

this affinity mask is vitally important to performance and is potentially the reason we see

decreased performance when OpenMP regions are mapped across NUMA domains (these

results are discussed in Section 3.4).

3.3.3 Combined with Overdecomposition

While our approach to spreading work across multiple cores within a process is not unique,

17

Figure 3.1: Two axes of optimization: overdecomposition (number of objects) and spreading
(number of threads per object).

Time

C
or

es
0

 1

 2

 3

(a) One object with four
threads (OpenMP)

Time

C
or

es
0

 1

 2

 3

(b) Four objects with four
threads each

Time

C
or

es
0

 1

 2

 3

(c) Eight objects with four
threads each

Time

C
or

es
0

 1

 2

 3

(d) Four objects with two
threads each

Time

C
or

es
0

 1

 2

 3

(e) Eight objects with two
threads each

Time

C
or

es
0

 1

 2

 3

(f) Four objects with one
thread each (MPI)

Time

C
or

es
0

 1

 2

 3

(g) Eight objects with one
thread each (Charm++)

we instead derive our increased utility by combining this technique with the concept of

overdecomposition embedded in Charm++. Through this novel combination, we chart a

previously unexplored configuration space for parallel applications. The real power comes

from the flexibility inherent in shaping execution timelines and message injections into the

network. Succinctly, we now have the choice to trade-off extra overhead inherent in distribut-

ing shared work amongst multiple processors with increased overlap of communication, i.e.

message sends, and computation. Furthermore, our approach is such that a programmer

(or the runtime system) can reconfigure the application’s behavior at runtime, adapting the

execution model over various machine specifications and problem sizes. We now have the

18

opportunity to selectively spread work amongst various hardware components, e.g. sockets,

NUMA domains, etc.

An example of how these two factors interact and how current programming paradigms

map on to optimization space is presented in Figure 3.1. Although we draw this figure

with only three values on each axis, it extends indefinitely in either direction but we omit

those details for clarity. As we move from left to right on the X axis, we increase the total

number of objects and proportionally decrease the object size or, in other words, increase

overdecomposition. This leads to a smoother and less bursty injection of messages into the

network, as typified by Charm++’s approach to overdecomposition, at the cost of increased

overhead and complexity. Moving in the opposite direction exhibits the reverse tradeoff, with

decreased overhead for bursty communication due to bulk synchrony. Moving from top to

bottom along the Y axis represents an increase in the number of threads assigned to execute

each object, corresponding to an increase in the spreading factor. This axis represents a

similar tradeoff between lower overhead using a single thread and smaller working set sizes

and more consistent message injection rates (with correspondingly higher overhead). Our

contribution is to begin enumerating this new optimization space, where overdecomposition

and spreading interact to form a new Pareto frontier.

3.4 EVALUATION

In order to demonstrate the validity of our approach, we implemented our combination

of spreading and overdecomposition in a common parallel application, iterative Jacobi, as

described below. We evaluated the performance of our approach in a variety of configurations

and on a variety of platforms, primarily focusing on the Summit system.

3.4.1 Machine

We ran our initial experiments on the Bridges system at the Pittsburgh Supercomputing

Center and the Stampede2 system at the Texas Advanced Computing Center [20] but did

not see any early promising results and thus shifted our entire focus to Summit. A single

node of Stampede2’s KNL partition, where we ran our experiments, contains a 68-core Intel

Xeon Phi 250 Knight’s Landing processor. These cores can use one-, two-, or four-way

hyperthreading, which we tested in our results below. Each node also contains only 96 GB

of DDR4 RAM plus 16 GB of configurable high-speed MCDRAM. While we did not see a

difference in performance for various MCDRAM configuration modes, we suspect that the

small amount of main memory was a limiting factor in our ability to demonstrate improved

19

speedups, as it did not provide enough data to offset the overhead of spreading out the

work across cores. Previous work [21] has shown a similar non-effect on the performance of

a variety of Charm++ applications and benchmarks. This supports our broad hypothesis

that our approach will be move valuable as nodes become faster, larger, and ‘deeper’, i.e.

increase their FLOPs/bandwidth ratio.

We performed our experiments primarily on the Summit machine at Oak Ridge National

Laboratory. A single node on Summit consits of two 22-core IBM POWER9 CPUS [22] and

512 GB of DDR4 memory. It also contains six NVIDIA Volta V100 GPU and an additional

96 GB of High Bandwidth Memory (HBM), which we did not utilize for these experiments

and leave as future work.

3.4.2 Application

Our particular focus is on iterative regular applications that can be efficiently decomposed

into fine-grained work units. Therefore, we chose to focus our efforts on a well-studied ap-

plication, iterative Jacobi. Our particular experiments were run using a two-dimensional

decomposition and simulation space, but our methods can easily be extended to other de-

composition and simulation dimensions.

3.4.3 Experiments

Each experiment contains five runs of the same application in various configurations, e.g.

with one, two, or more OpenMP threads per process and without OpenMP. These results

are presented as an average of these runs, collected in a single job on the same set of nodes

and with the same configuration parameters, e.g. affinity. We compiled each code with full

optimization, i.e. -O3, using IBM XL C/C++ compiler 16.1. When building Charm++, we

utilized non-SMP mode to isolate each scheduler in a single process in control of a separate

pool of threads. In the future we plan to move to a model where we spawn a single league of

threads with one team dedicated to each scheduler [6]. We built Charm++ using the pami[23]

layer for communication due to its native bindings, high-performance, and relatively stability

and enabling all performance related optimizations, i.e. --with-production, including

disabling shared libraries [24].

On each machine and node configuration, we performed calculations over a two-dimensional

grid, roughly half the size of the node’s main memory. We then further decomposed this

grid into a variable number of chares. We left approximately 10% of the total memory un-

allocated as overhead for the runtime and other non-grid variables. The reported time is

20

for the total execution of the application’s main logic and excludes startup overhead. Tim-

ing data was gathered using Charm++’s high-precision timers, which utilize an appropriate

high-precision timer based on the compute platform, placed immediately before and after

execution of the main compute loop. Our baseline in most experiments, labeled Charm++

represents pure Charm++ code without any OpenMP based loop spreading. We also com-

pare our approach to a naive Charm++ + OpenMP implementation that uses Charm++ for

message passing and OpenMP for shared memory parallelization. As mentioned in Section

3.3.1, we always ensure that the total number of processes multiplied by threads is equal to

the total number of cores on a node.

Figure 3.2: Bridges - A comparative study of the effects of various OpenMP schedules on
our flexible execution strategy compared to the pure Charm++ baseline. The number in
parenthesis indicates the chunk size, where D stands for default. The bar color is coded to
the number of threads launched per process (spreading factor).

Baseline Static (D) Static (1) Collapse Collapse + Static No OpenMP
Type

0

10

20

30

40

Ti
m

e

NumPes
1
2
3
4
6
8
12
24

We tested our initial implementation on a single node of Bridges with a variety of OpenMP

schedules to determine the best initial configuration for further study. For this experiment,

we used a grid size of 89424× 89424 doubles and a block size of 7452 in both the X and Y

dimensions. In Figure 3.2, we can see no clear combination of parameters consistently results

in the optimal execution time, but we achieve a speedup of up to 1.3x over our Charm++

baseline (the lone Charm++ entry in this figure).

21

Figure 3.3: Stampede2 - comparative study of the effects of various OpenMP schedules
on our flexible execution strategy compared to the pure Charm++ baseline. The number in
parenthesis indicates the chunk size, where D stands for default. The bar color is coded to
the number of threads launched per process (spreading factor).

Static (D) Static (1) Collapse + Static (D) Charm++
Type

0

20

40

60

80

100

120

Ti
m

e

Threads
1
2
4
8
16
32

We also tested our approach on a single node of Stampede2 using the same OpenMP

schedule parameters as on Bridges. We only utilize 64 of the 68 available cores in all of our

experiments, baseline and otherwise, in order to equally divide our grid and reserve a set of

cores for OS operations in order to reduce noise. Since Stampede2 is a Knight’s Landing

chip, we have the ability to allocate its HBM in a variety of configurations. We experimented

with both the cache (default) and flat modes and saw little to no variation in performance,

thus the results have been omitted. We utilized cache in all of our reported Stampede2

experiments. As you can see in Figure 4.5, we did not see much variation in performance

with various schedules, aside from the obvious slowdown when using the collapse OpenMP

pragma.

After our single node experiments on Bridges and Stampede2, we concluded that the static

chunk size scheduling had the most promise. Further results examined only the two different

static size options and omit the collapse directive which had a dramatic negative impact on

performance. In addition to the impact of OpenMP scheduling on our approach, we also

examined the effects of hyperthreading on distributed execution. Increasing the number

22

of hardware threads available to our application did not improve performance, leading to

similar results as Figure 4.5, and they have thus been omitted for space.

We then turned our attention to running our application on Summit across multiple nodes.

Our first experiment tested a variety of work block, i.e. (over) decomposition, sizes for our

Charm++ baseline as well as our implementation, labeled Spreading in this and future

figures. We also indicate the number of threads we utilize per process in the legend. This

experiment was run on four nodes of Summit, with a per-node block size of 1788482 doubles.

We tested a wider number of both block sizes and thread counts for our spreading factor.

The results of those experiments are presented in Figure 3.4. We see a speedup of up to

1.46x over our Charm++ baseline at each block size and 1.1x speedup for the best performing

configurations of both Charm++ and our implementation overall. Of particular note is the

ideal block size for differing spreading factors. In the next set of experiments we include

block sizes of 3726, 7452, 14904, and 19872 where possible to ensure each configuration is

optimal.

Figure 3.4: Block Size - A series of experiments examining the effects of block size and
loop schedules have on execution performance on four nodes of Summit. The bar color is
coded to the number of threads launched per process (spreading factor).

621 1863 7452 14904 19872 22356 29808
BlockSize

0

10

20

30

40

50

60

70

80

Ti
m

e

Type
Charm(1)
Spreading(2)
Spreading(3)
Spreading(6)
Spreading(7)

In addition to examining a variety of block sizes on Summit, we also tested a larger

combination of potential chunk size for the static schedule we examined earlier. We also

reexamined the collapse pragma but, again, observed worse performance overall with every

23

Figure 3.5: Pragmas - A series of experiments examining the effects of block size and loop
schedules have on execution performance on four nodes of Summit. The bar color is coded
to the block size. The number in paraenthesis indicates the number of threads launched per
process (spreading factor). The letters and numbers indicate the chunk size, where D stands
for default.

Charm(1)

D(2)
D(3)

D(6)
D(7)

1(2)
1(3)

1(6)
1(7)

16(2)
16(3)

16(6)
16(7)

512(2)
512(3)

512(6)
512(7)

Type (Threads)

0

10

20

30

40

50

60

Ti
m

e Block Size
3726
7452
14904
19872

combination of static schedules. We tested these new schedules with a wider variety of thread

counts and the aforementioned block sizes that achieved the range of best performance. As

we can see in Figure 3.5, we had previously overlooked a faster combination for this system,

namely a chunk size of 1 and thread count of 7, for a variety of block sizes. Using these

configuration we see a speedup of up to 1.8x over the Charm++ baseline at the same block

sizes and 1.35x using the best performing configuration for both.

In order to determine how much of our performance gain is due to cache effects, we modified

our initial code to remove the send path, and ran the resulting executable on only a single

node. This setup allows us to observe effects of caching and other non-communication related

performance. In Figure 3.7 we see speedup of 0.98 to 1.14x depending on the block size.

Therefore, the rest of our speedup is attributable to network effects. We present further

evidence of this below. Additionally, we collected PAPI L1 cache counters for the send and

non-send versions as we observed the cache miss ratio go from 11.41% to only 9.73% in the

best case (3 threads). [25]

24

Figure 3.6: Weak scaling results up to 256 nodes of Summit. The color represents the
spreading factor (Charm only, OpenMP only, 7, and 21 threads. Same problem size as
before, filling the majority of the node’s memory and scaling with increased number of
nodes.

16 64 256
Nodes

0

10

20

30

40

50

60

Ti
m

e

Type
Charm
OpenMP
Spreading 7
Spreading 21

Finally, to demonstrate the impact our approach has on spreading previously bursty com-

munication smoothly over time, we utilize Charm++’s builtin tracing library, Projections,

to gather and visualize performance data [26]. The graphs below show the number of bytes

received across the network during the lifetime of the application for our three configura-

tions: naive OpenMP baseline, Charm++ baseline without spreading, and Charm++ with

OpenMP spreading. We have matched the X and Y axes scales, although the time values

are slightly shifted due to different process startup protocols involved. As we can see from

the figures, our OpenMP baseline has a very pronounced burst of communication at the end

of each timestep (Figure 3.8). The Charm++ baseline improves upon this implementation

by smoothing out the communication over time but still suffers very high peak rates (Figure

3.9). Our implementation (Figure 3.10) shows a very smooth overall use of the network, sup-

porting our original hypothesis that smooth network injection is crucial to performance. In

all three cases, we chose the block size and thread count that lead to the optimal performance

on four nodes.

25

Figure 3.7: Single node cache results on one node of Summit. Color corresponds to par-
allelization and the number of threads (spreading factor) is indicated in parenthesis where
appropriate. Same fixed problem size as other experiments.

3726 7452 14904 178848
BlockSize

0

20

40

60

80

100

120

Ti
m

e Type (Threads)
Charm++ (1)
Spreading (3)
Spreading (6)
OpenMP (42)

3.5 RELATED WORK

There have been several projects combining Charm++ and OpenMP. These include Bak

et. al’s work to integrate OpenMP and Charm++ runtimes primarily for load balance[27].

Our work is complementary as they focus on tight integration for unblanaced workloads

whereas we are concerned with rapid execution of balanced loops across cores for improved

communication and cache performance.

There has also been some work in describing the importance of spreading an application’s

message injection over time to ease the impact of network performance. In particular, Preissl

et al [28] mention the benefits of spreading communication over time to reduce network

effects. However, their approach is focused on the traditional MPI+OpenMP model, or in

their case PGAS+OpenMP, combined with one-sided communication and they do not take

overdecomposition into account. There has also been a wealth of research in communication-

computation overlap, [29, 30, 31, 32] among many others, but we distinguish our approach

by focusing on smoothing.

26

Figure 3.8: OpenMP Baseline - The above results are for four nodes of Summit.

Time (s)

Re
ce

iv
ed

 b
yt

es
 p

er
 se

co
nd

320K

240K

160K

80K

0
17.5 21.9 35.126.3 30.7

Figure 3.9: Charm Baseline - The above results are for four nodes of Summit.

Time (s)

Re
ce

iv
ed

 b
yt

es
 p

er
 se

co
nd

320K

240K

160K

80K

0
6.8 11.2 24.415.6 20.0

3.6 FUTURE WORK

While we have begun to lay the groundwork for a flexible execution strategy that combines

overdecomposition and loop level work-sharing (i.e. spreading), there are still many interest-

ing opportunities to expand this work. One direction we intend to explore next is expanding

our approach to function in coordination with GPU work. There is already an ‘impedance

mismatch’ between the grain size of a singleton chare and this approach may serve as a

possible solution by enabling bulkier chares on both the CPU and GPU. Similar approaches

have been explored previously [33]. Another interesting area of exploration is tighter inte-

gration with the Charm++ runtime. There are already two loop-level work-sharing libraries

available: OpenMP[27] and CkLoop[19]. We already utilize OpenMP to parallelize our criti-

27

Figure 3.10: Spreading - The above results are for four nodes of Summit.

Time (s)

Re
ce

iv
ed

 b
yt

es
 p

er
 se

co
nd

320K

240K

160K

80K

0
22.4 26.8 40.031.2 35.6

cal loops and are currently exploring how to ensure OpenMP thread teams are spawned and

available to execute work during critical compute kernels. As mentioned in 3.3.1, we are also

working on implementing a deeper hierarchy that enables multiple schedulers to cooperate

inside a single process while still directing disjoint sets of OpenMP threads. Charm++’s

task level language, CkLoop, serves a similar approach and merits further investigation as it

allows more control and flexibility. In either case, we plan to spawn tasks using one of the two

libraries and then dynamically control the spreading factor throughout the execution. In co-

ordination with these activities, we plan to further evaluate our approach with more complex

applications. Once our runtime integration is complete this would allow us to easily paral-

lelize any existing Charm++ applications, e.g. NAMD[34], OpenAtom [35], or ChaNGa[36],

without explicitly spawning threads and directing loop level parallelism. Concurrently, we

can gather performance traces for these applications and project their performance on fu-

ture network constrained machines using BigSim [14] and TraceR-CODES[37, 38], further

validating our hypothesis.

3.7 CONCLUSION

In this work, we have shown that by combining existing high-performance parallel libraries,

Charm++ and OpenMP, and leveraging their unique styles of parallelism in a complemen-

tary way, we can improve an application’s performance over what either approach can do

individually. In the future, tigther integration between these two sources of parallelism

should make this aporoach more widely applicable and even faster. As it stands now, we

are able to achieve, a four-fold speedup over a worst-case baseline and greater than thirty

28

percent speedup over the current best-case performing implementation for a given grid size,

up to a scale of 256 nodes of the Summit supercomputer. This improved performance comes

from a variety of sources including better cache utilization and steadier injection of messages

onto the network throughout a time step. With the continuted imbalance and increased ra-

tio between computational power (FLOPs) and connectivity (bandwidth) between nodes,

this work has and will continue to become more important. Furthermore, this approach

’unlocks’a new area of potential optimization: the tradeoff between grain size and loop-level

parallelism. This new degree of freedom enables codes to be better mapped to differing

hardware topologies both current and future.

29

CHAPTER 4: TECHNIQUES FOR IMPROVING APPLICATION
COMMUNICATION PERFORMANCE

4.1 INTRODUCTION

This chapter focuses on a common application pattern: stencil computation. Stencil com-

putation divides data into an n-dimensional grid, commonly two, three, or four dimensions

corresponding to the physical world, and performs a constant amount of calculations per

grid element, depending the type of experiment being conducted and the driving algorithm.

Common examples include Jacobi, Gauss-Seidel, and specific applications such as MILC [39],

which computes a four-dimensional stencil. These calculations involve data from neighboring

grid points, e.g. temperature, which must be communicated between steps or iterations. We

refer to these transmitted elements as ghosts throughout the text. After receiving the ghost

elements and performing the corresponding calculation, each element updates its value in

the global grid and informs its neighbors of its updated value, which they in turn use for

their own calculation in the following iteration.

4.2 MOTIVATION

Due to the widespread use of this parallel programming paradigm, optimizing the commu-

nication performance of stencil is an important problem. In addition to being an important

pattern, stencil computations have several other interesting features for the purposes of the

current analysis. Firstly, stencil codes are iterative, regular applications that generate a

predictable and fixed amount of work and communication per step. The work and commu-

nication can be directly calculated from and manipulated by the input and by parameters

such as grain size and the dimensions of decomposition. These parameters can therefore

be tuned systematically to study their effects in a controlled way in conjunction with other

proposed optimizations. Secondly, stencil codes are well studied applications, which give us

good baselines and metrics to compare against in our optimization efforts. Finally, itera-

tive grid-based nearest neighbor calculations, i.e. stencil codes, can range in their overlap

of communication and computation from no overlap in the naive case to perfect overlap

in the optimized case. This range of communication behaviors, when combined with the

predictability and regularity, allows us to assess the effects of our optimization at various

levels.

30

4.3 TECHNIQUES

We now describe our three primary techniques to alleviate communication performance

issues observed in the stencil application.

4.3.1 Technique 1: Spreading

Figure 4.1: Two axes of optimization: overdecomposition (chares) and spreading (OpenMP).

Time

C
or

es
0

 1

 2

 3

(a) No overdecomposition
and 4 x spreading

Time

C
or

es
0

 1

 2

 3

(b) 1 x overdecomposition
and 4 x spreading

Time

C
or

es
0

 1

 2

 3

(c) 2 x overdecomposition and
4 x spreading

Time

C
or

es
0

 1

 2

 3

(d) 1 x overdecomposition
and 2 x spreading

Time

C
or

es
0

 1

 2

 3

(e) 2 x overdecomposition and
2 x spreading

Time

C
or

es
0

 1

 2

 3

(f) 1 x overdecomposition and
1 x spreading

Time

C
or

es
0

 1

 2

 3

(g) 2 x overdecomposition
and 1 x spreading

General Idea Normally in a Charm++ program, a single entry method is run on a single

core. The calculation of individual sub-grids of the stencil computation can be sped up by

spreading the calculation across several adjacent cores using a shared memory programming

31

paradigm, such as OpenMP. This enables the calculation to maintain a larger grain size and

hide possible overheads as well as prevent the network from being constantly flooded with

many small messages.

Referring to Figure 4.1, replicated here from earlier, we can imagine the potential for

execution on two axes. One axis, in this case the x axis, represents the amount of overde-

composition present in the problem. The other, i.e. the y axis, represents the amount of

spreading or usage of OpenMP. The figure illustrates a simple example with four cores and up

to two times overdecomposition, but this model can be extended further in both directions.

We explored this technique in detail in Chapter 3 and include it here due to several

extensions and continuing work we’ve performed in later sections, as well as a reference to

other techniques.

4.3.2 Technique 2: Staggering (non-sync/timestepped)

Figure 4.2: A possible problem decomposition and mapping (L) and worst-case scenario (R).

X

Y

N1

N2

P1 P8

(a) Decomposition and Mapping

N:P

0:0

0:1

0:2

0:3

1:0

1:1

1:2

1:3

3 2 1 0 0 1 2 3 3 2 1 0

(b) Worst-case execution timeline

General Idea There are situations where randomized ordering e.g. non-ordering of mes-

sages can create significant performance slow downs, especially when compared with the

minimal overhead required to synchronize message execution.

Let us now consider a situation in which random queuing would create a significant de-

crease in performance. Imagine two physical nodes connected by one link. Every rank on

node 0 must communicate with its corresponding rank on node 1.

If every rank completes its execute step at the same time, then they will all try to utilize

32

the same network link to send to their neighbor on the other nodes, and vice versa. This

message delivery order is not guaranteed, which means the first rank to send may reach its

neighbor last. This random staggering continues throughout each iteration, in the worst case

having the first message arrive last and vice versa. This could lead to a slowdown, based on

the calculations below.

t = tcomm + tcomp = α ∗N + β ∗M + tcomp (4.1)

Where N is the number of other message that arrive before, in the range zero to num work-

ers/chares/PEs/etc and the rest are their normal values, e.g. α is latency, β is bandwidth,

M is message size, and tcomp is time for computation.

However, this is the worst possible (degenerate/perverse) case. In general, the delay would

be N/2 on average. With our staggering optimization, the execution time becomes:

t = tcomm + tcomp = α + β ∗M + tcomp (4.2)

since messages no longer delay each other.

4.3.3 Technique 3: Prioritization

So far, it is clear that Jacobi/stencil applications respond to the receipt of ghost/remote

data in a first-come-first-served manner using first-in-first-out (FIFO) queues. However, this

presents an obvious problem when we extend our application to run on more than a single

node as data is now at various ‘distances away’. We therefore must appropriately respond to

processing remote data by prioritizing it above more easily reached local data. This includes

both the send, receive, and calculation phases as our application can be communication-

bound for especially large networks or poor topology configurations, which have much lower

performance limits than local sends.

4.4 EXPERIMENTS

To demonstrate the effectiveness of these techniques, we performed a variety of exper-

iments to monitor their improvement in performance. These experiments were run on a

variety of supercomputing installations to demonstrate their wide applicability. These ma-

chines include: Bridges at the Pittsburgh Supercomputing Center (PSC) [40], Comet at the

San Diego Supercomputing Center (SDSC) [41], Blue Waters at the National Center for

Supercomputing Applications (NCSA) [42], Stampede2 at the Texas Advanced Computing

33

Center (TACC) [43], and Summit at the Oak Ridge National Laboratory (ORNL) [44]. The

respective configurations of each machine can be found at the linked resources and will be

mentioned as appropriate below.

The first set of experiments are direct runs, i.e. non-simulated, of the stencil application,

referred to as Jacobi 2D for the type of calculation performed and its decomposition. We

perform this experiment both on a single node, where communication occurs but is less

constrained by available bandwidth and latency, and across several nodes of a machine.

Currently, technique one, e.g. spreading, is applied to this calculation. In the baseline ver-

sion, a two-dimensional grid is divided amongst various logical workers, or chares, that are

responsible for the corresponding calculation and data management and messaging. Those

logical workers are then assigned to physical cores by the Charm++ runtime. In each it-

eration they perform a local calculation and then transmit their updated border regions to

their neighbors, which require it for local calculations. This computation is a simple average

but can be tweaked to represent more intense calculations, e.g. gravity. In order to ‘spread’

this work, we parallelize the inner calculation loop of each worker using OpenMP [6]. We

executed several experiments to determine the optimal execution parameters, see Figure 4.5.

Following this, we now space our workers out amongst the cores based on the number of

sub-worker threads they will spawn. For instance, if they will use two threads to perform

their inner calculations, then we only spawn half as many processes as normal and assign

them to alternating cores, leaving every other spare for a worker thread. We then compare

our optimized version against two baselines. One baseline, the ‘true’ baseline, is the naive,

MPI+OpenMP-like implementation that creates a single rank, e.g. MPI process, and divides

the work amongst every available core using OpenMP threads. The other baseline, is the op-

timized Charm++ that uses overdecomposition to overlap communication and computation

but does not ‘spread’ out the work of chares across cores.

Experiments are in progress to determine and extrapolate the performance of stencil ap-

plications using these various techniques on future machines and networks. To accomplish

this work, we are collecting traces of application runs at scale using Charm++’s BigSim [14]

framework. These traces include both execution time for tasks and communication time for

messages. Moving forward, we will replay these traces using TraceR [11] to estimate the

impact of worsening bandwidth to FLOPs ratios. We are also using these experiments as an

opportunity to validate BigSim and TraceR against empirical runs.

4.5 RESULTS AND EVALUATION

The results of these experiments are found in the figures below (Figures 4.3-4.8). Figure

34

4.3 shows the execution time for the spreading technique described above when applied

the Jacobi stencil program and run on a single node of Bridges. Utilizing a variety of

OpenMP tuning parameters, e.g. scheduling and loop collapse, revealed the best overall

configurtion to be static scheduling using the default chunk size and no loop collapse. This

configuration is reused in later experiments. Comparing against the no OpenMP version,

which is identical except it is not compiled with the OpenMP flags, exhibited one of benefits

of OpenMP: preserving the original serial code. This experiment was run with a variety of

OpenMP threads to represent the amount of spreading. With a larger number of threads,

the number of processes/PEs is reduced correspondingly such that: numCores = numPEs∗
numThreads. The best performance is found using six threads in the baseline case. This

experiment was also repeated across four nodes of Bridges in Figure 4.4, and similar results

were observed. In this instance, the best configuration parameters are utilized as determined

above, and a limited number of thread configurations were also run based on our above

results. Interestingly, twelve threads was observed to be a slightly better number to run

in this mode, potentially owing to the increase in cross-node communication and spanning

a single CPU in a process. Overall, this approach achieved a 30% speedup over the no

OpenMP baseline on a single node and a 33% speedup when run across four nodes, in the

best case.

These results suggested this technique could also be tested on a platform with more lighter-

weight cores. The results are in Figure 4.5 (single-node) and Figure 4.6 (four nodes) and

show minimal to no improvement using these techniques. The cause of this difference is still

being investigated, but one possible explanation is the difference in interconnection networks

and node types.

Finally, this approach was applied to one of the newest supercomputers available for this

analysis, Summit, in an effort to replicate the initial results. Rerunning the best single- (Fig-

ure 4.7) and multi-node (Figure 4.8) configurations revealed speedups in line with the exper-

iments on Bridges, i.e. 12% and 20% speedup over the best possible baseline configuration

for single-node and four nodes, respectively. Additionally, these configurations were com-

pared with an OpenMP-less baseline and another configuration in which an MPI+OpenMP

configuration was simulated by creating a single object holding all the nodes simulated data

and parallelizing the local computation through a single OpenMP invocation of 42 threads as

opposed to combining it with the overdecomposition based approach found in charm. This

experiment is labeled baseline (42) in the data and indicated up to a 3x and 4x speedup over

this case in the single and four node configurations, respectively.

These experiments sufficiently demonstrate that spreading intensive calculations over mul-

tiple cores can improve an application’s overall performance. While there is some inherent

35

Figure 4.3: Bridges, single node results.

Baseline Static (D) Static (1) Collapse Collapse + Static No OpenMP
Type

0

10

20

30

40

Ti
m

e

NumPes
1
2
3
4
6
8
12
24

Figure 4.4: Bridges, Distributed (4 nodes) results.

No OpenMP Static (D)
Type

0

50

100

150

200

250

Ti
m

e

NumPes
1
2
3
4
6
8
12
24

36

Figure 4.5: Stampede2, single node results.

Static (D), HT=1 Static (1), HT=1 Static (D), HT=2 Static (1), HT=2 Static (D), HT=4 Static (1), HT=4 No OpenMP, HT=1 No OpenMP, HT=2 No OpenMP, HT=4
Type

0

20

40

60

80

100

120

140

Ti
m

e NumPes
2
3
4
8
16
64

Figure 4.6: Stampede2, Distributed results (4 nodes).

Static (D), HT=1 Static (D), HT=2 Static (D), HT=4 No OpenMP, HT=1 No OpenMP, HT=2 No OpenMP, HT=4
Type

0

20

40

60

80

100

120

140

Ti
m

e NumPes
2
4
8
16
32
64

37

Figure 4.7: Best of 5 Runs for each configuration. 178k x 178k grid, with 7k x 7k chares. 10
iterations. Single node of Summit

1 2 3 6 7 42
NumThreads

0

20

40

60

80

100

Ti
m

e

Type
Baseline
OpenMP

Figure 4.8: Best of 5 runs for each configuration. 178k x 178k grid with 7k x 7k chares. 10
iterations. 4 Nodes of Summit.

1 2 3 6 7 14 21 42
NumThreads

0

20

40

60

80

100

120

140

160

Ti
m

e

Type
Baseline
OpenMP

38

overhead with thread creation costs and coordinating data and operations across several

cores, these analyses indicate that this extra work can be beneficial to an application’s exe-

cution. This improvement is due mainly to the improved communication performance of the

application, spreading message sends more smoothly over an iteration. Efforts underway to

apply this technique to a variety of additional application types and platforms.

4.6 EXTENSIONS

4.6.1 Simulation

In addition to experiments on current supercomputers, we have also simulated the execu-

tion of various techniques on machines representative of future trends. To do this, we utilize

the TraceR-CODES [37, 38] framework to simulate the execution of our chosen applications

on both future compute nodes and networks. In order to make this as accurate as possible,

we first capture the execution of our applications, with and without our optimizations, using

Charm++’s built-in tracing framework, BigSim [14]. This execution on real machines, gen-

erates BigSim logs, or trace files, which can be ingested by TraceR and used to both replay

and predict future performance. TraceR allows us to model certain network and machine

parameters, adjusting the expected execution time of all or specific functions to simulate of-

floading to an accelerator, the continutal general increase of node performance, etc. We can

independently control the machine network configuration’s parameters, including topology,

latency, and bandwidth. We thense use these studies to demonstrate the potential future

impact and utlity of our approach.

Simulation Stack TraceR is an application developed by Lawrenece Livermore National

Laboratory in coordination with the Parallel Programming Laboratory at the University of

Illinois. It is built on the discrete event simulation (DES) application, CODES, which is in

turn built upon the the Rensselaer’s Optimistic Simulation System (ROSS). [12]

Experiments We collected our initial set of BigSim logs using the Summit supercomputer

at Oak Ridge National Laboratory (ORNL), running on both a single node and four nodes

for our distributed trials, using the same experimental setup as our spreading experiments,

i.e. the OpenMP and Charm++ integration with various process to thread ratios simulating

a fixed size grid occupying 90% of the node’s main memory running for a fixed number of

iterations.

39

Interference We are also currently exploring the potential benefits of our techniques,

namely spreading, when used in an environment that exhbits network congestion. [45] We

suspect that the benefits may also be apparent in situations where interference from other

jobs is causing communication delays. We are actively exploring this hypothesis using the

same simulation traces and stack as mentioned previously, e.g. BigSim + TraceR-CODES.

4.6.2 Aggregation

As an extension of this work we turned to the idea of message aggregation to add another

possible axis of optimization, as well as to potentially gain back (or improve) performance,

by bringing back regularity, decreasing the number of messages, and increasing their size in

order to move from a latency constrained regime to a focus on bandwidth utilization. To

do this, we leverage the Topological Routing and Aggergation Mesh (TRAM) library [46].

TRAM, aggregates message sends in the Charm++ runtime system.

Our initial experiments were conducted on Summit at ORNL under same conditions as

before. We have compiled a draft version of our results in Figure 4.9 below.

4.6.3 OpenMP Integration

Finally, we are also working to integrate the spreading style techniques used throughout

into the Charm++ runtime system. This approach is similar to both work with OpenMP

and CkLoop, and would allow all Charm++ applications to execute loops automatically

in parallel with OpenMP annotations, as opposed to requiring user side intervention for

spreading. To accomplish this goal, we leverage the teams pragma, originally designed for

execution on accelerators, to generate separate leagues of teams that can execute varying

pieces of parallel codes. Each of these leagues is controlled by a master thread, much like a

single parallel region, and these initial teams and controllers are generated by the runtime

at initialization. At this point a specified number of threads are masters, each running

a separate league of teams. This is the same concept as before, but implemented using

lighter weight threads for isolation of parallel work tasks instead of separate processes as

before. Additionally, this approach enables disparate leagues to share work when they are

unbalanced. Below, in Figures 4.10-4.12 are the preliminary results from adopting this

approach, which shows similar performance characteristics and improvements relative to

our intial user based approach, but that can be automatically applied to any Charm++

application that contains OpenMP loops.

40

Figure 4.9: Preliminary aggregation results, four nodes of Summit.

0

10

20

30

40

Charm++ Spreading (2) Spreading (3) Spreading (6) Spreading (7) Spreading (14) Spreading (21)

5721 (NT) 5721 (T)

Figure 4.10: Bridges - single-node integrated OpenMP runs for SMP and Non-SMP builds.

41

Figure 4.11: Stampede2 - Skylake 2-node run integrated OpenMP.

Figure 4.12: Stampede2 - Skylake 4-node run integrated OpenMP.

42

CHAPTER 5: RUNTIME COORDINATED HETEROGENEOUS TASKS IN
CHARM++

Effective utilization of the increasingly heterogeneous hardware in modern supercomputers

is a significant challenge. Many applications have seen performance gains by using GPUs,

but many implementations leave CPUs sitting idle.

In this chapter, we describe a runtime managed system for coordinating heterogeneous

execution. This system manages data transfers to and from GPU devices and schedules

work across the computational resources of the system. The programmer need only tag

methods and parameters to enable heterogeneous execution.

Using this system, we observe improvements in programmer productivity and application

performance. For selected benchmarks, when using heterogeneous execution we observe

speedups of up to 3.09x relative to using only the host cores or only the device.

5.1 INTRODUCTION

Many current supercomputers derive a majority of their compute power from accelerator

devices. Nvidia GPUs and Intel Xeon Phis have already seen widespread adoption in many

Top 500 machines. As the march to exascale continues, several new machines will derive a

sizable portion of their overall FLOPS from GPUs. These include both the Summit system

at ORNL and the Sierra system at LLNL. However, programming models and systems have

been slow to adapt to this changing environment. In this chapter, we examine an extension

to the Charm++ parallel programming library that enables coordinated execution of het-

erogeneous tasks. We focus on compute kernels developed for Nvidia GPUs using CUDA.

Our framework automatically generates tasks from user-annotated functions that can be

executed on either the host or device. This strategy ensures full utilization of available

hardware and reduces computation time. In this chapter we examine the heterogeneous

performance of two mini applications, stencil2d and md.

5.2 BACKGROUND AND RELATED WORK

Charm++ [47] is a task based, asynchronous parallel programming framework with an

adaptive runtime system (RTS). In Charm++ programs, data is decomposed into logical

units (chares) which are then mapped to hardware resources (PEs). Chares communicate and

exchange data via messages that invoke asynchronous methods. The parallel structure and

methods of Charm++ programs are described in a charm interface file, which is parsed

43

by the charm translator charmxi to generate code for the runtime. In this chapter, we

modify charmxi to generate both host and CUDA versions of the entry methods tagged

for execution on different devices. It can be extended to generate code for any hardware

platform, but these two targets are sufficient for our tests. We also augment the Charm++

runtime, adding the capability to schedule heterogeneous work across the host and device

based on a provided heuristic.

Graphical processing units (GPUs) are becoming prevalent in the HPC community, as is

evident from their number over time in the Top 500. Originally intended as special purpose

accelerators for graphics applications, they are now user programmable and often referred to

as the “device” (as opposed to the CPU or “host” cores) due to their supplementary use in

a system. A variety of languages and tools for GPU programming exist ([48], [49], etc.), but

GPUs remain more difficult to program for than traditional host cores. Unlike CPUs, GPUs

are made up of hundreds of lightweight cores grouped together into streaming multiprocessors

(SMs). These SMs share critical resources, such as registers and shared memory. Collections

of threads, called warps, are launched on these SMs and execute in lockstep. This unique

design can lead to strong performance for some highly parallel applications, e.g. graphics,

but can be hampered by its strict SIMD nature (for instance when encountering branch

divergence in code). Data movement is also a concern since the GPU cannot directly access

host memory. Therefore, data must be copied to the device before being used, which often

limits performance due to the latency and bandwidth constraints associated with transferring

data across the PCIe bus.

A similar approach to using runtimes in heterogeneous environments can be found in the

StarPU programming library[50]. They also schedule tasks, called codelets, and automate

data transfer dynamically across different hardware targets. However, StarPU does not have

a mechanism to automatically generate kernels for different platforms as our work does. We

distinguish ourselves from other task based run times such as OmpSs[51] by offering more

generality, not requiring entire programs to be explicitly constructed as a DAG. Similar work

has also been carried out in the context of OpenCL[52], [53] with great success, but we can

extend our work to multiple nodes.

The authors of [54] propose a solution that divides work into fine grain tasks and enqueues

them in a single location. This potentially allows for heterogeneous execution and dynamic

load balancing. However, they use a work stealing approach with a persistent device kernel,

instead of a central manager, and they do not show results for mixed CPU-GPU execu-

tion as presented in this chapter. The Legion programming model [55] can also execute in

heterogeneous environments using similar techniques to our approach.

44

5.3 METHODOLOGY

Our execution model builds upon the earlier work of GPU Manager [56], which handles

the delegation and execution of CUDA kernels in the context of the asynchronous message-

driven runtime of Charm++ . This allows us to focus our work on higher-level concerns,

such as code generation and dynamic target selection in our framework.

5.3.1 Charm++ GPU Manager

The GPU Manager operates by registering GPU kernels to be managed with the runtime

system. By having the runtime asynchronously invoke kernels when data is available on the

device, we automate the overlap of data movement and execution as seen in Figure 5.1. Due

to inherent asynchrony of Charm++ , it is important to ensure that blocking operations,

such as cudaHostMalloc, are handled by the system and do not block in user code. GPU

Manager also automates some tedious CUDA-related tasks, namely copying data to and

from the device before and after kernel execution.

When using GPU Manager directly, the user must write an explicit CUDA kernel and

denote buffers which need to be moved to and from the device. The programmer must also

register a callback with the runtime, which is called when the kernel is finished and data

has been copied back to the host. This step is necessary since the call to GPU Manager

returns once the runtime has copied the CUDA buffers; it does not block until the kernel has

finished. GPU manager coordinates data movement and kernel invocations through a FIFO

queue. When a PE goes idle and enough time has passed, the runtime invokes a progress

function to issue new requests to the GPU. At this time, GPU Manager attempts to offload

data for a new kernel, launch a kernel with complete data on the device, and move data for

the completed kernel back to the host. Finally, when the data for the completed kernel is

fully copied back, GPU Manager invokes the user supplied callback to continue execution.

5.3.2 Accel Framework

The Accel Framework[57], or accel, extends GPU Manager by automatically generating

CUDA kernels from host code and dynamically deciding where entry methods should be

executed.

accel alleviates many of the programmer productivity problems associated with using

GPUs effectively in parallel applications by virtue of its automatic kernel generation. This

generation occurs only for entry methods annotated with the accel keyword. To improve

45

Figure 5.1: GPU Manager

performance, additional tags can be applied to methods, such as splittable, which allows

methods to be split into several independent tasks, which can more fully utilize the many

processors on a GPU. Inside splittable methods, splitIndex and numSplits variables are

defined, analogous to the threadIdx and blockDim variables in CUDA. This differs from

CUDA in that the code can be targeted to a variety of platforms. A full listing of other

annotations can be found in [57].

accel has a variety of strategies to determine where to execute particular entry methods.

The strategy is passed to as a runtime argument. Example strategies include +accelHostOnly,

+accelDeviceOnly, +accelPercentDevice, which specify a static division of work between

the computing resources. In this chapter, we manually sweep through different static divi-

sions to observe the performance behavior of the various configurations. However, there are

several available automated methods to find the best split, such as greedy strategies and hill

climbing. Further description is outside the scope of this chapter and is detailed in [57].

In order to maximize GPU utilization and avoid serialization, accel tries to batch multiple

device method calls into a single kernel launch. This batching occurs when a specified count

is reached or a certain amount of time elapses. The triggered keyword informs the runtime

system that the accelerated entry method (AEM) will be invoked on every chare and that all

chares will invoke said entry method before any chare invokes it a second time. Programmers

can also specify the number of threads to be used per block in a kernel launch instead of

having the runtime automatically determine one.

It is beneficial for the RTS to minimize data movement and overlap it with computation

46

when possible. Data movement is automatically overlapped with computation as described

in Section 5.3.1. Method parameters are automatically copied to the device, but are not

copied back since the Charm++ model dictates that entry method parameters have no

lifetime beyond the entry method. However, object data used in an accel annotated method

must be marked as readonly, writeonly, or readwrite to indicate whether it should be

copied in, out, or both. Additional annotations such as shared and persistent allow the

user to control the lifetime of the data on the device. With these annotations, charmxi

automatically generates code to move data to and from the device. The implObj variable

seen in the code is required due to the lack of a proper Charm++ compiler since we require

a handle to the chare object and its data.

The last token in Listing 5.1 specifies a callback invoked when the accel entry method

is finished executing. It is used in the same way as in GPU Manager but is listed here

instead of as an input or member variable due to parsing constraints. The callback is used

to send messages to invoke other methods since Charm++ messages cannot be sent from

accelerator devices.

Listing 5.1: Accelerated Entry Method Annotations

entry [t r i g g e r e d s p l i t t a b l e (NUMROWS) a c c e l] void doCalcu la t ion () [

readonly : f l o a t matrix [DATA BUFFER SIZE]

<implobj−>matrix>,

wr i t eon ly : f l o a t matrixTmp [DATA BUFFER SIZE]

<implobj−>matrixTmp>

] { . . . } doCa l cu l a t i on pos t ;

5.4 RESULTS

We analyze performance for varying distributions of work between the host and device for

two different applications, stencil2d, which implements a two dimensional stencil, and the

more complex md, which simulates electrostatic molecular dynamics. In both applications,

the main compute methods have been annotated with accel and other tuning parameters.

Our tests vary the percentage of work allocated to the device from 0% to 100% in increments

of 5%. Theoretically, hybrid computation will improve performance, since more hardware

can be used, but data transfer and batching costs create performance impediments.

The experimental results were gathered on the Stampede supercomputer. In particular,

we used the visualization nodes of the system, which each feature an NVIDIA K20 GPU and

two Intel Xeon E5-2680 processors. All runs were performed on a single node of the system

47

with 16 Charm++ processing elements, matching the 16 cores in the node. We measured

elapsed time from the start of the calculation to the end of the last error calculation for both

applications. This does not include startup or other fixed costs.

Figure 5.2: Timing for stencil2d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

5

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

5.4.1 Stencil 2D

stencil2d performs a single-precision weighted five point stencil. Given results use a

6144x6096 2D array decomposed into 24 tiles per dimension, a 254x254 section per element.

For work performed on the GPU, the algorithm performs approximately 1.25 single-precision

FLOP per transferred byte (10 FLOP/(1 float in + 1 float out)). As shown in Figure 5.2,

this low FLOP/byte ratio causes the host only case to beat the device only case. Optimal

performance occurs in the 30% device case.

48

Figure 5.3: Timing for md

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(s

ec
on

ds
)

5.4.2 Molecular Dynamics

md executes much faster in the device only case than in the host only case. Given re-

sults use a 5x5x5 3D array with 256 molecules per array element, a total of 32k molecules.

The FLOP per byte ratio for md is higher than that of stencil2d since each particle has

a relatively complex interaction with every other particle in the simulation, requiring dis-

tance, electrostatic force, position, and acceleration calculation and normalization. Optimal

performance occurs in the 65% device case.

5.4.3 Analysis

For both selected applications, we observe an increase in performance when using both

the host and the device as compared to using only the host or only the device.

There are some clear discontinuities in the performance of the chosen applications; see

49

the jumps at 60% and 85% device in Figure 5.2. These are likely a performance artifact of

the batching used in the Accel Framework. Since the GPU is a throughput-oriented device,

launching an additional batch takes much longer than adding some work to an existing

batch. This behavior is not seen for smaller allocations of work to the device because the

host was spending more time on the work than the device, so it was the dominant term.

The timing data follows a “bathtub plot”, so termed because it is low in the middle and

high on both sides. When performance follows this pattern, the goal is to set the parameters

such that execution happens in the “floor” region. As shown in Table 5.1, the best config-

urations achieve speedups of between 1.46x and 3.09x relative to host only and device only

configurations.

Best Split Host Only Device Only
stencil2d 30% device 1.58x 3.09x

md 65% device 3.02x 1.46x

Table 5.1: Speedup of Best Configuration Relative to Host/Device Only

5.4.4 Caveats

All applications do not benefit from a heterogeneous execution system. Even applications

that are amenable to heterogeneous execution may not see benefit in all configurations. The

most significant reason for this is data movement. Just as HPC applications can slow down

when run on two nodes versus one node due to the effects of adding network communication,

using a GPU can degrade performance unless the application amortizes the costs of data

movement. Additionally, not all algorithms are well suited to run on the GPU. In particular,

programs that make heavy use of branching, that cannot expose enough parallelism to fully

utilize the GPU, or that are composed of a variety of disparate tasks do not perform well on

GPU hardware.

However, large HPC applications often feature a variety of different kinds of work, so it is

likely that some portion will improve when executed on heterogeneously.

5.5 FUTURE WORK

This work is a small survey of the initial implementation of Charm++ support for

heterogeneous compute environments. Our current solution to generating CUDA kernels,

50

copying the entry method body directly into the kernel body with a few extensions, can

be vastly improved. Using splittable allows performance to be greatly improved, but

does not allow the user to make platform specific optimizations. One potential extension

is to allow the user to explicitly provide optimized kernels for different platforms, as other

runtimes, such as OmpSs, allow. We could also extend GPU manager to observe utilization

and launch multiple kernels.

accel currently provides mechanisms for the programmer to control data movement to

and from the device (or in the case of persistence, residence). However, there is more work

to be done here. For instance, adding support for GPU Direct, which would allow GPUs to

directly communicate with each other, and reducing the number of copies of data made inside

Charm++ when transferring to and from the device. We also plan on taking into account

data location and movement cost when making scheduling decisions to further minimize data

movement. We anticipate that NVLink will partially alleviate some of these problems.

Finally, we plan on applying this work to automatically load balance heterogeneous appli-

cations at large scale. By extending the Charm++ load balancing framework to support

heterogeneous load balancing, we will balance work both across nodes and across the hard-

ware resources in a node. This would enable Charm++ programs to adapt to arbitrary

hardware platforms of arbitrary size with minimal code changes.

5.6 CONCLUSIONS

The use of accelerators in HPC has grown in recent years and will likely continue for

the foreseeable future. While many HPC applications make use of accelerators to improve

their performance, it remains difficult to fully utilize all hardware resources available on a

machine.

In this chapter, we describe a runtime for managing execution in heterogeneous environ-

ments. In contrast to common ways of using accelerators, in this scheme, the system handles

data allocation, transfers, scheduling, and coordination across the heterogeneous hardware.

This system requires minimal additional work from developers and is not tied to any specific

accelerator platform.

We demonstrate the efficacy of this system for GPU execution using two Charm++

applications. We achieve up to a 3.09x speedup relative to running the main computation

solely on the host or device.

51

CHAPTER 6: FUTURE WORK

6.1 APPLICATION CASE STUDY

We now turn our attention to a large application case study. Whereas in previous chap-

ters we have demonstrated the validity of our techniques using a combination of mini-apps

and simulations, we will now employ these techniques in the context of a broader parallel

application.

Table 6.1 describes potential candidate applications for this work, including a brief de-

scription of their scientific domain, basic parallel programming pattern, production status,

and parallel programming framework, including whether or not they use GPUs.

Our plan is to profile these applications using their default benchmarks, e.g. Water 256 and

MOF for OpenAtom, on a variety of platforms, as we did when exploring our techniques in

Chapter 4. This includes scaling runs on production level machines as well as simulated runs

using BigSim and TraceR (or another tracing software, e.g. DUMPI [60] where appropriate.

From these experiments, we will review profiling data using the software’s profiling tools, e.g.

Projections [61] for Charm++and AMPI. After this stage we will document the potential

and observed problems and choose one or more applications which we believe our techniques

are applicable to improving their performance. We will then implement our techniques

describe in previous chapters, individually and together, and re-run these scaling experiments

observing their new performance.

Due to their complex nature, heavy reliance on communication, and variety of both par-

allel patterns and programming frameworks in addition to the broad applicability of our

approaches, we expect several of these applications will benefit from our optimizations, es-

Application Prd Domain Pattern Parallelization GPU Cite

OpenAtom Yes Quantum chemistry Charm++ No [35]
ChaNGa Yes Astrophysics Oct-tree Charm++ Yes [36]
Barnes-Hutt No Astrophysics Oct-tree Charm++ No [58]
MILC Yes 4D stencil MPI No [39]
PlasCommCM Yes Combustion AMPI
Lulesh No Particle physics Stencil AMPI and Charm++ [59]

Table 6.1: Candidate applications for further study, including their features. Prd is short
for production and lists whether an application is used for production science runs. Pattern
describes the general parallel pattern used in the application with parallelization listing what
technology is used to code this pattern. GPU is whether an application uses GPUs.

52

pecially in preparation for future machines with networks that are constrained relative to

their node level FLOPS.

In the future, we aim to develop a suite of tests suitable for applications to run to determine

automatically whether and what potential techniques their parallel code would likely benefit

from.

6.1.1 MILC

For our final evaluation of these approaches, we choose to utilize the MILC application

for several reasons. MILC, which stands for MIMD Lattice Collaboration, is a lattice code

developed, as it name implies, via a large scale collaboration between many physicists. It is

also a stencil code, which spreading has shown good results for previously. Additionally, we

already have an AMPI version we can utilize, including for BigSim trace generation which

can then be used for TraceR simulation in turn. Finally, MILC is created and maintained

by an external group, ensuring our techniques work with a broader swath of applications.

6.2 RE-EXAMINING THE FOLK THEOREM ABOUT COMMUNICATION COSTS

Communication Computation Overlap is the amount of time as a fraction of the total

execution time that the application spends simultaneously sending messages and performing

useful computation. Obviously, in the ideal scenario an application would be near 1.00 (or

100%) overlap between these two phases, constantly sending messages that perfectly overlap

their corresponding computational portions. However, we know this is a near impossibility

yet it remains our goal.

General Description When thinking about the room for optimizing communication

and computation overlap there is a folk theorem, or rule of thumb, that ”states” that the

maximum speedup possible is 2x.

Formalization The reason for this 2x factor is clear if we imagine both the best and

worst case scenarios for communication computation overlap in an application.

In the worst case, or a 0% overlap, the application is either performing communication

related work (and doing nothing else productive) or performing a computation (and not

sending or receiving data or doing other productive work). Since both the communication

stage and compute stage are entirely on the critical path the total time to execute the

application is: t = tcomm + tcomp.

On the opposite end, complete overlap (or 100%) would mean that the application is

constantly sending and computing data. We can calculate this run time with the following

53

formula: t = min(tcomm, tcomp).

Therefore, the speedup due to overlap is: (tcomm + tcomp)/max(tcomm, tcomp). The highest

possible value for this expression is attained when tcomm = tcomp, leading to a speedup of 2.

Bulk synchronous models such as MPI, when used naively, are infamous for the former

behavior. That is, when written naively, MPI applications tend to exhibit long phases of

only computation followed by an intensive communication phase which communicates the

required information for the next computation but which must wait on the communication

to complete before continuing.

We detail our reasons we hypothesize this 2x barrier is not always valid is, in addition to

issues we explored in the previous chapter, in the following sections. Succinctly, they are:

• overhead

• non-linear effects

• responsiveness/remote data/priority/critical path

6.2.1 Overhead

One major component not capture in our original simplistic model equation, t = tcomm +

tcomp is the overhead of various system components. These range from the CPU to network

interface card (NIC) and possibly include any device on the send/receive path of a message

[62]. We examine the details of the overhead from message collisions, termed contention, in

Section 6.2.2 below. We can imagine several scenarios in which overhead would significantly

impact the performance of a parallel application. One specific scenario would be in the case

where processors are ’overloaded’ with work, that is they are constantly computing useful

results and unable to inject messages on the network efficiently due to these competing

demands. One possible solution to this situation is reserving a single thread on each node

to handle communications (both in and out bound) while the rest continue calculations. We

can see that this leads to improved performance yet can lead to its own problems where the

single communication thread is overwhelmed with messages. One possible solution would

be to enable a flexible number of threads for communication while reserving the rest of the

threads on a node for computation. One can also construct similar arguments for handling

communication with GPUs as well. Regardless, we can capture the effect of this, and other,

form of overhead in our model by adding an additional term, toverhead that expresses the

time not spent directly computing or communicating. Thus our updated model would be

t = tcomm + tcomp + toverhead. In this work, we plan to investigate several causes of overhead,

including communication thread bottlenecks, in both the CPU and NIC co-processor, and

we pose several potential solutions including a flexible number of communication threads

54

as well as utilizing message aggregation, through the TRAM framework [46] to improve

performance. We plan to conduct these studies using both actual and simulated runs on

Summit and various other systems.

6.2.2 Network Contention

Another potential source of overhead captured by our toverhead term, comes from con-

tention amongst various nodes trying to send messages across the same interconnection

links. This form of overhead deserves special attention as we can model it separately, due

to its potentially nonlinear nature and different possible solutions. Similar to our approach

with generalized overhead from both the hardware and software (runtime) above, we plan

to demonstrate the effectiveness of our suggested approach via both real and simulated runs

to highlight the potential importance for future machines that will likely have reduced net-

work resources. In this case, our solution is to provide less resources to the application, as

opposed to more. By this, we mean throttling the amount of messages sent per unit time in

an application via software/runtime controls. If we look at Figure 6.1, we can see a potential

Figure 6.1: Hypothetical non-linear effects on execution times

Message Injection Rate

A
pp

lic
at

io
n

E
xe

cu
tio

n
Ti

m
e

Label
Unthrottled
Throttled

scenario in which a linear increase in message injection rates lead to a non-linear slowdown

in network, and thus application, performance. In our hypothetical scenario, the blue line

55

represents the normal application performance which follows an exponential decrease in ap-

plication execution time as we saturate the network. The yellow line represents our idealized

solution, which slows application performance even for smaller message injection rates but

which in turn smooths out the network performance and thus the overall application ex-

ecution time. Somewhat paradoxically, by throttling our application and ensuring it does

not exceed a congestion threshold we hypothesize that we can improve performance. We

aim to demonstrate these results in a real application, e.g. OpenAtom (see Chapter 6.1),

and simulated experiments. Additionally, we plan to work on automating this detection and

software throttling to ensure all applications can benefit from it.

6.2.3 Responsiveness

Our final area of concern in regards to possible application overhead is that of respon-

siveness. Responsiveness in the case refers to the ability, or inability, of the application to

process and execute incoming messages on a timely basis. We can imagine many poten-

tial scenarios when this might be a problem, but one obvious case is mis-prioritizing local

work not on an application’s critical path over remote work that is. In fact, in the worst

case where the application no longer overlaps communication and computation i.e. waits

until the end of a step to send messages, we would expect our model equation to expand

to t = n ∗ tcomp + m ∗ tcomm. We’ve seen one potential solution to this problem, a set of

dedicated communication threads. Other possible techniques that can help to mitigate this

problem include overdecomposition and correct prioritization. We plan to create a synthetic

application which exhibits this exact scenario in order to further study its possible effects on

application execution. From there, we will test several possible remedies described above and

then generalize them to larger scale runtimes and applications. In this section, we primarily

focus on CPU responsiveness but other components of the machine, namely NICs and links,

can also suffer from this problem. Solutions to these problems as similar to those described

above.

6.3 ADAPTIVE HIGH-PERFORMANCE COMPUTING SYSTEM DESIGN FOR
NEXT GENERATION SCALABLE WORKLOADS

6.3.1 Introduction

Large-scale high-performance computing (HPC) systems are fundamental to scientific ad-

vancement across all fields of science and engineering. As new HPC systems come online,

56

their hardware and software design targets a few high-priority applications or application

classes to provide them with the best performance. Primarily, these applications are large-

scale simulations of physical phenomena evolving over time — e.g., climate, molecular dy-

namics, astrophysics — that execute in the “bulk-synchronous” model [63, 64, 65]. Applica-

tions with this execution model have roughly fixed amounts of computation, communication,

and I/O throughout their execution. However, as the HPC market converges with the Cloud

Computing market, new applications that do not conform to the “bulk-synchronous” model

are run on HPC systems. Thus, the design of the system can not be too specific to the

target applications because it must also support a larger set of non-priority applications.

These new applications vary between latency critical quality-of-service (QoS) applications,

machine learning, and data analytics applications with irregular execution patterns. Future

systems, if targeted at a few high-priority applications, will not be well designed for a diverse

set of applications that may run on it over its lifetime. The goal of this work is to develop

the Adaptive Runtime for Compute and I/O (ARC-IO), a unified scheduler and I/O sub-

system written using the active message programming model that enables HPC systems to

dynamically adapt the node’s configuration and role — compute vs I/O — to the current

workload characteristics. ARC-IOenables improved scalability and performance for diverse

applications by mitigating I/O bottlenecks.

Figure 6.2 shows a generic overview of a current HPC system with a static distribution

of resource types — e.g. compute nodes, I/O nodes. The compute nodes in the system are

heterogeneous comprising CPUs accelerated with GPUs. However, other accelerators such as

FPGAs, TPUs, SmartNICs have been shown to accelerate HPC and Cloud applications [66,

67, 68]. Currently, users must decide which accelerator(s) to use and how to partition work

between them. Abstracting the accelerator selection to a dynamic runtime system has the

potential to improve performance of applications. We plan to construct an offload system

that will use machine learning and runtime performance monitoring to intelligently schedule

offload tasks to accelerators.

As applications scale to leverage more nodes, the system’s I/O performance has been shown

to be limiting factor in performance [69, 70] and system reliability [71]. As system size grows,

DRAM sizes are increasing faster than I/O bandwidth which exacerbates the issue. In times

of high I/O demand, the I/O subsystem can become backlogged with requests leading to

bad performance and performance variability [72, 73]. We propose ARC-IOto unify the

scheduler and I/O subsystem to dynamically reconfigure free compute nodes to function as

I/O nodes enabling better handling/caching of incoming I/O requests. Moreover, our I/O

subsystem is implemented using the active message model to enable improved flexibility and

scalability Figure 6.3 shows this adaption to the system from Figure 6.2 with more I/O

57

Figure 6.2: Architecture of a current HPC system.

Compute Nodes I/O Aggregators

Storage Servers Storage

nodes to handle incoming requests. The proposed I/O subsystem leverages heterogeneous

accelerators to efficiently encode/decode and compress/decompress data moving in and out

of the file system. ARC-IOdynamically load balances by assigning I/O requests to under

utilized nodes. Thus, application’s I/O performance will scale commensurately with the

application even when many applications compete for I/O.

Due to the ever expanding workflows on future HPC systems, effort must be taken to

ensure the trust and integrity in the data. Input data for applications may come from

sensitivity sources — e.g. sensor devices, private data, proprietary, medical data — requires

trust that the data is correct and has not been corrupted by malicious agents. The use of

lossy data compression to accelerate data movement and reduce storage sizes perturbs data

and possibly results. Moreover, providing a ledger of what operations took place provides

transparency and reproducible. We propose to extend the idea of provenance to ARC-

IOfor ensuring reproducibility of workloads and also as a means of producing deterministic

configurations of workloads for detecting anomalous system events. We will employ lossy

58

Figure 6.3: Architecture of a HPC system adapted using ARC-IO.

Compute Nodes I/O Aggregators

Storage Servers Storage

compression to mitigate the cost of large data movements.

The development of ARC-IOis broken down into five interconnected research efforts: (1)

improving performance via dynamic analysis and measurement of applications; (2) extend-

ing the scheduler to hook into the I/O subsystem; (3) employing provenance to ensure the

integrity of data and improve reproducible execution; (4) leveraging reconfigurable hard-

ware and ML to improve task acceleration; and (5) investigating lossy and lossless data

compression to improve transfer bandwidth.

We evaluate ARC-IOusing traditional HPC bulk-synchronous applications and bench-

marks along with data analytics and machine learning applications (see Section 6.3.4).

This work addresses high-performance computing (HPC) systems’ inability to adapt their

configuration. Adapting HPC systems to better conform to the current workload enables

higher performance on a diverse set of HPC and Cloud applications. Better management of

the I/O subsystem will reduce performance variability when multiple applications compete

for the file system. This work offers the following intellectual merit: (1) constructs ARC-IO,

59

a unified scheduler and I/O subsystem that dynamically scales the number of compute and

I/O nodes based upon the current workload and load balances the I/O tasks; (2) implements

the I/O subsystem using active message to enable dynamic flexibility and scalability; (3)

develops end-to-end real-time provenance in HPC for security and reproducibility; (4) enables

real-time adaption and reconfigurable node architectures using performance models; and (5)

establishes a connection between lossy compression error and application data fidelity.

6.3.2 Focus Areas

The research activities of this work address the following focus areas (FA):

1. Computer Architecture: To account for a variety of applications on next generation

HPC systems, we envision nodes in the system to be over provisioned with various types

of accelerators (e.g. FPGAs, GPUs, TPUs, SmartNICs). We propose to use real-time

performance measurements to guide the selection of accelerator choice at runtime using

performance models.

2. High-Performance Computing: We plan to explore a diverse set of HPC applica-

tions that have some of the following characteristics: real-time constraints, compute

vs I/O bound, coupled, various phases. ARC-IOallows the system to dynamically

configure the ratio of compute and I/O nodes and their architecture to yield improved

I/O performance for the applications.

3. Systems: We investigate sensor networks that transmit data using lossy compres-

sion to HPC facilities for real-time analysis. In doing so, we explore correctness and

accuracy of the workloads due to lossy compression and 3rd party data modifications.

4. Security and Privacy: We provide a mechanism to establish data trustworthiness in

ARC-IO by using data provenance. Data provenance provides a comprehensive history

of system interactions over time. This enables reproducibility of system workloads and

a means of detecting anomalous events which could have grave consequences on critical

system applications.

5. Theory and Algorithms: We establish a formal relationship between lossy compres-

sion error and correctness of data analytics and ML; removing costly trial-and-error

error-bound selection.

60

6.3.3 Targeted Systems

ARC-IOtargets large-scale systems where each node has various accelerator types. The

role and architectural configuration of the nodes will change based upon the perceived system

workload needs determined by ARC-IO. In addition, we will investigate sensor networks

that stream data into our proposed system. To test our ideas, we will leverage the Clemson’s

Palmetto Cluster, the C2M2 Intelligent Transportation System test bed, and Cloud Lab.

6.3.4 Targeted Applications

HPC Applications and Benchmarks Traditional HPC applications come from many

scientific and engineering domains. They tend to center around dense or sparse linear alge-

bra and n-body algorithms. When evaluating ARC-IOfor improvements in I/O scalability

and application performance, we will leverage traditional HPC benchmarks such as LIN-

PACK [74], HPCG [75], Graph500 [76], and IO500 [77] to gauge a single performance metric

such as computational performance or I/O performance. In addition, we will leverage proxy

applications from the U.S. Department of Energy’s Exascale computing project [78]. To

serve as interference when stressing the I/O subsystem, we will use IOR [79] to read/write

varying amounts of data to the parallel file system.

Data Analytics and Machine Learning Prior work by Smith develops high-performance

data analysis pipelines for various domains. These pipelines run on a variety of environments,

including HPC and cloud, and involve big data processing with machine learning. They are

representative of non-traditional workloads that ARC-IOtargets.

KINC: Knowledge Independent Network Construction (KINC) is a bioinformatics pipeline

for constructing gene co-expression networks (GCNs) [80]. A GCN is a graph in which nodes

are genes and edges exist between genes which are highly correlated according to some sim-

ilarity measure such as Pearson or Spearman correlation. Unlike other GCN construction

tools, KINC identifies clusters within each gene pair before computing the similarity scores.

KINC employs a master/worker distributed approach to divide the work among many pro-

cesses, where workers are accelerated with GPUs. The master assigns work dynamically such

that each worker receives work blocks as fast as it can process them. Alternatively, KINC

can use a chunk-and-merge approach in which many independent tasks are submitted with

a static work distribution, each task produces a “chunk file” of the intermediate results,

and a final merge process reads all of the chunk files and produces the final output files.

This approach does not require MPI and may be advantageous on shared systems because

61

it consists of many small jobs instead of one large job; however it may suffer from workload

imbalance since it does not use a dynamic work distribution.

Gene Orcale: Gene Oracle (GO) is a pipeline for identifying biologically significant

biomarkers, or ”candidate genes”, from a high-dimensional gene expression dataset [81].

GO uses machine learning models to evaluate the ”classification potential” of user-defined

gene sets, and for those sets which perform the best it uses machine learning to select the

most salient genes within each set. GO can use many classifiers — e.g., linear models, SVMs,

random forests, neural networks.

TSPG: Transcriptome State Perturbation Generator (TSPG) is a deep learning pipeline

for identifying genes with transitions between biological conditions [82]. TSPG uses a

generative-adversarial network (GAN) to generate realistic gene expression perturbations

between a source and target condition, such as normal kidney tissue to cancerous kidney

tissue. The genes most strongly perturbed in the transition are used in downstream analyses.

TSPG consists of several steps, including training a target model, training the GAN, and

generating and visualizing the final perturbations. While a single TSPG model is trained

with a fixed set of genes and a fixed target class, multiple TSPG models can be trained in

parallel to cover different combinations of gene sets and target classes.

STRIDE: STRucture IDEntification (STRIDE) is a deep learning application developed

to classify different types of molecular structures [83]. STRIDE adapts the PointNet archi-

tecture to identify local structure in molecular simulations without any feature engineering.

Thus, STRIDE takes the 3D coordinates from a molecular dynamics simulation and predicts

the class of each coordinate, making it a powerful tool for generating segmentations of large

molecular simulations.

Intelligent River Intelligent River (NSF CNS-1126344) develops a river and water-resource

sensor network on the entire 312 mile long Savannah River basin, and provides real-time ac-

cess to essential environmental and hydrological parameters — e.g., water temperature, flow

rate, turbidity, oxygen levels, pollutants — at appropriate temporal and spatial scale for

managing resources. The data is critically needed to improve water resources management

as demand increases for drinking water, hydroelectric power, recreation and industrial pro-

duction. Battery-operated sensors are inserted into buoy systems anchored to the river floor

and process the data and transmit it to Clemson’s Palmetto Cluster for analysis and visual-

ization. Challenges in this system include trust in the quality and accuracy of the data and

transmission from remote sensors.

In 2018, Hurricane Florence caused $24 billion dollars in total damages and produced

historic and extensive flooding in the Pee Dee River watershed resulting in 129 water res-

62

cues, over 1,000 assisted evacuations, displacement of nearly 8,000 people, and 233 roads

closures [84]. During the planning phase, we will establish a connection with Dr. Christo-

pher Post at Clemson and discuss the computational needs of expanding Intelligent River

to the coastal waterways in the Pee Dee River watershed. Scaling the sensor network from

a single river to multiple river systems and the coastal regions of South Carolina will re-

sult in massive amounts of real-time data. Thus, efficient data transmission and processing

is critical in times of severe weather. ARC-IOwill enable fast and efficient processing of

this data. The long-term goal of the collaboration with Dr. Post is to explore the use of

the expanded sensor network’s data to parameterize real-time watershed models to predict

flooding during severe weather events. More accurate watershed modeling can enable faster

and more accurate information for evacuation orders and routes.

Pedestrian Detection On average, 69,000 pedestrians are injured each year on US road-

ways and account for 15% of all US road fatalities in 2016 representing a 22% increase from

2007 [85]. To improve pedestrian safety, video and image data are sent from edge devices and

cameras on roadways to the Cloud where it is used as input for machine learning models to

monitor traffic flow and to detect pedestrians [86]. After analysis, the results are propagated

back through edge devices to connected vehicles to inform and alert the driver. As more

connected devices — e.g., cameras, sensors, vehicles — come into service, they compete for a

fixed amount of existing bandwidth. This leads to a decrease in pedestrian safety as messages

are delayed or the Cloud resource becomes overloaded. Reducing bandwidth requirements

for Intelligent Transportation Devices using compression allows more connected devices to

transmit data to a processing facility simultaneously. Moreover, ensuring QoS when the

data reaches the facility ensures data is processed within the real-time constraints. Thus,

enabling improvements in pedestrian safety by making decisions using more data sources

and avoiding delays in analyzing and propagating the results to the connected devices.

6.3.5 Notions of Scale

This work considers scalability of applications in two contexts: (1) Traditional scalablility

performance as the problem is weak or strong scaled. ARC-IOseeks to improve application

I/O performance which will reduce runtime and I/O bottlenecks leading to better parallel

efficiency when run on larger numbers of nodes. In addition, we will explore scalability of

the I/O subsystem to the maximum number of concurrent readers and writers before I/O

bandwidth drops below an minimum quality threshold. (2) Scalability of sensor applications

that leverage Cloud and HPC systems for real-time analysis of data. For this, we consider

63

Figure 6.4: Strong scaling results for KINCv1, KINCv3 CPU, and KINCv3 GPU imple-
mentations. Each worker is a node. Note the y-axis scale is different for each subplot in
order to emphasize the scalability of KINCv3.

1 2 4 8
Workers

0

20000

40000

60000

80000

100000

120000

140000

160000

Ru
nt

im
e

(s
)

Implementation = KINCv1

1 2 4 8
Workers

0

50000

100000

150000

200000

Implementation = KINCv3 (CPU)

1 2 4 8
Workers

0

500

1000

1500

2000

2500

3000

3500

4000
Implementation = KINCv3 (P100)

1 2 4 8
Workers

0

200

400

600

800

1000

1200

1400
Implementation = KINCv3 (V100)

the ability to increase the number of sensor devices in deployment without violating real-time

QoS contracts.

6.3.6 Preliminary Scalability

KINC, as well as the other data analytics applications listed above, are high-throughput

applications and as a result are highly scalable as shown in Figure 6.4. These applications

operate on many independent data items which allow them to achieve extremely high par-

allelism on large-scale systems, as long as input data is sufficiently large. There is little

to no synchronization between workers, the only communication overhead consists of the

distribution and collection of work. Therefore we expect to be able to achieve an equally

high level of scalability with these applications on the proposed system.

6.3.7 Background and Related Work

Runtime Systems Charm++ is a message driven parallel programming framework pow-

ered by an adaptive runtime system [16, 17]. It is utilized by several production scientific

applications including NAMD [87], ChaNGa [88], and OpenAtom [89], among others. In ad-

dition to a C++ library interface, it can virtualize MPI applications via the Adaptive MPI

(AMPI) layer [90], interoperate with MPI applications [91], provides a Python interface [92],

and integrate with shared memory libraries such as OpenMP [93], Raja [94], and Kokkos

[95].

Improving I/O Over the last two decades, a considerable amount of research has focused

on I/O for high performance computing systems. I/O is a serious issue in large part due to

64

almost exclusive focus on processor and memory architecture in the 80’s and 90’s. Thus a

”catch-up” period of I/O research was initiated by a series of meetings leading to funding

programs in the area [96, 97, 98]. Among other things, these programs led to the development

of a variety of file systems designed for parallel computing [99, 100, 101, 102, 103, 104] and

programming environments [105]. These, in turn, provided the basis for the growth in

BigData applications.

The ParalleX programming model [106], based on active messages [107], threads, and local

synchronization has been shown to improve scaling an large scale parallel computation [108]

was integrated with the OrangeFS parallel file system [109] and applied to the functional

genomics application area [110, 111, 112]. This work forms the basis of the proposed project

to more completely adapt the I/O subsystem.

Performance Modeling and Reconfigurability As heterogeneous HPC systems begin

to incorporate different accelerators, programmers are faced with the task of choosing what

type of accelerator to use to parallelize their algorithm. Further, many programmers want

to know the benefit of implementing a parallel algorithm weighed against the time it takes

to develop. Prior work developed an application-to-architecture taxonomy [113, 114, 115]

to determine the best performing accelerator for different applications classes using machine

learning, but is limited to a few select accelerators. Other works [116, 117, 118], predict

the runtimes of parallel algorithms by leveraging different machine learning models. This

provides programmers with performance predictions to more efficiently utilize available re-

sources on heterogenous clusters.

Security and Provenance in HPC In computing, provenance is a comprehensive his-

tory of a data object from the point of generation to its current state. Data provenance is

used to provide transparency of data objects; ensuring that data emanating from software

systems has not been tampered with or corrupted during processing. Prior work [119, 120,

121, 122, 123, 124, 125] builds automatic provenance-aware systems for Linux and embedded

system environments. HiFi [120] is a provenance framework for the linux kernel that consists

of three components: provenance collector, provenance log, and provenance handler. The

collector component records provenance information such as processes, IPC mechanisms,

network and kernel activities in the OS kernel layer through provenance hooks placed in the

kernel. ProvIoT [119] focuses on memory constrained embedded systems and uses dynamic

instrumentation of application code at runtime and a graph database for further processing.

PASS [124] intercepts system call information at the kernel level and stores this information

in a kernel level database. LPS [122] is a lightweight provenance system for HPC environ-

65

ments. It consists of three components: a tracer, aggregate, and a builder component. The

tracer collects provenance using kernel instrumentation in each node’s OS. The aggregator

component retrieves data from all of the respective nodes. The builder combines provenance

collected and provides the appropriate data dependencies between all of the aggregated

information.

All of the provenance systems mentioned above primarily focus on provenance collection

of system calls in the OS. Our provenance framework focuses on interactions across het-

erogeneous devices in ARC-IOwhile generating provenance at the application and systems

level.

Data Compression To address data movement and storage bottlenecks, data compres-

sion is an effective tool to reduce data size [126, 127, 128, 129, 130, 131, 132]. Two main

forms of data compression exist: lossy and lossless. Lossless compression — e.g., gzip [133],

fpzip [134], zstd [135] — compresses and decompresses with no loss in data fidelity, but are

not well suited for floating-point data; achieving a compression ratio of 1–4× [136]. Lossy

compression — e.g., SZ [127], ZFP [137] — enables larger compression ratios but at the

expense of a user controlled loss in data fidelity. Key to the success of lossy compression

algorithms is the quantification and understanding on the impact of compression on appli-

cations [138, 139, 140, 128, 141, 142].

6.3.8 Research Task 1: System Monitoring and Control

While heterogeneous hardware offers an opportunity to improve application performance,

leveraging it effectively is very difficult for individual application programmers. Our pro-

posed solution, is to have the system handle this problem, interfacing with the hardware

and orchestrating its allocation and supervision. This includes working with remote sensors,

clouds, reconfigurable hardware, and accelerators.

This task prototypes the core functionality of using a dynamic runtime system. The

planning work proceeds in three stages: measurement, adaptation, and integration. Thus,

ARC-IOis able to dynamically monitor both an application’s performance and the system’s

status and automatically assign resources to the program as it executes.

We use the Charm runtime system as a base layer prototype because it already includes

measurement and adaptation. We plan to extend this functionality to work on a broader

range of systems and applications and serve as a job coordinator [143] instead of a single

runtime system for one application. Charm has been shown to run multiple jobs in the cloud

effectively [10].

66

Figure 6.5: Before Adaptation (LB)

Measurement We will use PAPI [144] to investigate metrics which include cache misses,

page faults, network counters, power consumption, etc. using a modified version of the

Charm++ runtime system. Next, we determine the suitability of these metrics to determine

system and application behavior. After collecting one (or more) metrics through a synthetic

application, we categorize our test applications based on different behavior through a variety

of phases in their application life times so that the system can have different optimization

targets and thresholds.

Adaptation We integrate system controls in to the ARC-IOprototype. This has been

successfully demonstrated in the past for targets such as load balance (Figs. 6.5, 6.6) and

temperature and energy control for a single application [145]. We extend this work and bring

these approaches to bear on other reconfigurable portions of the system — e.g. disabling

cache lanes, reallocating I/O nodes. Our prototype serves as a test bed for new integrations

and thus we are able to modify various system parameters — e.g, setting a power cap for

GPUs executing application code, that are normally unavailable.

Integration We connect the measurement and adaptivity pieces in ARC-IOand create a

single cohesive system prototype. We must ensure that the system collects not only the afore-

mentioned metrics online for use by the allocation engine but also integrate this work with

the other tasks, including our I/O, provenance, reconfigurability, and compression systems.

We will design the system from inception with this idea in mind, and continue throughout

67

Figure 6.6: After Adaptation (LB)

the project. For instance, we need ensure we can collect application trace behavior for our

provenance work in real time. However, at this stage we focus on the online feedback loop

between observation and allocation and its integration with the broader components.

Successful completion of this task will yield the following outcomes: (1) realtime mea-

surement of at least one non-load metric integrated into the ARC-IO prototype; (2) online

adaptation of a system parameter (e.g. DVFS) during the lifetime of a single application;

and (3) interfacing this system with at least one new application (e.g. KINC) that can

leverage these features for improved performance.

Successful completion of this task enables ARC-IOto dynamically adapt based on phases

of a single application. We plan to scale this system up to work with multiple workloads.

During the planning phase we focus on a single metric and system characteristic — e.g.,

number of network bytes sent and node power cap via DVFS. Going forward, we will collect

a variety of metrics to determine application behavior and modify various system parameters

to meet our application execution demands and requirements. Our eventual aim is to have

ARC-IObe a fully dynamic, introspective, and responsive system, capable of scheduling a

wide range of general purpose computing jobs with a wide range of resource requirements.

6.3.9 Research Task 2: Adapting the I/O subsystem

Over the past few decades there have been numerous studies that characterize the I/O be-

havior of applications as well as research developments leading to different I/O architectures

68

meant to accommodate one or more application classes [146]. More recently the Darshan

project [147] seeks to provide a practical tool for characterizing the I/O style of applications.

Darshan has been used to isolate different I/O behaviors in applications on various archi-

tectures — e.g., local storage, point shared storage, distributed shared storage, burst buffer,

intermediate storage and SSDs.

In addition, various parameters can have performance effects for different application

behaviors including: caches, transfer block size, degree of I/O concurrency, data placement,

etc. Application behavior is described by a number of classes including checkpointing, large-

scale distributed, sequential access to contiguous file space, larg-escale distributed, sequential

access to strided file space, independent sequential access, database file access and small,

unaligned, random order access.

Additionally, other factors — e.g., data re-reading, blocking, buffering — have a big impact

on how well the I/O subsystem can perform. Note that this characterization includes a

diverse set of application types such as classic HPC applications, data analytics, and even

high-throughput systems where many otherwise independent applications contribute to a

common solution.

{The goal of this task is to develop the ability of a system to utilize performance metrics

from an application to manipulate the I/O system to improve I/O performance for a range of

application types. We propose to accomplish this by implementing an I/O interface and file

system utilizing the features of Charm++ including active messages, threading, and global

object addressing. These components will draw heavily from our experience with PVFS [99]

and OrangeFS [148] parallel file system projects but will be significantly improved through

the use of Charm++ technology.

During the planning phase, we propose to utilize Darshan to create characterizations of

the applications (Section 6.3.4). Next, we evaluate different I/O architectures based on this

characterization for the applications. These tests would utilize available I/O systems hard-

ware and software including the OrangeFS file system developed by Ligon in circumstances

where we need access to internals of the code.

During the planning phase, Task 2 will interact with the other task groups on overlapping

issues. Task 2 incorporates the performance monitoring from Task 1 to establish metrics that

could be gathered to drive adaptation of the I/O subsystem. Ligon and Robson will interact

on developing active components of the I/O subsystem that utilize Charm++ features such

as active messages to instantiate the components within the processes of the job. With Task

3, we plan to provide I/O information that indicates how data was managed and selected

adaptations used during the execution of programs to annotate produced data sets. This

mechanism allows the I/O subsystem to learn from one run of an application to the next

69

what adaptations are useful. We plan to aggregate this information based on application

class to create heuristics to adapt the system. With Task 4, we plan to integrate the I/O

subsystem with the system scheduler to allow jobs to request specific I/O resources and

configurations when the job is launched. This is critical for minimizing contention for these

resources and to communicate to the I/O subsystem the expected usage patterns. Also with

this task we plan to consider specific hardware components that may be important for I/O

including CPU cores, GPUs, or more likely FPGA structures specific to I/O. With Task 5,

we plan to integrate lossy compression to mitigate the cost of expensive data movements.

Error bounds will be incorporated from the user or extracted from the data’s provenance.

The proposed goal for Task 2 in the full scale project is to design an integrated program-

ming environment that includes adaptive high performance I/O and scales to exascale or

better. We envision this environment is based on Charm++ due to its familiar program-

mer interface and highly dynamic nature. Unlike current environments that tend to have

a static number of processes that communicate, Charm++ allows processes and threads to

be created and destroyed as needed during the lifetime of a job. It utilizes a global address

space to locate objects anywhere in the system, and active messages to create threads that

invoke methods of those objects. This model of computation [149, 150, 110] also suggests

local synchronization such as futures in order to minimize the use of global constructs such

as barriers.

Until now, Charm++ has been used to implement applications. In this project, we intend

to explore developing system services (I/O) that are tightly integrated with the application.

We have conducted similar studies in past projects such as [109, 110] where we integrated

OrangeFS, a parallel file system, with HPX [108], a programming environment similar to

Charm++. The results of these projects demonstrated that there is a lot of promise in

developing I/O for these environments. This project will take the next logical step, as

alluded to in the final reports of these previous efforts, and construct the entire I/O stack

using the programming environment thus enabling the I/O complete flexibility.

The proposed I/O system would be an object-based data store, which is to say that all

data and metadata stored in it would be represented by objects stored in the underlying

file system. Each object would have an object ID used to access it. Objects would store

metadata (such as inodes) file data, directory data, etc. Programmer interfaces allow the

collection of objects to be viewed as files. Basic features of the proposed I/O system include

decoupled data and metadata, distributed metadata, dynamically instantiated data transfer

threads and synchronization objects. A key feature is a composable I/O stack including

hardware accelerators, burst buffers, local caches and selectable consistency semantics. Fi-

nally, other important features include integrated monitoring, capability based access control

70

and runtime adaptable management of dynamic features.

A major aspect of the design includes built-in counters and timers for gathering real-time

performance data. Many of these are designed in to OrangeFS so this can be used as a guide

both for implementation and for selecting important metrics. The other important aspect

would be building components around policies so that alternative implementations can be

selected at runtime. These policies would be selected by a policy manager where different

component implementations and parameters are linked to policies which are themselves

selected by mapping from performance metrics. This set would be ideal for using a machine

learning system. We intend to explore this possibility during the latter portion of the project.

The project aims to work with both hardware and software aspects of the I/O stack.

For hardware, we intend to work with Smith to develop hardware accelerators for I/O on

FPGAs and potentially on GPUs. FPGA accelerator would tend towards a hardware engine

for transferring data between storage and network interfaces largely bypassing software.

Other approaches would work to merge multiple incoming data streams to storage, for use

when compute nodes are synchronously writing to a shared file using MPI-IO and MPI File

Views. Other hardware approaches would utilize available nodes to act as a burst buffer

between the compute and I/O nodes. This can be in main memory, or NVRAM. Finally,

using local memory as a cache can have big performance gains for some applications.

In software, there are also several options — e.g., the number of data transfer threads

to use, the size of transfer buffers, use of data compression, choosing synchronization. The

Charm++ environment provides active messages which are used to start threads on remote

nodes. Using this for the I/O subsystem, data transfer threads are easily started on compute

nodes (clients) and I/O nodes (servers). This allows the I/O to more fully utilize network

throughput for better performance. Depending on the details of the I/O request, threads

and compression are used to merge data from multiple sources, or to improve performance.

Synchronization is required if multiple application tasks are reading or writing the same

data, but may not be needed if each bit of data is only ever read or written by a single task.

Thus, the goal of this portion of the project is to be able to tune I/O for the best possible

performance based on the behavior on the application characteristics and the system’s work-

load. The primary objective is to identify metrics that lead us to tune the subsystem in a

particular way so as to achieve the best performance. Then we can architect the subsystem

to allow such tuning.

Successful completion of this task will yield the following outcomes: (1) A collection of

metrics that indicate the ideal configuration of the I/O subsystem; (2) A mapping of these

items to specific modification of the configuration that will improve performance; (3) A

prototype demonstrating the gathering of metrics and changing of the I/O configuration,

71

and the resulting performance; and (4) A prototype of a new I/O subsystem based on an

integrated and distributed model, unlike any currently available.

6.3.10 Research Task 3: Provenance in HPC

This task considers security implications which ARC-IOpresents. Security is a major issue

in every modern system and one that must be addressed to ensure effective performance.

One major area of focus is data trustworthiness [151]. Data produced from distributed

streaming applications can be prone to anomalies since they are produced at a fast rate and

sometimes at a large scale. There is a need to ensure the correctness of data propagating

in this system. Provenance is a solution to ensuring data integrity. Data provenance is

a comprehensive history of events that has occurred on a data object from inception to

its current state. Represented as a directed acyclic graph, provenance has applications

in digital forensics, system auditing, ensuring reproducibility in scientific experiments and

anomaly detection. This allows us to model data workflow while further understanding data

dependencies that might exist in our systems.

The work in this planning phase will focus on developing a functional prototype of the

provenance-based system which provides an end-to-end provenance capture of all of the

working components of our HPC system. This task is broken down into the following:

Integrate data provenance into the HPC framework. Provenance systems have been

proposed for memory constrained embedded systems [119] and linux environments [124, 121,

120], but do not provide a cohesive infrastructure for HPC environment. We propose to de-

velop an automatic lightweight end-to-end provenance mechanism which allows dynamic

instrumentation of our HPC framework using system and application layer trace events.

Fine-grained provenance information is generated from trace data derived from the instru-

mentation of the operating system kernel and application code at the application level. We

map this information to a provenance graph using a provenance-trace model that repre-

sents relationships between entities contained in the system using w3c prov, a standard for

representing provenance data.

Identify appropriate trace for provenance capture. Deciding what trace data is

appropriate for provenance generation is an important part of ensuring the efficiency of

our approach. From user-defined trace to automated instrumentation, we will evaluate the

following scenarios: (1)The outcome of an application-defined trace collection versus an

automated trace collection approach; (2) The use of application level instrumentation versus

72

system-level instrumentation; and (3) Continuous provenance generation versus provenance

summarization. Provenance generates an overwhelming amount of data which is sometimes

larger than the data it describes. We will explore the trade-offs of continuous provenance

generation over using approach such as pruning, compression, or graph-based summarization.

Develop a visualization framework using provenance data. Visualization is used

to uncover data insights by discovering interesting workflow patterns in the data by making

complex data dependencies in graphs easily understandable. We plan to develop a visualiza-

tion tool to view the system interactions that exist in the framework. ARC-IOleverages this

tool to understand causal dependencies. The proposed system will be robust, supporting

subset and fine-grained views of the data.

Proposed Work The goal of this task is to integrate provenance into the HPC system.

As such, provenance data generated is leveraged to provide anomaly detection of advanced

persistent threats such as zero-day attacks. Most security systems of these attacks utilize

signatures of known malware or techniques that do not properly correlate the long time

system behavior which are mostly prone to evasion. We also extend the applications of our

provenance environment to ensuring a deterministic execution of workloads while our system

executes under normal running conditions. This provides reproducibility and also serves as

a means of verifying the correctness. Reproducibility can be achieved by examining the

provenance graphs generated to observe the deterministic execution configuration of ARC-

IOworkloads. This information can be used to generate recurring configurations of the

system workloads.

6.3.11 Research Task 4: Performance Modeling and Reconfigurability

As we move toward large-scale heterogenous HPC systems with many different accel-

erators, choosing the appropriate accelerator for a given application is a non-trivial task.

Choosing the optimal accelerator and developing the algorithm to perform optimally requires

understanding of the underlying architecture for each type of hardware (CPU, FPGA, GPU,

TPU, etc). One purpose of this task is to assist with ARC-IOnode assignment through the

use of performance models and algorithm agnostic hardware prediction. Further work aims

to assist users in programming for the proposed system and determine the optimal methods

of developing applications for use in ARC-IO.

Prior work by Smith focuses on performance modeling of applications on different hard-

ware [114, 115]. The purpose of this work was to use a random forest classifier to predict

73

Figure 6.7: Application to Architecture mapping Tesseract

the highest performing hardware given application specific characteristics (memory access

frequency and behavior, time complexity, and FLOPs to non-FLOP ratio). The developed

taxonomy, named Tesseract, works as a four-dimensional application to architecture map-

ping shown in Figure 6.7.

This taxonomy focused on single node CPU, GPU, and Intel Xeon Phi Coprocessors.

However, FPGAs are becoming more prominent in HPC systems as accelerators due to their

low power usage and reconfigurability. This task aims to extend Tesseract to include FP-

GAs and provide a more robust classification framework for accelerator prediction. The

OpenDwarfs benchmark suite [152] will be used to develop the improved taxonomy as it

provides multiple different applications designed to represent classes of programs with dif-

fering compute and communication characteristics. Completing this provides ARC-IOwith

a framework for selecting the best available node when provisioning a running application.

Much of the focus of accelerators in HPC is on the compute performance and efficiency

when attempting to improve an algorithm. However, these devices are also used to assist

74

with multiple I/O tasks, such as when compressing and decompressing data. Task 5 focuses

on the use of lossy and lossless compression in applications and ARC-IO, Task 4 focuses

on profiling the performance of these algorithms on different hardware. waveSZ [153] and

GhostSZ [154] provide FPGA implementations of the SZ [127] using Vivado HLS. The au-

thors of SZ provide both OpenCL and CUDA implementations of the algorithm for use

with GPUs. Xilinx offers a GZip library [155] for FPGAs and has been tested and imple-

mented on Amazon Web Services servers for lossless compression. Furthermore, extensive

work has been completed toward implementing lossless compressors on GPUs as shown

by [156, 157, 158, 159, 160]. This work will perform a more exhaustive search of available

accelerated compression algorithms to determine the feasibility of usage within ARC-IO.

Completion of the planning phase provides a performance modeling framework that pre-

dicts the best performing hardware given an application’s static, pre-runtime characteristics.

To extend this work to be applicable in ARC-IO, a modeling framework that assesses the

current needs and characteristics of a running algorithm would better predict the appropri-

ate accelerator to allocate to a given task. As ARC-IOis runtime adaptive, a finer grained

model for performance prediction utilizing runtime metrics of an application allows Tesseract

to adapt with the current I/O and compute workload. Tesseract initially assumes nothing

about the application and learns its performance characteristics overtime. This research will

use the performance and I/O metrics from Research Tasks 1 and 2, respectively, to develop

Tesseract into a dynamic framework that provides application agnostic hardware predictions

for ARC-IO.

Further research for this task considers a mixed qualitative and quantitative analysis of

the work required to take an existing application and run it on ARC-IO. During develop-

ment of the adaptive system and testing the applications in Section 6.3.4, we will consider

how to achieve the best performance for each application. This requires a classification of

the tested algorithms as they apply to ARC-IOin order to develop a taxonomy for future

applications running on the system. This research will run the native algorithms on the

proposed system and compare them to implementations that are optimized for the adaptive

environment. During this development, we plan to perform a study of the best practices

for ARC-IOand develop a guide demonstrating how to achieve optimal performance for

the different algorithm classifications. We also plan to determine user-level feedback, in the

form of pragmas or configuration files, during development that will allow the programmer

to inform ARC-IOand the underlying models of application specific insights to improve

performance.

Successful completion of this task will yield the following outcomes: (1) Extension of

the performance modeling work, Tesseract, to include FPGA predictions; (2) A thorough

75

analysis and selection of accelerated compression algorithms for heterogeneous hardware.

6.3.12 Research Task 5: Compressed Data Transfer

In large-scale systems, the rate of computation is orders-of-magnitude more than the rate

of data transfer. This is true for transfers inside and outside of the HPC system. This large

disparity has resulted in data movement being a key bottleneck on current systems and will

become exacerbated on future systems [161, 162]. ARC-IOseeks to improve I/O scalabilty

and performance of applications, but relies on adapting nodes. If all nodes are currently

allocated, ARC-IOwill leverage data compression to reduce the volume of data transferred.

Moreover, getting data into an HPC system can be expensive. We plan to explore the use of

lossy and lossless data compression to improve inter and intra-system transfer bandwidth.

To enable ARC-IOto take advantage of multiple lossy and lossless compression algorithms

we will leverage libPressio developed by Calhoun’s group [163]. We will extend libPressio to

incorporate accelerated versions of lossy compression algorithms such as SZ [153, 164] and

ZFP [165, 166].

Data analytics and machine learning applications are two growing classes of applications

run on large HPC systems. These applications involve ingesting and processing massive

amounts of data. To accelerate these applications, ingesting compressed data would place

less burden on the file system. We plan to expand of PI Calhoun’s prior work that investigates

the feasibility of using lossy data compression in the context of pedestrian detection [142]

to further improve compression performance by leveraging different compression algorithms

and multiple error tolerances. When using multiple tolerances we will scale the tolerance

based on the output of the pedestrian detection model. Thus, if we detect pedestrians we

will reduce the compression error in the data to ensure they are tracked correctly. Otherwise,

the compression level will increase mitigating the impact on bandwidth use. Over the course

of this study, we will explore generalizing this technique to other streaming applications such

as Intelligent River. Finally, we will investigate the use of lossy compressed input data for

the other data analytics applications in Section 6.3.4 to establish bounds on what are viable

tolerances.

Based on the work during the preliminary work, this task will focus on the following: (1)

seek to establish a formal link between lossy compression error and data analytics enabling

the a priori selection of error bounds; and (2) create a framework that will convert any lossy

compression algorithm into a fixed-ratio compressor subject to multiple user defined metrics.

Before lossy compress data can be used inside of a workflow, quantifying and understand-

ing the impact of compression error is required. The current state-of-the-practice relies on

76

ad-hoc trial-and-error testing with a human-in-the-loop to determine if the workflow’s re-

sults are acceptable [167, 168, 138, 139, 141]. Analyzing the algorithm and how compression

error impacts, propagates, or diminishes helps to eliminate the ad-hoc trail-and-error neces-

sity [128, 169, 170]. We will quantify how lossy compression error impacts different layer

types — e.g., convolution, pooling — in Deep Learning applications to construct an accuracy

model parameterized by types and frequency of layers, their ordering, and compression error

bound. The output of this model yields a confidence level for the model’s output. Finally,

we will explore the impact of model training on lossy compressed data on inference accuracy

and training time.

Most compression algorithms seek to achieve the highest compression ratios. Thus, two

uncompressed files of the same size can compress to different sizes even when the same com-

pressor and configuration are used. This complicates users ability estimate storage costs.

Fixed-rate compressors compress each value to the same fixed-sized code word regardless

of how often it is used resulting in small compression ratios [171] and in the case of lossy

compression algorithms high amounts of error [172]. To address this issue, our prior work,

FRaZ [172], presents a first step approach to construction of a fixed-ratio compressor. FRaZ

solves a one dimensional optimization problem for the compression error bound that will

yield a target compression ratio within a margin of error. Results show that FRaZ yields

better accuracy than fixed-rate methods at the same compression ratio. During the full

work, we plan to investigate FRaZ’s ability to efficiently solve multidimensional optimiza-

tion problems. This enables FRaZ to compress to a fixed-ratio while maintains a problem

specific accuracy constraints — e.g. preservation of mean and first derivative when using an

absolute error bound. Thus, we can ensure that the data meets the application’s accuracy

requirements and storage requirements.

Successful completion of this task will yield the following outcomes: (1) an accuracy model

that accounts for lossy compressed input data to prescribe a confidence in a ML model’s

result; and (2) a fixed-ratio lossy compression that is able to compress subject to multiple

user defined constraints.

6.3.13 Evaluation

Research Task 6.1 We evaluate the success of the ARC-IO prototype system based on

the observed speedups of at least one focus applications, KINC, GO, TSPG, and STRIDE,

as well as on the performance of at least one preexisting Charm++ application, e.g. NAMD

[87], ChaNGa [88], and OpenAtom [89]. We evaluate the overhead of gathering several

potential measurement metrics in real-time and the suitability of these various metrics for

77

capturing application and system behavior.

Completion of this task enables us to select a minimal number of best performing and

lowest overhead measurements and use them to improve application execution times.

Research Task 6.2 Task 2 is evaluated by determining a few application metrics from

Task 1 that indicate some change in the I/O subsystem results in a performance benefit.

Darshan [147] is used to look for such metrics and the size of I/O requests, the sequential

nature of such requests, and whether such requests are contiguous. I/O system configurations

such as turning caches on and off, adjusting the number of I/O threads, etc. as previously

discussed, can be used for manipulating I/O performance. We will use the performance data

to establish rules for when adaption in the I/O subsystem is needed.

Completion of this task provides data we would use to evaluate this task in the context of

the long term project. During that project we would use these results to evaluate adaptation

rules both for smaller programs, and the full applications discussed in Section 6.3.4. These

will form our primary evaluation.

Research Task 6.3 When evaluating the integration of end-to-end provenance in HPC

applications and ARC-IOwe concern ourselves with two key metrics: runtime and storage

costs. We will compute these metrics for both the system and application level integration

and compute the slowdown due to provenance and the increase in the memory footprint.

Finally, we will visualize the log files and verify the accuracy.

Completion of this task enables us to properly evaluate the feasibility of our approach in

providing an efficient and lightweight provenance system with little overhead.

Research Task 6.4 Successful extension of Tesseract will be evaluated by the accuracy

of hardware prediction for multiple algorithms when compared to measured runtimes on

different accelerators. The survey of accelerated compressors will be evaluated by the ability

to replicate the reference papers’ results when implementing the algorithms in an HPC

context. As some of these applications may require modification to work with existing

applications, speedup and similar compression ratios will verify feasibility of ARC-IO.

Completion of this task enables us to select the best available hardware for both com-

pute and I/O tasks in ARC-IOto assure the system has deterministic and efficient node

provisioning. It also allows us to determine which accelerated compression algorithms are

appropriate for use.

78

Research Task 6.5 We evaluate the effectiveness of the libPressio extension based on our

ability to integrate all the target accelerated compression algorithms. We will evaluate the

integration of lossy compressed input data into the data analytics workflows by the ability to

achieve the correct answer within some fixed, problem dependent, margin of error. Thus, for

each of our test applications we will have a heuristic to select compression error tolerances.

When utilizing multiple tolerances for the pedestrian use case, we will determine success

by our ability to maintain or improve detection accuracy. In addition, we will quantify the

bandwidth reduction and compare to the single compression tolerance case.

Completion of this task enables us to transparently leverage multiple compression algo-

rithms that target various hardware in Tasks 2–5. Establishing a heuristic for selecting

compression error tolerances sets us up to establish formal relations between application

characteristics and compression error propagation, accumulation, and removal in the full

project.

6.3.14 Broader Impacts

Broader Impacts of this work involve creation of ARC-IOthat enables HPC systems to

adapt their configuration to remove I/O issues and improve scalability for a diverse collec-

tion of HPC applications. Thus, the throughput of their workloads is increased, facilitating

the scientific contributions in their respective areas. Furthermore, establishing end-to-end

provenance provides a ledger for reproducibility of system workloads and a means of pro-

viding a deterministic configurations of workloads for detecting anomalous system events.

Furthermore, adding in provenance in HPC allows trust when composing systems software

and applications from many 3rd party modules because dependencies and operations are

strictly tracked and can be inspected for accuracy and fraud detection.

79

CHAPTER 7: CONCLUSION

One of the greateset challenges facing modern supercomputing is the lag of improvements

in networking and memory relative to gains in computational efficiency. We have formulated

several ways to deal with the increasing complexity of machines, as more processing power

is packed on a single chip or node, with decreasing returns on single core performance and

a proliferation of multicore chips along with other specialized accelerator technologies. This

is accompanied by the current trend of dwindling network performance, relative to increases

in single node performance, often via novel accelerators or other technologies. In this work,

we have broadly surveyed the communication performance of large parallel applications

and developed or expanded upon various techniques that can be utilized to improve their

performance. These techniques include:

• spreading

• prioritization of remote work

• staggering

• overhead reduction

• contention reduction

• increased responsiveness

These techniques build on functionalities available in parallel-programming libraries such

as OpenMP, MPI, and Charm++ in order to generate new degrees of freedom that can be

leveraged to impact communication behavior and application performance.

So far, we have studied some of these techniques in the form of mini-applications e.g.

stencil and other micro-benchmarks, and we plan to continue this work by looking at larger

production scientific applications mentioned in Chapter 6.1. We have also seen the impor-

tance of BigSim + TraceR simulations in predicting the future performance of applications

on the next generation of machines and how our suggestions will help the current wave of

applications adapt to a regime in which compute is ever more plentiful and communication

performance is even more unbalanced.

We’ve seen performance improvements on the order of 4x relative to the true baseline and

twenty percent faster than the best known technique. These results suggest that spreading

communication over time, instead of concentrating it at the end of an iteration or periodically

throughout an iteration, can improve the performance of large parallel applications. We plan

to study this improvement further, analyze, and quantify it.

We have also exmained the broader applicability of these techniques, focusing in Chapter 5

on internode as well as intranode communication between the CPU and GPU. We applied the

80

general idea of seamlessly overlapping communiation and computation phases by leveraging

native overlap and overdecomposition in Charm++ runtime that allows us to constantly

inject small messages onto the network, as well as the connection between devices on the

same physical node.

Modern systems require a variety of (sometimes non-obvious) tradeoffs, both in their

construction but especially in their use by applications desiring to achieve the highest possible

performance. We have tested our approahces on a variety of Top500 systems, including

Summit, and observered good scalability. Using current networks efficiently requires tight

integration and management of memory movement (or data movement in general), caching

described by a complicated performance model. We have begun to embody these techniques

in a production scale adaptive runtime system (Charm++), where we have demonstrated

the power of combining mutiple methods, e.g. overdecomposition and spreading, to create

a new optimization space and improve application performance and ability to adapt to the

requirements of new systems, networks, etc. However, this new degree of freedom is a double-

edged sword as this is yet another parameter that must be tuned by the end user to achieve

ideal performance. In the future, work in integrating auto-tuning frameworks into adaptive

runtime systems, combined with sensible default settings, will allow programmers to achieve

this higher levels of performance without exhaustive benchmarking. This idea demonstrates

the utlimate utility of a system like Charm++, where efforts spent in optimizing the runtime

system can be leveraged across all applications automatically. Keeping in mind programmer

productivity, our ultimate goal is to annotate code without re-writing, allowing to inter-

operate and transparantely utilize runtime system features. This work exemplifies a broader

trend in HPC of combining approaches to leverage their respective strengths, e.g. MPI+X.

In this work we also witness the power of utilizing (parallel) programming frameworks with

notions of asynchrony builtin. However, this approach is one piece of larger optimization

problem, and derives most of its power from integrating with and leveraging other techniques.

This syngery unlocks further optimization opportunities, and so on. In general, this further

supports the importance of a multi-pronged research approach as modern problems require

a variety of often times competing solutions to tackle the some of the world’s most pressing

challenges.

It is our assertion that these techniques are broadly applicable. We are confident that

further study, as mentioned in Chapter 4 and 6.2, will demonstrate this assumption. Another

advantage, aside from their broad applicability, is their ease of use. OpenMP is a wide-spread,

well-adopted, and broadly-supported framework that easily facilitates improved performance

in a wide range of applications. Finally, we intend to demonstrate the effectiveness of

these and other techniques in other programming systems, namely MPI, potentially through

81

Adaptive MPI (AMPI). Other contributions so far include the formalization of the folk

theorem of maximal performance improvement.

While generally applicable to communication bound applications, our techniques will do

little to help alleviate the problems experienced by compute bound applications. However,

as discussed in the introduction, it is communication and not computation that is becoming

more expensive over time and therefore we expect more applications will move from one

category to the other and therefore benefit from our work, especially with future generations

of supercomputers and other machines.

Moving further into the future, smart runtimes, even extending to the system level and

tying deeply into the Operating System, will start to become a requirement. These smart

layers will utilize the unique view the runtime system has of an application’s lifetime to

manage all resources, not just compute units (CPU, GPU, FPGA) and communication (local

and remote), but also IO resources, tracing, etc. This includes a new regime of applications

with different requirements that current systems are not engineered to handle.

It is our hope that these ideas, even apart from the programming systems they are embod-

ied in, will inform and motivate the broader community about issues related to communica-

tion performance optimization and encourage the adoption of runtimes which support these

techniques, ultimately leading to improved (or total) communication computation overlap

(or balance) and increased parallel application performance and from there to more impactful

scientific discoveries.

82

CHAPTER 8: REFERENCES

[1] G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.

[2] S. Plimpton, “Molecular dynamics: Looking ahead to exascale,” May 2019.

[3] C. Smith, “Load balancing on many-core and accelerated systems,” 2019.

[4] “Top500 supercomputing sites,” http://top500.org, 2013.

[5] N. Jain, “Optimization of communication intensive applications on HPC networks,”
Ph.D. dissertation, Dept. of Computer Science, University of Illinois, 2016.

[6] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-Memory
Programming,” IEEE Computational Science & Engineering, vol. 5, no. 1, January-
March 1998.

[7] “MPI: A Message Passing Interface Standard,” in MPI Forum, http://www.mpi-
forum.org/.

[8] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,
E. Lusk, and J. L. Träff, “Mpi at exascale,” Procceedings of SciDAC, vol. 2, pp. 14–35,
2010.

[9] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “Mt-mpi: multithreaded mpi
for many-core environments,” in Proceedings of the 28th ACM international conference
on Supercomputing. ACM, 2014, pp. 125–134.

[10] A. Gupta, O. Sarood, L. V. Kale, and D. Milojicic, “Improving hpc application per-
formance in cloud through dynamic load balancing,” in 2013 13th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing. IEEE, 2013, pp.
402–409.

[11] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale, “Evaluating hpc networks
via simulation of parallel workloads,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, ser. SC ’16 (to
appear), 2016.

[12] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-performance, low-memory,
modular Time Warp system,” Journal of Parallel and Distributed Computing, vol. 62,
no. 11, pp. 1648–1669, 2002.

[13] Argonne National Laboratory and Rensselaer Polytechnic Institute, “CODES
Discrete-event Simulation Framework,” October 2019. [Online]. Available: https:
//github.com/codes-org/codes

83

http://top500.org
https://github.com/codes-org/codes
https://github.com/codes-org/codes

[14] G. Zheng, G. Kakulapati, and L. V. Kalé, “Bigsim: A parallel simulator for perfor-
mance prediction of extremely large parallel machines,” in 18th International Parallel
and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004,
p. 78.

[15] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,
and S. Futral, “The spack package manager: bringing order to hpc software chaos,” in
SC’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2015, pp. 1–12.

[16] L. Kale, B. Acun, S. Bak, A. Becker, M. Bhandarkar, N. Bhat, A. Bhatele,
E. Bohm, C. Bordage, R. Brunner, R. Buch, S. Chakravorty, K. Chandrasekar,
J. Choi, M. Denardo, J. DeSouza, M. Diener, H. Dokania, I. Dooley, W. Fenton,
J. Galvez, F. Gioachin, A. Gupta, G. Gupta, M. Gupta, A. Gursoy, V. Harsh,
F. Hu, C. Huang, N. Jagathesan, N. Jain, P. Jetley, P. Jindal, R. Kanakagiri,
G. Koenig, S. Krishnan, S. Kumar, D. Kunzman, M. Lang, A. Langer, O. Lawlor,
C. Wai Lee, J. Lifflander, K. Mahesh, C. Mendes, H. Menon, C. Mei, E. Meneses,
E. Mikida, P. Miller, R. Mokos, V. Narayanan, X. Ni, K. Nomura, S. Paranjpye,
P. Ramachandran, B. Ramkumar, E. Ramos, M. Robson, N. Saboo, V. Saletore,
O. Sarood, K. Senthil, N. Shah, W. Shu, A. B. Sinha, Y. Sun, Z. Sura, E. Totoni,
K. Varadarajan, R. Venkataraman, J. Wang, L. Wesolowski, S. White, T. Wilmarth,
J. Wright, J. Yelon, and G. Zheng, “The Charm++ Parallel Programming System,”
Aug 2019. [Online]. Available: https://charm.cs.illinois.edu

[17] L. V. Kale and G. Zheng, “Chapter 1: The Charm++ Programming Model,” in Par-
allel Science and Engineering Applications: The Charm++ Approach, 1st ed., L. V.
Kale and A. Bhatele, Eds. Boca Raton, FL, USA: CRC Press, Inc., 2013, ch. 1, pp.
1–16.

[18] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,
Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel Programming with Migratable
Objects: Charm++ in Practice,” ser. SC, 2014.

[19] V. Kale, H. Menon, and K. Senthil, “Adaptive loop scheduling with charm++ to
improve performance of scientific applications.”

[20] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkins-Diehr, “Xsede: Accelerating scientific discovery,” Computing in Science
& Engineering, vol. 16, no. 5, pp. 62–74, Sept.-Oct. 2014. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MCSE.2014.80

[21] K. Chandrasekar and L. V. Kale, “Optimizing molecular dynamics and stencil
mini-applications for intel’s knights landing,” 2016. [Online]. Available: https:
//charm.cs.illinois.edu/media/16-16

84

https://charm.cs.illinois.edu
doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
https://charm.cs.illinois.edu/media/16-16
https://charm.cs.illinois.edu/media/16-16

[22] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “Ibm power9 processor
architecture,” IEEE Micro, vol. 37, no. 2, pp. 40–51, 2017.

[23] S. Kumar, A. R. Mamidala, D. A. Faraj, B. Smith, M. Blocksome, B. Cernohous,
D. Miller, J. Parker, J. Ratterman, P. Heidelberger et al., “Pami: A parallel active
message interface for the blue gene/q supercomputer,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium. IEEE, 2012, pp. 763–773.

[24] J. C. Phillips, “What you should know about namd and charm++ but were hop-
ing to ignore,” in Proceedings of the Practice and Experience on Advanced Research
Computing, 2018, pp. 1–6.

[25] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data with
papi-c,” in Tools for High Performance Computing 2009. Springer, 2010, pp. 157–173.

[26] L. Kalé and A. Sinha, “Projections : A scalable performance tool,” in Parallel Systems
Fair, International Parallel Processing Sympos ium, Apr. 1993, pp. 108–114.

[27] S. Bak, H. Menon, S. White, M. Diener, and L. Kale, “Integrating openmp into the
charm++ programming model,” in Proceedings of the Third International Workshop on
Extreme Scale Programming Models and Middleware, ser. ESPM2’17. New York, NY,
USA: ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/3152041.3152085
pp. 4:1–4:7.

[28] R. Preissl, J. Shalf, N. Wichmann, S. Ethier, B. Long, and A. Koniges, “Multithreaded
global address space communication techniques for gyrokinetic fusion applications on
ultra-scale platforms,” in SC’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 2011, pp.
1–11.

[29] P.-Y. Calland, J. Dongarra, and Y. Robert, “Tiling on systems with communica-
tion/computation overlap,” Concurrency: Practice and Experience, vol. 11, no. 3, pp.
139–153, 1999.

[30] V. Subotic, J. C. Sancho, J. Labarta, and M. Valero, “A simulation framework to
automatically analyze the communication-computation overlap in scientific applica-
tions,” in 2010 IEEE International Conference on Cluster Computing. IEEE, 2010,
pp. 275–283.

[31] T. Hoefler, J. M. Squyres, W. Rehm, and A. Lumsdaine, “A case for non-blocking col-
lective operations,” in International Symposium on Parallel and Distributed Processing
and Applications. Springer, 2006, pp. 155–164.

[32] E. Castillo, N. Jain, M. Casas, M. Moreto, M. Schulz, R. Beivide, M. Valero, and
A. Bhatele, “Optimizing computation-communication overlap in asynchronous task-
based programs,” in Proceedings of the ACM International Conference on Supercom-
puting, 2019, pp. 380–391.

85

http://doi.acm.org/10.1145/3152041.3152085

[33] L. V. Kale, D. M. Kunzman, and L. Wesolowski, “Accelerator Support in the
Charm++ Parallel Programming Model,” in Scientific Computing with Multicore and
Accelerators, J. Kurzak, D. A. Bader, and J. Dongarra, Eds. CRC Press, Taylor &
Francis Group, 2011, pp. 393–412.

[34] J. A. Board, L. V. Kalé, K. Schulten, R. Skeel, and T. Schlick, “Modeling biomolecules:
Larger scales, longer durations,” IEEE Computational Science and Engineering, vol. 1,
no. 4, 1994.

[35] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim, P. Jindal, Q. Li, S. Ismail-Beigi,
G. Martyna, and L. Kale, “Openatom: Scalable ab-initio molecular dynamics with
diverse capabilities,” in International Supercomputing Conference, ser. ISC HPC ’16
(to appear), 2016.

[36] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn, “Massively parallel
cosmological simulations with ChaNGa,” in Proceedings of IEEE International Parallel
and Distributed Processing Symposium 2008, 2008.

[37] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers, and L. V. Kale, “Prelim-
inary evaluation of a parallel trace replay tool for hpc network simulations,” in Work-
shop on Parallel and Distributed Agent-Based Simulations, ser. PADABS, EURO-PAR,
Aug. 2015.

[38] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross, “Codes: Enabling
co-design of multilayer exascale storage architectures,” in Proceedings of the Workshop
on Emerging Supercomputing Technologies, 2011.

[39] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration Home Page,”
http://www.physics.indiana.edu/∼sg/milc.html.

[40] Pittsburgh Supercomputing Center, “Bridges.” [Online]. Available: https://www.psc.
edu/bridges

[41] San Diego Supercomputer Center, “Comet.” [Online]. Available: https://www.sdsc.
edu/support/user guides/comet.html

[42] National Center for Supercomputing Applications, “Blue Waters project,”
http://www.ncsa.illinois.edu/BlueWaters/.

[43] Texas Advanced Computing Center, “Stampede 2.” [Online]. Available: https:
//portal.tacc.utexas.edu/user-guides/stampede2

[44] Oak Ridge National Laboratory, “Summit.” [Online]. Available: https://www.olcf.
ornl.gov/for-users/system-user-guides/summit/

[45] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing network
health and congestion in dragonfly-based supercomputers,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2016, pp. 93–102.

86

http://www.physics.indiana.edu/~sg/milc.html
https://www.psc.edu/bridges
https://www.psc.edu/bridges
https://www.sdsc.edu/support/user_guides/comet.html
https://www.sdsc.edu/support/user_guides/comet.html
https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/stampede2
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/

[46] L. Wesolowski, R. Venkataraman, A. Gupta, J.-S. Yeom, K. Bisset, Y. Sun, P. Jetley,
T. R. Quinn, and L. V. Kale, “TRAM: Optimizing Fine-grained Communication with
Topological Routing and Aggregation of Messages,” in Proceedings of the International
Conference on Parallel Processing, ser. ICPP ’14, Minneapolis, MN, September 2014.

[47] L. V. Kale and S. Krishnan, “Charm++: a portable concurrent object oriented system
based on c++,” in ACM Sigplan Notices, vol. 28, no. 10. ACM, 1993, pp. 91–108.

[48] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for
heterogeneous computing systems,” Computing in science & engineering, vol. 12, no.
1-3, pp. 66–73, 2010.

[49] D. Kirk et al., “Nvidia cuda software and gpu parallel computing architecture.”

[50] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures,” in European Con-
ference on Parallel Processing. Springer, 2009, pp. 863–874.

[51] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “Ompss: a proposal for programming heterogeneous multi-core architec-
tures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[52] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution of
opencl programs on multiple heterogeneous devices,” in Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
ser. CGO ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2544137.2544163 pp. 273:273–273:283.

[53] M. Boyer, K. Skadron, S. Che, and N. Jayasena, “Load balancing in a changing
world: Dealing with heterogeneity and performance variability,” in Proceedings of the
ACM International Conference on Computing Frontiers, ser. CF ’13. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2482767.2482794
pp. 21:1–21:10.

[54] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, “Dynamic load balancing on
single-and multi-gpu systems,” in Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on. IEEE, 2010, pp. 1–12.

[55] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: expressing locality and
independence with logical regions,” in Proceedings of the international conference on
high performance computing, networking, storage and analysis. IEEE Computer So-
ciety Press, 2012, p. 66.

[56] L. Wesolowski, “An application programming interface for general pur-
pose graphics processing units in an asynchronous runtime system,”
M.S. thesis, Dept. of Computer Science, University of Illinois, 2008,
http://charm.cs.uiuc.edu/papers/LukaszMSThesis08.shtml.

87

http://doi.acm.org/10.1145/2544137.2544163
http://doi.acm.org/10.1145/2482767.2482794

[57] D. Kunzman, “Runtime support for object-based message-driven parallel applications
on heterogeneous clusters,” Ph.D. dissertation, Dept. of Computer Science, University
of Illinois, 2012, http://charm.cs.uiuc.edu/media/12-45/.

[58] A. Grama, V. Kumar, and A. Sameh, “Scalable parallel formulations of the barnes-
hut method for n-body simulations,” in Proceedings of Supercomputing ’94, 1994, pp.
439–448.

[59] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,” Tech. Rep.
LLNL-TR-641973, August 2013.

[60] Sandia National Laboratory, “SST DUMPI trace library,” October 2019. [Online].
Available: https://github.com/sstsimulator/sst-dumpi

[61] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications to massively
parallel machines using projections performance analysis tool,” in Future Generation
Computer Systems Special Issue on: Large-Scale System Performance Modeling and
Analysis, vol. 22, no. 3, February 2006, pp. 347–358.

[62] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda, “Efficient
inter-node mpi communication using gpudirect rdma for infiniband clusters with nvidia
gpus,” in 2013 42nd International Conference on Parallel Processing. IEEE, 2013,
pp. 80–89.

[63] A. Gerbessiotis and L. Valiant, “Direct bulk-synchronous parallel algorithms,” Journal
of Parallel and Distributed Computing, vol. 22, no. 2, pp. 251 – 267, 1994. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0743731584710859

[64] R. H. Bisseling and W. F. McColl, “Scientific computing on bulk synchronous parallel
architectures,” in IFIP Congress, 1994.

[65] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, Bulk Synchronous Parallel
Computing — A Paradigm for Transportable Software. Boston, MA: Springer US,
1996, pp. 61–76. [Online]. Available: https://doi.org/10.1007/978-1-4615-4123-3 4

[66] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,
“Enabling fpgas in the cloud,” https://dl.acm.org/doi/abs/10.1145/2597917.2597929,
2014. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/2597917.2597929

[67] F. Huot, Y.-F. Chen, R. Clapp, C. Boneti, and J. Anderson, “High-resolution
imaging on tpus,” arXiv:1912.08063 [physics], Dec 2019, arXiv: 1912.08063. [Online].
Available: http://arxiv.org/abs/1912.08063

[68] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “λ-nic: Interactive serverless
compute on programmable smartnics,” arXiv:1909.11958 [cs], Sep 2019, arXiv:
1909.11958. [Online]. Available: http://arxiv.org/abs/1909.11958

88

https://github.com/sstsimulator/sst-dumpi
http://www.sciencedirect.com/science/article/pii/S0743731584710859
https://doi.org/10.1007/978-1-4615-4123-3_4
https://dl.acm.org/doi/abs/10.1145/2597917.2597929
https://dl.acm.org/doi/abs/10.1145/2597917.2597929
http://arxiv.org/abs/1912.08063
http://arxiv.org/abs/1909.11958

[69] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design, modeling, and
evaluation of a scalable multi-level checkpointing system,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society,
2010. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.18 pp. 1–11.

[70] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna,
and Y. Yao, “A multiplatform study of I/O behavior on petascale supercomputers,”
in Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2749246.2749269 pp. 33–44.

[71] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer,
“Lessons learned from the analysis of system failures at petascale: The case of blue
waters,” in Proceedings of the 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, ser. DSN ’14. Washington, DC, USA: IEEE
Computer Society, 2014. [Online]. Available: http://dx.doi.org/10.1109/DSN.2014.62
pp. 610–621.

[72] J. Ousterhout and F. Douglis, “Beating the i/o bottleneck: A case for log-structured
file systems,” SIGOPS Oper. Syst. Rev., vol. 23, no. 1, p. 11–28, Jan. 1989. [Online].
Available: https://doi.org/10.1145/65762.65765

[73] R. K. Jain, “Scheduling data transfers in parallel computers and communications sys-
tems,” Ph.D. dissertation, University of Texas at Austin, 1992.

[74] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK users’ guide.
SIAM, 1979.

[75] H. Benchmark, “Hpcg benchmark,” 2016, http://www.hpcg-benchmark.org/.
Accessed: 4-5-2020. [Online]. Available: http://www.hpcg-benchmark.org/

[76] Graph500: http://www.graph500.org/.

[77] IO500: https://www.vi4io.org/io500/start.

[78] “Ecp proxy apps suite,” https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/,
accessed: 4-15-2019.

[79] IOR - Parallel filesystem I/O benchmark: https://github.com/hpc/ior.

[80] B. T. Shealy, J. J. R. Burns, M. C. Smith, F. Alex Feltus, and S. P. Ficklin, “Gpu im-
plementation of pairwise gaussian mixture models for multi-modal gene co-expression
networks,” IEEE Access, vol. 7, pp. 160 845–160 857, 2019.

[81] C. A. Targonski, C. A. Shearer, B. T. Shealy, M. C. Smith, and F. A. Feltus,
“Uncovering biomarker genes with enriched classification potential from Hallmark
gene sets,” Scientific Reports, vol. 9, no. 1, p. 9747, 2019. [Online]. Available:
https://doi.org/10.1038/s41598-019-46059-1

89

http://dx.doi.org/10.1109/SC.2010.18
http://doi.acm.org/10.1145/2749246.2749269
http://dx.doi.org/10.1109/DSN.2014.62
https://doi.org/10.1145/65762.65765
http://www.hpcg-benchmark.org/
http://www.hpcg-benchmark.org/
http://www.graph500.org/
https://www.vi4io.org/io500/start
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://github.com/hpc/ior
https://doi.org/10.1038/s41598-019-46059-1

[82] C. Targonski, “X-MAP: Deep learning applications for the natural sciences,” M.S.
thesis, Clemson University, May 2019.

[83] R. S. DeFever, C. Targonski, S. W. Hall, M. C. Smith, and S. Sarupria, “A
generalized deep learning approach for local structure identification in molecular
simulations,” Chem. Sci., vol. 10, pp. 7503–7515, 2019. [Online]. Available:
http://dx.doi.org/10.1039/C9SC02097G

[84] M. Griffin, M. Malsick, H. Mizzell, and L. Moore, “Historic rainfall and record-breaking
flooding from hurricane florence in the pee dee watershed,” The Journal of South
Carolina Water Resources, pp. 28–35, 01 2020.

[85] “Pedestrians: 2016 data,” National Center for Statistics and Analysis, National High-
way Traffic Safety Administration, Tech. Rep. DOT HS 812 493, 03 2018.

[86] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, pp. 637–646, 2016.

[87] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular dynamics with namd,”
Journal of computational chemistry, vol. 26, no. 16, pp. 1781–1802, 2005.

[88] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. Quinn, “Massively parallel
cosmological simulations with changa,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing. IEEE, 2008, pp. 1–12.

[89] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim, P. Jindal, Q. Li, S. Ismail-Beigi, G. J.
Martyna, and L. V. Kale, “Openatom: Scalable ab-initio molecular dynamics with
diverse capabilities,” in International Conference on High Performance Computing.
Springer, 2016, pp. 139–158.

[90] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958, College Station, Texas, October 2003, pp. 306–322.

[91] N. Jain, A. Bhatele, J.-S. Yeom, M. F. Adams, F. Miniati, C. Mei, and L. V. Kale,
“Charm++ & MPI: Combining the best of both worlds,” in Proceedings of the IEEE
International Parallel & Distributed Processing Symposium (to appear), ser. IPDPS
’15. IEEE Computer Society, May 2015, lLNL-CONF-663041.

[92] J. J. Galvez, K. Senthil, and L. Kale, “Charmpy: A python parallel programming
model,” in 2018 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2018, pp. 423–433.

[93] S. Bak, H. Menon, S. White, M. Diener, and L. Kale, “Integrating openmp into the
charm++ programming model,” in Proceedings of the Third International Workshop on
Extreme Scale Programming Models and Middleware, ser. ESPM2’17. New York, NY,
USA: ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/3152041.3152085
pp. 4:1–4:7.

90

http://dx.doi.org/10.1039/C9SC02097G
http://doi.acm.org/10.1145/3152041.3152085

[94] R. D. Hornung and J. A. Keasler, “The raja portability layer: overview and sta-
tus,” Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), Tech.
Rep., 2014.

[95] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal
of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 – 3216,
2014, domain-Specific Languages and High-Level Frameworks for High-Performance
Computing. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0743731514001257

[96] J. Bent, “Two possible paths to exascale.” [Online]. Avail-
able: http://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/
Bent-HECFSIO-2010-SwimLanes.pdf

[97] M. Bancroft, J. Bent, E. Felix, G. Grider, J. Nunez, S. Poole, R. Ross,
E. Salmon, and L. Ward, “High end computing interagency working group (heciwg)
sponsored file systems and i/o workshop hec fsio 2009.” [Online]. Available:
http://institute.lanl.gov/hec-fsio/docs/HEC-FSIO-FY09-Workshop-Document.pdf

[98] M. Bancroft, J. Bent, E. Felix, G. Grider, J. Nunez, S. Poole, R. Ross,
E. Salmon, and L. Ward, “High end computing interagency working group
(heciwg) sponsored file systems and i/o 2009 roadmaps.” [Online]. Available:
http://institute.lanl.gov/hec-fsio/docs/HEC-FSIO-FY09-Gaps RoadMap.pdf

[99] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A parallel file system
for Linux clusters,” in Proceedings of the 4th annual Linux showcase and conference.
MIT Press, 2000, pp. 391–430.

[100] W. B. L. Ligon and R. B. Ross, “Server-side scheduling in cluster parallel i/o systems,”
in Parallel I/O for Cluster Computing, C. Cèrin and H. J. editors, Eds. Kogan Page
Science, September 2003, pp. 157–177.

[101] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in 19th ACM
Symposium on Operating Systems Principles, 2003.

[102] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: A scal-
able, high-performance distributed file system,” in Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI), 2006, pp. 307–320.

[103] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file
system,” in Proceedings of the 26th IEEE Symposium on Mass Storage Systems and
Technologies, 2010.

[104] P. J. Braam, “The Lustre storage architecture,” Cluster File Systems, Inc., 2003.

[105] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
in Proceedings of the 6th Symposium on Operating System Design and Implementation
(OSDI’04). USENIX Association, 2004.

91

http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/Bent-HECFSIO-2010-SwimLanes.pdf
http://institute.lanl.gov/hec-fsio/conferences/2010/presentations/day1/Bent-HECFSIO-2010-SwimLanes.pdf
http://institute.lanl.gov/hec-fsio/docs/HEC-FSIO-FY09-Workshop-Document.pdf
http://institute.lanl.gov/hec-fsio/docs/HEC-FSIO-FY09-Gaps_RoadMap.pdf

[106] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu, “ParalleX: A study of a new
parallel computation model,” in IEEE International Parallel and Distributed Process-
ing Symposium, 2007, march 2007, pp. 1 –6.

[107] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A mech-
anism for integrated communication and computation,” in 19th International Sympo-
sium on Computer Architecture, Gold Coast, Australia, 1992, p. 256–266.

[108] H. H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex: An advanced parallel ex-
ecution model for scaling-impaired applications,” in Parallel Processing Workshops,
International Conference on Parallel Processing, 2009.

[109] S. Yang, M. Brodowicz, H. Kaiser, and W. Ligon, “PXFS: A persistent storage model
for extreme scale,” in Proceedings of the Workshop on Computing, Networking, and
Communications, ICNC’14, 2014.

[110] N. Mills, A. Feltus, and W. B. Ligon, “Maximizing the performance of scientific
data transfer by optimizing the interface between parallel file systems and advanced
research networks,” Future Generation Computer Systems, vol. 79, pp. 190–198, 2018.
[Online]. Available: https://doi.org/10.1016/j.future.2017.04.030

[111] N. Mills, E. M. Bensman, W. L. Poehlman, L. W. B., and F. A. Feltus, “Moving
just enough deep sequencing data to get the job done,” Bioinformatics and Biology
Insights, 2019. [Online]. Available: https://doi.org/10.1177/1177932219856359

[112] B. D. N. M. William Poehlman, Mats Rynge and F. Feltus, “Osg-kinc: High-
throughput gene co-expression network construction using the open science grid,” in
IEEE BIBM 2017 Proceedings, 2017, pp. 1827–1831.

[113] K. Sapra, “Framework for lifecycle enrichment of HPC applications on exascale het-
erogeneous architecture,” in SC Doctoral Showcase, Nov. 2015.

[114] K. Sapra, “Framework for lifecycle enrichment of hpc applications towards exascale
heterogeneous architectures,” Ph.D. dissertation, Clemson University, Dec. 2018.

[115] A. Joshi, “A performance focused, development friendly and model aided paralleliza-
tion strategy for scientific applications,” M.S. thesis, Clemson University, Dec. 2016.

[116] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Kumaran, “Bench-
marking machine learning methods for performance modeling of scientific applica-
tions,” in 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2018, pp. 33–44.

[117] J. D. Stevens and A. Klöckner, “A mechanism for balancing accuracy and scope in
cross-machine black-box gpu performance modeling,” 2019.

92

https://doi.org/10.1016/j.future.2017.04.030
https://doi.org/10.1177/1177932219856359

[118] V. K. Pallipuram, M. C. Smith, N. Raut, and X. Ren, “A regression-based
performance prediction framework for synchronous iterative algorithms on general
purpose graphical processing unit clusters,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 2, pp. 532–560, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3017

[119] E. Nwafor, A. Campbell, D. Hill, and G. Bloom, “Towards a provenance collection
framework for internet of things devices,” in 2017 IEEE SmartWorld, Ubiquitous In-
telligence Computing, Advanced Trusted Computed, Scalable Computing Communi-
cations, Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–6.

[120] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: Collecting
high-fidelity whole-system provenance,” in Proceedings of the 28th Annual
Computer Security Applications Conference, ser. ACSAC ’12. New York,
NY, USA: Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2420950.2420989 p. 259–268.

[121] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-system
provenance for the linux kernel,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015. [Online].
Available: https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/bates pp. 319–334.

[122] D. Dai, Y. Chen, P. Carns, J. Jenkins, and R. Ross, “Lightweight Provenance Service
for High-Performance Computing,” in 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT). Portland, OR: IEEE, Sep. 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/8091224/ pp. 117–129.

[123] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and Logging in the
Internet of Things,” in Proceedings 2018 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society, 2018. [Online]. Available: https://www.
ndss-symposium.org/wp-content/uploads/2018/02/ndss2018 01A-2 Wang paper.pdf

[124] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, “Provenance-
aware storage systems,” in Proceedings of the Annual Conference on USENIX ’06
Annual Technical Conference, ser. ATEC ’06. USA: USENIX Association, 2006, p. 4.

[125] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in distributed
environments,” in Proceedings of the 13th International Middleware Conference, ser.
Middleware ’12. Berlin, Heidelberg: Springer-Verlag, 2012, p. 101–120.

[126] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C. Wu,
Y. Alexeev, and F. T. Chong, “Use cases of lossy compression for floating-point data
in scientific data sets,” The International Journal of High Performance Computing
Applications, vol. 33, no. 6, pp. 1201–1220, 2019.

93

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3017
https://doi.org/10.1145/2420950.2420989
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
http://ieeexplore.ieee.org/document/8091224/
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-2_Wang_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-2_Wang_paper.pdf

[127] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression with sz,” in
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, pp. 730–739.

[128] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D. Gropp, “Exploring the
feasibility of lossy compression for pde simulations,” The International Journal of
High Performance Computing Applications, vol. 33, no. 2, pp. 397–410, 2019. [Online].
Available: https://doi.org/10.1177/1094342018762036

[129] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for compressed caching in
virtual memory systems,” in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’99. Berkeley, CA, USA: USENIX Association,
1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=1268708.1268716 pp.
8–8.

[130] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski, and
R. Eigenmann, “McrEngine: a scalable checkpointing system using data-aware
aggregation and compression,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389020 pp. 17:1–17:11.

[131] L. Fischer, S. Götschel, and M. Weiser, “Lossy data compression reduces
communication time in hybrid time-parallel integrators,” Computing and Visualization
in Science, vol. 19, no. 1, pp. 19–30, Jun 2018. [Online]. Available: https:
//doi.org/10.1007/s00791-018-0293-2

[132] R. Filgueira, D. E. Singh, J. Carretero, A. Calderón, and F. Garćıa,
“Adaptive-compi: Enhancing mpi-based applications’ performance and scalability
by using adaptive compression,” The International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 93–114, 2011. [Online]. Available:
https://doi.org/10.1177/1094342010373486

[133] P. Deutsch, “Gzip file format specification version 4.3,” United States, Tech. Rep.,
1996.

[134] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point
data,” Visualization and Computer Graphics, IEEE Transactions on, vol. 12, no. 5,
pp. 1245–1250, 2006. [Online]. Available: http://dx.doi.org/10.1109/tvcg.2006.143

[135] Y. Collet and M. Kucherawy, “Zstandard Compression and the application/zstd
Media Type,” RFC 8478, Oct. 2018. [Online]. Available: https://rfc-editor.org/rfc/
rfc8478.txt

[136] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. keng Liao, and
A. Choudhary, “Data compression for the exascale computing era - survey,”
Supercomputing frontiers and innovations, vol. 1, no. 2, 2014. [Online]. Available:
http://superfri.org/superfri/article/view/13

94

https://doi.org/10.1177/1094342018762036
http://dl.acm.org/citation.cfm?id=1268708.1268716
http://dl.acm.org/citation.cfm?id=2388996.2389020
https://doi.org/10.1007/s00791-018-0293-2
https://doi.org/10.1007/s00791-018-0293-2
https://doi.org/10.1177/1094342010373486
http://dx.doi.org/10.1109/tvcg.2006.143
https://rfc-editor.org/rfc/rfc8478.txt
https://rfc-editor.org/rfc/rfc8478.txt
http://superfri.org/superfri/article/view/13

[137] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 2674–2683, Dec 2014.

[138] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale, “Lossy compression for check-
pointing: Fallible or feasible?” in Poster Session of the 2014 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. Washington, DC, USA: IEEE Computer Society, 2014.

[139] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener, “Assessing the effects
of data compression in simulations using physically motivated metrics,” in Proceedings
of the International Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503283 pp. 76:1–76:12.

[140] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in Proceedings of the 2015
IEEE International Parallel and Distributed Processing Symposium, ser. IPDPS
’15. Washington, DC, USA: IEEE Computer Society, 2015. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2015.67 pp. 914–922.

[141] J. Nardi, N. Feldman, A. Poppick, A. Baker, and D. Hammerling, “Statistical analysis
of compressed climate data,” NCAR, Tech. Rep., 2018.

[142] M. Rahman, M. Islam, J. Calhoun, and M. Chowdhury, “Real-time pedestrian
detection approach with an efficient data communication bandwidth strategy,”
Transportation Research Record, vol. 0, no. 0, p. 0361198119843255, 0. [Online].
Available: https://doi.org/10.1177/0361198119843255

[143] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo, R. Gupta,
K. Yoshii, H. Hoffman, A. Malony et al., “Systemwide power management with argo,”
in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2016, pp. 1118–1121.

[144] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Programming
Interface for Performance Evaluation on Modern Processors,” Int. J. High Perform.
Comput. Appl., vol. 14, no. 3, pp. 189–204, 2000.

[145] H. Menon, B. Acun, S. G. De Gonzalo, O. Sarood, and L. Kalé, “Thermal aware
automated load balancing for hpc applications,” in Cluster Computing (CLUSTER),
2013 IEEE International Conference on. IEEE, 2013, pp. 1–8.

[146] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross, “Un-
derstanding and improving computational science storage access through continuous
characterization,” ACM Transactions on Storage, vol. 7, no. 8, pp. 1–26.

[147] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 character-
ization of petascale I/O workloads.” in In Proceedings of the Workshop on Interfaces
and Architectures for Scientific Data Storage. IEEE Computer Society, 2009, pp.
1–10.

95

http://doi.acm.org/10.1145/2503210.2503283
http://dx.doi.org/10.1109/IPDPS.2015.67
https://doi.org/10.1177/0361198119843255

[148] “The orangefs project.” [Online]. Available: http://www.orangefs.org

[149] L. Kalé and S. Krishnan, “Charm++ : A portable concurrent object oriented system
based on C++,” in Proceedings of the Conference on Object Oriented Programmi ng
Systems, Languages and Applications, September 1993.

[150] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel execution
model for scaling-impaired applications,” in 2009 International Conference on Parallel
Processing Workshops, 2009, pp. 394–401.

[151] F. Cappello, E. Constantinescu, P. Hovland, T. Peterka, C. Phillips, M. Snir, and
S. Wild, “Improving the trust in results of numerical simulations and scientific data
analytics,” Argonne National Lab.(ANL), Argonne, IL (United States), Tech. Rep.,
2015.

[152] “Opendwarfs benchamrking suite,” https://github.com/vtsynergy/OpenDwarfs, ac-
cessed: April 1, 2020.

[153] J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao, and
F. Cappello, “Wavesz: A hardware-algorithm co-design of efficient lossy compression
for scientific data,” in Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’20. New
York, NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi-org.libproxy.clemson.edu/10.1145/3332466.3374525 p. 74–88.

[154] Q. Xiong, R. Patel, C. Yang, T. Geng, A. Skjellum, and M. C. Herbordt, “Ghostsz:
A transparent fpga-accelerated lossy compression framework,” in 2019 IEEE 27th An-
nual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), April 2019, pp. 258–266.

[155] “Xilinx gzip library,” https://github.com/Xilinx/Applications/tree/master/GZip, ac-
cessed: April 1, 2020.

[156] “Gpu-accelerated lossless compression survey,” https://github.com/dingwentao/
GPU-lossless-compression, accessed: April 1, 2020.

[157] R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, “Parallel lossless data
compression on the gpu,” in 2012 Innovative Parallel Computing (InPar), 2012, pp.
1–9.

[158] “Parallel implementation of bzip2 using cuda,” https://github.com/bzip2-cuda/
bzip2-cuda, accessed: April 1, 2020.

[159] A. Deshpande and P. J. Narayanan, “Fast burrows wheeler compression using all-
cores,” in 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop, 2015, pp. 628–636.

96

http://www.orangefs.org
https://github.com/vtsynergy/OpenDwarfs
https://doi-org.libproxy.clemson.edu/10.1145/3332466.3374525
https://github.com/Xilinx/Applications/tree/master/GZip
https://github.com/dingwentao/GPU-lossless-compression
https://github.com/dingwentao/GPU-lossless-compression
https://github.com/bzip2-cuda/bzip2-cuda
https://github.com/bzip2-cuda/bzip2-cuda

[160] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross, “Massively-parallel
lossless data decompression,” in 2016 45th International Conference on Parallel Pro-
cessing (ICPP), 2016, pp. 242–247.

[161] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,
D. Kothe, R. Lusk, and P. Messina, “The opportunities and challenges of exascale
computing,” Summary Report of the Advanced Scientific Computing Advisory Com-
mittee (ASCAC) Subcommittee, pp. 1–77, 2010.

[162] Paul Messina, “The u.s. d.o.e. exascale computing project - goals and challenges,”
NIST, Tech. Rep., 2017.

[163] Libpressio: https://github.com/robertu94/libpressio.

[164] SZ: https://github.com/disheng222/SZ.

[165] CuZFP. 2019. https://github.com/LLNL/zfp/tree/develop/src/cuda zfp. Online.

[166] G. Sun and S. Jun, “Zfp-v: Hardware-optimized lossy floating point compression,” in
2019 International Conference on Field-Programmable Technology (ICFPT), 2019, pp.
117–125.

[167] T. Reza, J. Calhoun, K. Keipert, S. Di, and F. Cappello, “Analyzing the performance
and accuracy of lossy checkpointing on sub-iteration of nwchem,” in 2019 IEEE/ACM
5th International Workshop on Data Analysis and Reduction for Big Scientific Data
(DRBSD-5), 2019, pp. 23–27.

[168] C. B. McKnight, A. L. Poulos, M. R. Bender, J. C. Calhoun, and F. A. Feltus, “Explor-
ing lossy compression of gene expression matrices,” in 2019 IEEE/ACM 5th Interna-
tional Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5),
2019, pp. 28–34.

[169] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom, “Error analysis of
zfp compression for floating-point data,” SIAM Journal on Scientific Computing, 02
2019.

[170] P. Lindstrom, “Error distributions of lossy floating-point compressors,” Joint Statisti-
cal Meetings 2017, pp. 2574–2589, October 2017.

[171] S. Han and T. Fingscheidt, “Variable-length versus fixed-length coding: On trade-
offs for soft-decision decoding,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2014, pp. 4269–4273.

[172] R. Underwood, J. Calhoun, S. Di, and F. Cappello, “Fraz: A generic high-fidelity fixed-
ratio lossy compression framework for scientific data,” in 2020 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2020, New Orleans, USA,
May 18-22, 2020. IEEE, 2020.

97

https://github.com/robertu94/libpressio
https://github.com/disheng222/SZ
https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp

	CHAPTER 1 Introduction
	Hypothesis
	Bounding Factors
	Outline

	CHAPTER 2 Background
	Parallel Programming Systems
	OpenMP
	MPI
	Task-based Models

	TraceR
	Projections

	CHAPTER 3 Flexible Hierarchical Execution of Parallel Task Loops
	Introduction
	Background
	OpenMP
	Charm++
	Overdecomposition

	Methods
	Spreading
	Affinity
	Combined with Overdecomposition

	Evaluation
	Machine
	Application
	Experiments

	Related Work
	Future Work
	Conclusion

	CHAPTER 4 Techniques for Improving Application Communication Performance
	Introduction
	Motivation
	Techniques
	Technique 1: Spreading
	Technique 2: Staggering (non-sync/timestepped)
	Technique 3: Prioritization

	Experiments
	Results and Evaluation
	Extensions
	Simulation
	Aggregation
	OpenMP Integration

	CHAPTER 5 Runtime Coordinated Heterogeneous Tasks in Charm++
	Introduction
	Background and Related Work
	Methodology
	Charm++ GPU Manager
	Accel Framework

	Results
	Stencil 2D
	Molecular Dynamics
	Analysis
	Caveats

	Future Work
	Conclusions

	CHAPTER 6 Future Work
	Application Case Study
	MILC

	Re-Examining the Folk Theorem About Communication Costs
	Overhead
	Network Contention
	Responsiveness

	Adaptive High-Performance Computing System Design for Next Generation Scalable Workloads
	Introduction
	Focus Areas
	Targeted Systems
	Targeted Applications
	Notions of Scale
	Preliminary Scalability
	Background and Related Work
	Research Task 1: System Monitoring and Control
	Research Task 2: Adapting the I/O subsystem
	Research Task 3: Provenance in HPC
	Research Task 4: Performance Modeling and Reconfigurability
	Research Task 5: Compressed Data Transfer
	Evaluation
	Broader Impacts

	CHAPTER 7 Conclusion
	CHAPTER 8 REFERENCES

