
Achieving Computation-Communication Overlap
with Overdecomposition on GPU Systems

Jaemin Choi∗, David F. Richards†, Laxmikant V. Kale∗
∗Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California

Email: {jchoi157,kale}@illinois.edu, richards12@llnl.gov

Abstract—The landscape of high performance computing is
shifting towards a collection of multi-GPU nodes, widening
the gap between on-node compute and off-node communication
capabilities. Consequently, the ability to tolerate communication
latencies and maximize utilization of the compute hardware are
becoming increasingly important in achieving high performance.
Overdecomposition has been successfully adopted on traditional
CPU-based systems to achieve computation-communication over-
lap, significantly reducing the impact of communication on
application performance. However, it has been unclear whether
overdecomposition can provide the same benefits on modern GPU
systems. In this work, we address the challenges in achieving
computation-communication overlap with overdecomposition on
GPU systems using the Charm++ parallel programming system.
By prioritizing communication with CUDA streams in the appli-
cation and supporting asynchronous progress of GPU operations
in the Charm++ runtime system, we obtain improvements in over-
all performance of up to 50% and 47% with proxy applications
Jacobi3D and MiniMD, respectively.

Index Terms—computation-communication overlap, overde-
composition, asynchronous task-based runtime, GPU computing

I. INTRODUCTION

Employment of GPUs as accelerators in today’s high per-

formance computing systems has played a significant role

in the rapid increase in computational power, ushering in

the exascale era. A single compute node of the Summit [1]

supercomputer at Oak Ridge Leadership Computing Facil-

ity (OLCF) boasts a theoretical peak performance of over

40 TFLOPS with its six NVIDIA Tesla V100 GPUs. What

is often disregarded, however, is that the single-node com-

putational power is greatly outpacing the inter-node network

performance. Comparing Summit to OLCF’s former leadership

system, Titan [2], the compute performance has multipled

more than 28 times (1.4 TFLOPS vs. 40 TFLOPS) while

the interconnect bandwidth has increased less than fourfold

(6.4 GB/s vs. 23 GB/s).

The growing gap between on-node compute and off-node

communication capabilities can be tackled from at least two

different directions: 1) improving communication performance

with optimizations in the software stack and better utilization

of the hardware support (e.g. SHARP [3] for collectives, hard-

ware tag-matching), and 2) reducing the impact of commu-

nication on overall performance by overlapping computation

and communication. In this work, we focus on the latter in the

context of GPU systems and seek to improve the performance

of GPU-accelerated applications by achieving computation-

communication overlap with overdecomposition.
Overdecomposition is an approach of decomposing the

problem domain into logical sub-domains (units of work

and/or data), often creating many more such sub-domains than

the number of available processors. In addition to benefits

such as better cache utilization, dynamic load balancing, and

fault tolerance [4], overdecomposition facilitates computation-

communication overlap by overlapping computation of a sub-

domain with communication of another. While these merits

have been well observed on traditional CPU-based systems,

overdecomposition and its impact on performance have not

been thoroughly explored on modern GPU systems. We ap-

ply overdecomposition to GPU-accelerated proxy applications

using the Charm++ parallel programming system [4], and ad-

dress critical issues in the application as well as the underlying

runtime system to achieve computation-communication over-

lap. We show that a moderate degree of overdecomposition

provides a substantial improvement in performance despite

the potential drawbacks of finer-grained GPU kernels such as

kernel launch and execution overheads.
The primary contributions of this work are as follows:

• Prioritization of communication with multiple CUDA

streams in GPU-accelerated proxy applications to maxi-

mize computation-communication overlap

• Mechanisms to enable asynchronous progress of GPU

operations in scheduler-driven task runtimes

• Weak and strong scaling performance analysis of overde-

composed proxy applications on leadership-class systems

II. BACKGROUND

A. Overdecomposition
As briefly explained in Section I, overdecomposition allows

the application programmer to divide the problem domain into

work and data units unconstrained by the number of avail-

able processors. Figure 1 compares a typical decomposition

scheme in MPI and overdecomposition with a factor of four.

Overdecomposition decouples computational work and data

of the application from hardware resources, empowering the

runtime system to control the mapping of these work units

to the available processors. This can also benefit programmer

productivity as the units of decomposition become first-class

citizens of the program and can be addressed with logical

names.

1

2020 IEEE/ACM 5th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)

978-0-7381-1074-5/20/$31.00 ©2020 IEEE
DOI 10.1109/ESPM251964.2020.00006

4 CPU cores

Per-process decomposition
(MPI)

Overdecomposition
(Charm++)

Fig. 1. Comparison of a typical decomposition in MPI and overdecomposition
in Charm++. Particles are scattered across the two-dimensional global grid.
MPI decomposition assigns one sub-domain to each process (a CPU core in
pure MPI), whereas overdecomposition assigns four smaller sub-domains to
each PE (generally a single core).

In regard to performance, an important benefit obtain-

able with overdecomposition is overlap of computation and

communication. With multiple work units assigned to each

processor, a work unit can perform computation while another

mapped to the same processor is waiting for communication.

This requires a high degree of asynchrony, however, which

can be achieved with asynchronous message-driven execu-

tion as described in Section II-B2. To achieve computation-

communication overlap on GPU systems, it is crucial to

additionally support asynchronous progress of GPU operations

with minimal delay. This is discussed in detail in Section III-B.

B. Charm++ Parallel Programming System

1) Overdecomposition: The Charm++ parallel program-

ming system [4] realizes overdecomposition, in addition to

other design principles such as migratability and asynchrony,

as a C++-based approach to writing parallel programs. The

problem domain is decomposed using special C++ objects

called chares and an indexed collection of chares called chare
arrays. Typically there are many more chares than the number

of processors, empowering the underlying runtime system

with more control over their execution. For example, the

spatial domain in Figure 1 is overdecomposed into a 2D chare

array of 4 × 4 = 16 chares that are mapped to four CPU

cores. Following the object-oriented programming paradigm of

C++, each chare encapsulates data and methods that perform

operations on data. For instance, pairwise force calculation of

particles in Figure 1 can be implemented as a chare method
using particles’ positions and mass as data.

2) Asynchronous message-driven execution: The set of

processors selected by the user for parallel execution in

Charm++ are referred to as processing elements (PEs). A PE

generally corresponds to a CPU core on which a scheduler

is executed, but it could also be a multi-threaded process

running on multiple cores, where a single scheduler manages

the multi-threaded execution. The scheduler is governed by

an asynchronous message-driven execution model, where a

chare is scheduled for execution on a PE when a message

for it is received. This execution of a chare’s method corre-

sponds to a task in Charm++. A message queue associated

with each scheduler stores the incoming messages, and the

scheduler picks up a message from the queue when it is

Chares

C

PE Message queue

A

B A

Fig. 2. Asynchronous message-driven execution in Charm++. Chares ex-
change messages which are stored in the message queue and picked up by
the scheduler on each PE.

free, ordinarily in FIFO order. Communication in Charm++

is asynchronous as the sender chare does not block for any

reply or acknowledgement from the receiver, and incoming

messages are asynchronously stored in the message queue.

Figure 2 illustrates an execution pattern with asynchronous

message-driven execution in Charm++.

3) Computation-communication overlap: When computa-

tion phases are separated by communication as in bulk-

synchronous models such as MPI, time spent in communica-

tion directly translates into idle time that affects the overall

execution. This issue can be mitigated by performing an

independent computation during the communication phase, but

resources can still remain idle if blocking communication calls

are invoked before messages arrive [5].

Overdecomposition with asynchronous message-driven ex-

ecution provides a natural remedy to this problem. While a

chare is waiting for communication, another chare can be

scheduled to perform computation, effectively hiding commu-

nication latency. Furthermore, the injection of messages into

the network is spread throughout the execution, in contrast

to traditional MPI applications where communication is often

clustered at certain points of the execution timeline.

4) GPU execution: A Charm++ programmer may imple-

ment chare methods that offload work to the GPU using

any GPU programming model suitable for the hardware,

including CUDA for NVIDIA GPUs and HIP for AMD GPUs.

When such GPU operations are executed synchronously, e.g.

using cudaStreamSynchronize, there is no additional support

needed from the runtime. However, this prevents computation-

communication overlap as the Charm++ scheduler is blocked

from handling incoming messages and executing methods of

other chares on the same PE. We provide an API in the

Charm++ runtime to address this issue, currently using CUDA

for NVIDIA GPUs. Its design and implementation details are

provided in Section III-B.

The following sections of the paper assume the use of

NVIDIA GPUs and discuss GPU usage in terms of CUDA.

Support for AMD and Intel GPUs in Charm++ are being

developed to prepare for upcoming leadership-class systems.

It should also be noted that for chares to communicate GPU

data, explicit data transfers between the host and device are

currently required as production-level support for direct GPU-

GPU transfers in Charm++ is in progress.

2

Computational
kernel

Delay in communication Compute idle time

Unpacking kernel Packing kernel
D2H transferH2D transfer

(a) Single CUDA stream per chare. Communication is delayed
by a computational kernel enqueued from another chare, causing
idle time between iterations.

No idle time

No delay in communication

Higher priority comm stream

(b) Separate compute/communication CUDA streams per chare,
with the communication stream given higher priority. Iterations
continue without idle times in between.

Fig. 3. Execution timelines of Jacobi2D with four chares mapped to a single GPU.

III. ACHIEVING COMPUTATION-COMMUNICATION

OVERLAP

In this section, we discuss important considerations in the

application and the underlying runtime system when apply-

ing overdecomposition to achieve computation-communication

overlap on GPU systems.

A. Prioritizing Communication in the Application

A straightforward method of integrating GPUs into an

application is associating a CUDA stream with each work unit.

GPU operations including kernel launches and data transfers

enqueued in the same stream are guaranteed to execute in

order. For MPI applications where a single process is used

to manage each GPU, it is often sufficient to use the default

stream. In a Charm++ application, each chare can maintain

a separate stream to enforce dependencies between GPU

operations performed by the same chare. Note that multiple

chares can be mapped to use the same GPU device.

While assigning a single CUDA stream to each chare

ensures that dependencies are observed between operations

performed with the chare’s data, it often impedes computation-

communication overlap. The primary cause is the delay in

communication-related operations, including host-device data

transfers and associated packing/unpacking kernels, due to

computational kernels offloaded from other chares.

Figure 3 depicts execution timelines of two different im-

plementations of Jacobi2D, a simple Charm++ program that

performs the Jacobi iteration in a two-dimensional grid. The

global grid is overdecomposed into four chares on a single PE,

which is mapped to a GPU. Each chare is responsible for a

quadrant of the grid and performs halo exchanges with its two

neighboring chares after the Jacobi update, which is repeated

for a given number of iterations. The communication-related

GPU operations for each neighbor comprise of a packing ker-

nel and a D2H transfer enqueued after the main Jacobi update

kernel, as well as a H2D transfer and a unpacking kernel

that are enqueued once a halo message is received. Figure 3a

shows the execution of the implementation that uses a single

CUDA stream per chare to enqueue all computation, i.e. Jacobi

update, and communication-related operations. Although there

is some overlap of computation and communication, idle

time is observed due to the delay in the execution of the

communication-related operations (packing kernels and D2H

transfers).

This issue can often be resolved by utilizing separate

streams for compute and communication in each chare, as in

Figure 3b, with the communication stream given a higher pri-

ority with cudaStreamCreateWithPriority. Because there

are now multiple streams within the same work unit, CUDA

events must be used to enforce dependencies between streams.

It should be noted that such a simple bisection of streams may

not be enough to obtain the desired degree of computation-

communication overlap, as will be discussed in Section IV-B2.

B. Support for Asynchronous Progress in the Runtime

The application often needs to be notified when a GPU

operation completes in order to invoke subsequent operations,

to send a message after a H2D transfer, for example. The

simplest method is performing a synchronization call such as

cudaStreamSynchronize so that the host code blocks until the

enqueued operations are complete. With overdecomposition,

however, this hinders computation-communication overlap as

the Charm++ scheduler will be blocked from making forward

progress on communication and performing other chares’

work.

A potential solution is using cudaStreamAddCallback

(or more recently cudaLaunchHostFunc), which is an asyn-

chronous CUDA API that enqueues a host function to be

called once all currently enqueued work in the given stream

completes. The problem is that it cannot be used directly by

the programmer in a Charm++ application, as the designated

function is executed on a separate thread created by the CUDA

runtime which is dissociated from the Charm++ scheduler.

Manually polling completion with CUDA events is also infea-

sible due to the scheduler-driven execution in Charm++.

To support asynchronous progress of GPU operations in

such scenarios, we implement two compile-time configurable

mechanisms in the Charm++ runtime system: callback-based
and polling-based. Either mechanism is exposed to the user

via the following Hybrid API (HAPI) call:

// CkCallback is a Charm++ callback object
void hapiAddCallback(cudaStream_t stream ,

CkCallback* callback)

.

3

PE

CUDA
Thread

GPU operation complete

Push message

cudaStreamAddCallback Other work CUDA Callback Invoke Charm++ Callback

(a) Callback-based mechanism.

PE

Poll CUDA event complete

Create and record CUDA event

(b) Polling-based mechanism.

Fig. 4. Designs of asynchronous progress support for GPU operations in the Charm++ runtime system.

After GPU operations are enqueued in a CUDA stream,

hapiAddCallback can be used to schedule a Charm++ call-

back (most often a chare’s entry method) when they are

complete. A message will be sent to the target chare once the

Charm++ runtime detects all previous operations in the pro-

vided CUDA stream are complete, allowing the application to

resume its work. The designs of the two different mechanisms

underlying the API are discussed in the following.

1) Callback-based: The callback-based mechanism utilizes

the CUDA callback feature to execute a codelet once the

GPU operations in the specified stream complete. This codelet

pushes a message containing the Charm++ callback object

to the message queue of the PE which originally invoked

hapiAddCallback. When the scheduler picks up the message,

it invokes the Charm++ callback to execute the designated

entry method on the target chare. Figure 4a illustrates this

process. This mechanism essentially returns control back to

the Charm++ scheduler from the CUDA-generated thread, in

order to invoke the user-specified Charm++ callback.

2) Polling-based: The polling-based mechanism makes use

of CUDA events to track the progress of GPU operations.

When the user calls hapiAddCallback, a CUDA event is

created and recorded. A HAPI event which encapsulates the

CUDA event along with information about the user-specified

Charm++ callback is also created. The HAPI event is then

pushed to a FIFO event queue maintained by each PE, which

is checked every time the scheduler picks up a message.

Charm++ callbacks associated with the completed events in

the queue are invoked before executing the next message.

Figure 4b outlines this mechanism.

IV. EXPERIMENTAL SETUP

Next, we describe the set of platforms and proxy applica-

tions used to evaluate the performance impact of our approach.

A. Platforms Used for Experiments

Two leadership-class GPU-accelerated supercomputers are

used for performance evaluations: Summit at Oak Ridge

National Laboratory and Lassen at Lawrence Livermore Na-

tional Laboratory (a non-classified Sierra-like system). A brief

summary of the hardware and software of these systems are

provided in Table I. Note that Lassen has a limit of 256

nodes (1,024 GPUs) for regular jobs. The main architectural

differences are the number of GPUs per node, intra-node

GPU interconnect, and inter-node network topology. A more

detailed comparison of these systems can be found in [6].

Because the two systems employ the same type of GPU, we

expect the difference in performance to be derived largely from

communication.

The same number of PEs as the total number of GPUs are

used in the execution of Charm++ programs, with each PE

assigned to one CPU core. On a single node of Summit, for

example, six PEs (CPU cores) are mapped to six GPUs, with

one PE per GPU.

B. Benchmarks

1) Jacobi3D: Jacobi3D is a simple Charm++ proxy appli-

cation that performs the Jacobi iterative method on the GPU

in a three-dimensional domain. The global grid is decomposed

into cuboids, each contained within a chare. For the purposes

of this work, Jacobi3D is configured to run a fixed number of

iterations without convergence checks. Each Jacobi iteration

consists of the following steps:

1) Perform Jacobi update on GPU (Equation 1)

2) For each halo to be sent to a neighbor,

a) Invoke packing kernel to move halo data to con-

tiguous buffer if necessary

b) Device-to-host (D2H) transfer of halo buffer

3) Non-blocking exchange of halo data with neighbors

4) On receiving a message from a neighbor,

a) Host-to-device (H2D) transfer of halo buffer

b) Invoke unpacking kernel to move halo data into

non-contiguous memory if necessary

The Jacobi update is a 3D stencil computation of the

following:

Ai,j,k =
1

7
×(Ai,j,k+Ai−1,j,k+Ai+1,j,k+Ai,j−1,k+Ai,j+1,k

+Ai,j,k−1 +Ai,j,k+1) (1)

where Ai,j,k is the block at position (i, j, k) of the global grid.

Each chare maintains separate compute and higher-priority

communication CUDA streams as discussed in Section III-A.

Packing/unpacking kernels and transfers between host and

device are enqueued in the communication stream, whereas

the Jacobi update kernel is offloaded in the compute stream.

2) MiniMD: MiniMD [7] is a proxy application for molec-

ular dynamics simulation of a Lennard-Jones or EAM system,

designed to be representative of the performance of the widely

used LAMMPS [8] package. In this work, we employ a

Lennard-Jones system without re-neighboring and Newton’s

third law for ghost atoms. MPI and Kokkos [9] performance

4

TABLE I
SUMMARY OF THE EXPERIMENTAL PLATFORMS

Platform No. of nodes CPU GPU GPUs/node Network MPI CUDA

Summit 4,608
IBM Power9 NVIDIA Tesla V100

6 Mellanox EDR
IBM Spectrum 10.1Lassen 792 4 Mellanox EDR tapered

portability framework are used for execution on distributed

GPU systems, where CUDA-aware MPI handles inter-GPU

communication and Kokkos manages GPU execution through

its CUDA backend.

To enable overdecomposition, we convert an MPI process

to a chare array element and port the MPI communication

routines to Charm++. Kokkos is retained as the performance

portability layer for GPU execution, but several significant

modifications are made to enable asynchronous progress.

These include modifying Kokkos deep copies and parallel

loops to use CUDA execution instances [10] associated with

CUDA streams, and forced asynchronous kernel launches [11]

to disable unwanted synchronization behaviors. It is important

to note that the near-neighbor communication is modified from

a set of MPI_Sendrecv calls to non-blocking communication

routines in Charm++, in order to maximize overlap of compu-

tation and communication between different chares mapped to

the same GPU. This trades off memory usage (as a separate

set of send and receive buffers is needed for each neighbor

exchange) for improvement in communication performance

and more potential for computation-communication overlap.

Because of the current lack of support for direct GPU-GPU

transfers in Charm++, CUDA-aware MPI calls are converted

to explicit host-device transfers and host-to-host messages.

However, the ability to hide the communication latency with

overdecomposition allows the Charm++ version to outperform

even the CUDA-aware MPI version, as discussed in Section V

The following main iteration loop is executed by each chare

in the Charm++-Kokkos version of MiniMD:

1) Initial integration

2) Exchange of atom information

a) Packing kernels

b) Device-to-host (D2H) transfers

c) Neighbor exchanges via host-to-host messages

d) Host-to-device (H2D) transfers

e) Unpacking kernels

3) Lennard-Jones force calculation

4) Final integration

Our first attempt at integrating CUDA streams in MiniMD

involved using two streams per chare as in Jacobi3D, but

it did not yield satisfactory performance due to the lack of

computation-communication overlap. The issue was that the

communication-related GPU operations (Steps 2a, 2b, 2d and

2e) were not prioritized as expected. Many of these operations

were held back by force calculation kernels (Step 3) from

other chares. Nevertheless, this is not an erroneous behavior,

as CUDA stream priorities are merely hints to the CUDA

scheduler and does not guarantee preemption of lower priority

 0

 10

 20

 30

 40

 50

1 2 4 8 16

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Overdecomposition factor (ODF)

cudaStreamSynchronize HAPI-Callback HAPI-Polling

Fig. 5. Performance of Jacobi3D with varying overdecomposition factors on
a single node of OLCF Summit.

work in favor of higher priority work. In such situations, we

need a more sophisticated design of CUDA streams interlaced

with CUDA events to enforce inter-stream dependencies.

Our design utilizes a total of five streams per GPU (instead

of two streams per chare): one stream each for computational

kernels (Steps 1, 3 and 4), packing kernels, D2H transfers,

H2D transfers, and unpacking kernels. All streams aside from

the compute stream are given higher priority. This allows

communication-related operations to be properly prioritized

and also overlap packing/unpacking kernels with D2H/H2D

transfers. A potential drawback to this design is that com-

pute kernels enqueued from different chares cannot execute

concurrently, since there is only one compute stream per

GPU. This can be fixed with a more complicated design with

multiple compute streams, but it is left as future work. CUDA

events are used to asynchronously enforce the following de-

pendencies between streams: compute → packing, packing →
D2H transfer, H2D transfer → unpacking, and unpacking →
compute. With this design, we are able to effectively overlap

computational kernels with host-device data transfers and host-

to-host communication.

In both Jacobi3D and MiniMD, asynchronous progress of

GPU operations is supported by the Charm++ runtime system

through HAPI.

V. PERFORMANCE EVALUATION

We evaluate the performance of our approach using two

proxy applications, Jacobi3D and MiniMD, on two different

GPU-accelerated platforms, Summit and Lassen. Performance

is averaged across nine different measurements: three jobs

each performing three runs of the same configuration.

A. Jacobi3D

1) Single-node: We first evaluate the performance of Ja-

cobi3D on a single node of Summit, with a global grid

5

 0

 10

 20

 30

 40

 50

 60

6
(1)

12
(2)

24
(4)

48
(8)

96
(16)

192
(32)

384
(64)

768
(128)

1536
(256)

3072
(512)

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Number of GPUs (Nodes)

ODF-1 ODF-2 ODF-4 ODF-8 ODF-16

(a) Weak scaling on Summit.

 0

 10

 20

 30

 40

 50

 60

6
(2)

12
(3)

24
(6)

48
(12)

96
(24)

192
(48)

384
(96)

768
(192)

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Number of GPUs (Nodes)

ODF-1 ODF-2 ODF-4 ODF-8 ODF-16

(b) Weak scaling on Lassen.

 1

 2

 4

 8

 16

 32

 64

48
(8)

96
(16)

192
(32)

384
(64)

768
(128)

1536
(256)

3072
(512)

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Number of GPUs (Nodes)

ODF-1 ODF-2 ODF-4 ODF-8 ODF-16

(c) Strong scaling on Summit.

 1

 2

 4

 8

 16

 32

 64

48
(12)

96
(24)

192
(48)

384
(96)

768
(192)

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Number of GPUs (Nodes)

ODF-1 ODF-2 ODF-4 ODF-8 ODF-16

(d) Strong scaling on Lassen.

Fig. 6. Weak & strong scaling performance of Jacobi3D.

of 1,536 × 1,536 × 1,536. Figure 5 compares different

mechanisms used to ensure halo data have been moved to

host memory before performing neighbor exchanges: call-

ing cudaStreamSynchronize on the communication stream

which is the simplest approach, and using the Charm++

runtime support (callback-based and polling-based HAPI) to

asynchronously invoke a Charm++ callback function once the

operations in the communication stream are complete. The

overdecomposition factor (ODF) is varied from one chare per

GPU (MPI-like decomposition) to 16 chares per GPU; we ex-

pect overdecomposition to provide performance improvements

due to computation-communication overlap up to a certain

point, after which overheads from the finer granularity start

to dominate performance.

cudaStreamSynchronize yields significant slowdowns over

the versions with runtime support as PEs are fully blocked

until all operations in the communication stream complete.

Hence the Charm++ scheduler can neither initiate GPU oper-

ations of other chares nor progress host-side communication

including the handling of incoming messages. The two HAPI

mechanisms demonstrate up to 83% increased performance,

with ODF-4 providing the largest performance improvement

over ODF-1 of 43%. As expected, as the overdecomposition

factor grows further, the increase in overall communication

volume and overheads caused by smaller work units start to

degrade performance.

Although the callback-based mechanism performs similarly

to the polling-based mechanism in Jacobi3D, it degrades per-

formance in more fine-grained applications due to the CUDA-

generated thread sharing a physical core with a Charm++

PE. We therefore adopt the polling-based mechanism for the

following scaling studies.

2) Weak scaling: We perform weak scaling of Jacobi3D

with a base problem size of 1,536 × 1,536 × 1,536. Each

dimension of the grid increases twofold as the number of

GPUs double, in x, y, z order. As shown in Figures 6a and 6b,

ODF-4 performs the best until 12 GPUs on Summit and 24

GPUs on Lassen, obtaining up to 44% and 50% performance

improvement over ODF-1, respectively. On larger node counts,

however, ODF-2 begins to outperform ODF-4 with perfor-

mance improvements compared to ODF-1 ranging between

24%-37% on Summit and 28%-33% on Lassen. We were

unable to determine the exact cause of this crossover behavior

and only observed longer idle times between iterations with

ODF-4 after the crossover point. Nevertheless, an adequate de-

gree of overdecomposition significantly improves performance

by achieving computation-communication overlap.

3) Strong scaling: Jacobi3D is strong scaled with a problem

size of 3,072 × 3,072 × 3,072, from 48 GPUs to 3,072

and 768 GPUs on Summit and Lassen, respectively. As in

Figures 6c and 6d, ODF-2 provides the best performance until

1,536 GPUs on Summit and 768 GPUs on Lassen, but its

performance improvement over ODF-1 decreases from 35%

to 3% on Summit and 27% to 7% on Lassen. With 3,072

GPUs on Summit, overdecomposition degrades performance

as observed by the 8% slowdown with ODF-2. This is within

our expectations, however, as the performance improvement

achievable with overdecomposition diminishes as the size of

6

 0

 5

 10

 15

 20

 25

6
(1)

12
(2)

24
(4)

48
(8)

96
(16)

192
(32)

384
(64)

Av
er

ag
e

tim
e

pe
r s

te
p

(m
s)

Number of GPUs (Nodes)

MPI-HS
MPI-CA

Charm-ODF-1
Charm-ODF-2

Charm-ODF-4
Charm-ODF-8

(a) Weak scaling on Summit.

 0

 5

 10

 15

 20

 25

6
(2)

12
(3)

24
(6)

48
(12)

96
(24)

192
(48)

384
(96)

Av
er

ag
e

tim
e

pe
r s

te
p

(m
s)

Number of GPUs (Nodes)

MPI-HS
MPI-CA

Charm-ODF-1
Charm-ODF-2

Charm-ODF-4
Charm-ODF-8

(b) Weak scaling on Lassen.

 1

 2

 4

 8

 16

 32

 64

48
(8)

96
(16)

192
(32)

384
(64)

768
(128)

1536
(256)

3072
(512)

Av
er

ag
e

tim
e

pe
r s

te
p

(m
s)

Number of GPUs (Nodes)

MPI-HS
MPI-CA

Charm-ODF-1
Charm-ODF-2

Charm-ODF-4
Charm-ODF-8

(c) Strong scaling on Summit.

 1

 2

 4

 8

 16

 32

 64

48
(12)

96
(24)

192
(48)

384
(96)

768
(192)

Av
er

ag
e

tim
e

pe
r s

te
p

(m
s)

Number of GPUs (Nodes)

MPI-HS
MPI-CA

Charm-ODF-1
Charm-ODF-2

Charm-ODF-4
Charm-ODF-8

(d) Strong scaling on Lassen.

Fig. 7. Weak & strong scaling performance of MiniMD.

each work unit decreases with strong scaling. At large node

counts, overdecomposition results in a small work unit being

split up into even smaller pieces, aggravating fine-grained

overheads.

B. MiniMD

The original CUDA-aware MPI version (marked MPI-CA)

and modified host-staged version (marked MPI-HS, uses ex-

plicit copies between host and device) of MiniMD are bench-

marked alongside the Charm++ versions employing overde-

composition. It should be noted that their performance is pro-

vided only for reference, since the Charm++ versions exercise

a different communication pattern to facilitate computation-

communication overlap, as described in Section IV-B2.

1) Weak scaling: We perform weak scaling of MiniMD

with a base domain size of 192 × 192 × 192, which results in

28 million atoms that are split across 6 GPUs. As the number

of GPUs double, each dimension of the grid is doubled, in

x, y, z order. Figures 7a and 7b show the weak scaling

performance up to 384 GPUs with domain size of 768 ×
768 × 768 and atom count of 1.8 billion. We do not obtain

results from 768 GPUs and onwards as an integer overflow

occurs in the number of atoms. Results with 192 GPUs are

not plotted as a NaN error causes computational kernels to

run abnormally fast. These errors have been reported to the

MiniMD developers.

It can be observed that the Charm++ version of MiniMD

with an overdecomposition factor of four (Charm-ODF-4) per-

forms the best except on a single node of Summit, where the

CUDA-aware MPI version (MPI-CA) performs better. ODF-4

achieves speedups over ODF-1 ranging 26%-45% on Summit

and 25%-47% on Lassen. Despite the lack of direct GPU-GPU

transfers in the Charm++ versions, overlap of computation

and communication achieved from overdecomposition allows

Charm-ODF-4 to outperform MPI-CA in most configurations.1

2) Strong scaling: MiniMD is strong scaled with a domain

size of 512 × 512 × 512 that contains 536 million atoms,

from 48 GPUs to 3,072 GPUs on Summit and 768 GPUs

on Lassen. As shown in Figures 7c and 7d, ODF-4 performs

the best with performance improvements over ODF-1 between

36%-42% until 192 GPUs on Summit and 21%-44% until

384 GPUs on Lassen. Afterwards, ODF-2 provides the best

performance with improvements decreasing from 19% to 3%

on Summit and 11% on Lassen, except 3,072 GPUs on Summit

where ODF-1 outperforms ODF-2 by 3%. Again, the results

align with our expectation that the performance improvement

obtainable with overdecomposition diminishes at the tail end

of strong scaling, due to the smaller size of work units.

VI. RELATED WORK

There has been extensive research on optimizing per-

formance with computation-communication overlap. Task-

based runtime systems including HPX [12], OmpSs [13], Le-

gion [14], and StarPU [15] exploit overlap of computation and

communication through different mechanisms, most of which

support execution on GPU-accelerated systems. In particular,

techniques to optimize computation-communication overlap

1The difference in communication pattern should also be taken into account.

7

by addressing the inefficient interactions between OmpSs and

MPI are discussed in [5]. With a focus on overdecomposition

and GPU execution, our work presents application design

considerations and implementation details of a runtime feature

for asynchronous progress, which can also be utilized by

other task-based runtime systems and applications seeking

to maximize computation-communication overlap on modern

GPU systems.

VII. CONCLUSION

We discussed important considerations for achieving

computation-communication overlap with overdecomposition

on GPU systems, including the need to prioritize communica-

tion in the application and avoid synchronization with support

from the runtime system. Techniques to address these issues

have been presented and implemented in proxy applications

and the runtime of the Charm++ parallel programming system.

We demonstrated significant improvements in weak scaling

performance of proxy applications on today’s leadership-class

GPU systems, albeit diminishing but expected returns with

strong scaling.

This work marks an important milestone in our GPU

roadmap, which includes on-going development of features

such as integration of direct GPU-GPU transfers and dynamic

load balancing with GPU loads. With improvements to GPU

support in the Charm++ runtime system, we aim to make

Charm++ a more attractive parallel programming model of

choice for current and upcoming GPU-accelerated platforms.

ACKNOWLEDGMENT

We thank the Kokkos developer team at Sandia National

Laboratory for providing assistance with technical issues.

This work was performed under the auspices of the U.S. De-

partment of Energy (DOE) by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-

CONF-814558).

This research was supported by the Exascale Computing

Project (17-SC- 20-SC), a collaborative effort of the U.S.

DOE Office of Science and the National Nuclear Security

Administration.

This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S. DOE

under Contract No. DE-AC05-00OR22725.

This document was prepared as an account of work sponsored by an agency
of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

REFERENCES

[1] (2020) Summit user guide - system overview. [Online]. Available: https:
//docs.olcf.ornl.gov/systems/summit_user_guide.html#system-overview

[2] T. Papatheodore. (2018) Overview of high performance computing
resources at the oak ridge leadership computing facility (olcf). [Online].
Available: https://www.olcf.ornl.gov/wp-content/uploads/2018/06/Intro_
to_HPC_OLCF.pdf

[3] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi,
A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi, “Scal-
able hierarchical aggregation protocol (sharp): A hardware architecture
for efficient data reduction,” in 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC), 2016, pp. 1–10.

[4] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida,
X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and
L. Kale, “Parallel programming with migratable objects: Charm++
in practice,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. IEEE Press, 2014, p. 647–658. [Online]. Available:
https://doi.org/10.1109/SC.2014.58

[5] E. Castillo, N. Jain, M. Casas, M. Moreto, M. Schulz, R. Beivide,
M. Valero, and A. Bhatele, “Optimizing computation-communication
overlap in asynchronous task-based programs,” in Proceedings of the
ACM International Conference on Supercomputing, ser. ICS ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
380–391. [Online]. Available: https://doi.org/10.1145/3330345.3330379

[6] C. Zimmer, S. Atchley, R. Pankajakshan, B. E. Smith, I. Karlin, M. L.
Leininger, A. Bertsch, B. S. Ryujin, J. Burmark, A. Walker-Loud,
M. A. Clark, and O. Pearce, “An evaluation of the coral interconnects,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356166

[7] (2020) Mantevo/minimd. [Online]. Available: https://github.com/
Mantevo/miniMD

[8] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1
– 19, 1995. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002199918571039X

[9] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J.
Parallel Distrib. Comput., vol. 74, no. 12, p. 3202–3216, Dec. 2014.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2014.07.003

[10] (2020) Kokkos lectures module 5: Simd, streams and tasking.
[Online]. Available: https://github.com/kokkos/kokkos-tutorials/blob/
main/LectureSeries/KokkosTutorial_05_SIMDStreamsTasking.pdf

[11] (2020) Kokkos github issue #2545: Undesired fence-like behavior
without calling a fence. [Online]. Available: https://github.com/kokkos/
kokkos/issues/2545#issuecomment-555143767

[12] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2676870.2676883

[13] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heterogeneous
multi-core architectures.” Parallel Processing Letters, vol. 21, pp. 173–
193, 06 2011.

[14] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Washington, DC, USA: IEEE
Computer Society Press, 2012.

[15] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” in Euro-Par 2009 Parallel Processing, H. Sips, D. Epema,
and H.-X. Lin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 863–874.

8

APPENDIX A

ARTIFACT DESCRIPTION APPENDIX: ACHIEVING

COMPUTATION-COMMUNICATION OVERLAP WITH

OVERDECOMPOSITION ON GPU SYSTEMS

A. Abstract
This artifact description contains the necessary information

to reproduce the experimental results presented in the paper,

including installation and performance evaluation.

B. Description
1) Check-list (artifact meta information): Fill in whatever

is applicable with some informal keywords and remove the rest
• Algorithm: Jacobi iteration, Lennard-Jones molecular dynamics
• Program: C++, MPI, Charm++, Kokkos
• Compilation: IBM XL C/C++ V16.1.1, NVCC 10.1.243
• Hardware: OLCF Summit, LLNL Lassen
• Output: Configuration, init time, total time, average iteration

time for Jacobi3D; configuration, T/U/P values, performance
summary for MPI & Kokkos version of MiniMD; configuration,
T/U/P values, total time, average iteration time for Charm++ &
Kokkos version of MiniMD

• Experiment workflow: Clone and build Charm++, clone and
build Kokkos, compile Jacobi3D and MiniMD, execute binaries
and observe results

• Experiment customization: Number of chares, grid dimen-
sions, number of warmup iterations, number of iterations for
Jacobi3D; number of MPI processes and standard parameters
for MPI & Kokkos version of MiniMD; number of chares and
standard parameters for Charm++ & Kokkos version of MiniMD

• Publicly available?: Yes

2) How software can be obtained (if available): All

used software can be obtained from GitHub. Kokkos:

https://github.com/kokkos/kokkos, Charm++: https://github.

com/UIUC-PPL/charm, MiniMD (fork): https://github.com/

minitu/miniMD Please refer to Section A-C for specific

branches or tags.
3) Hardware dependencies: OLCF Summit and LLNL

Lassen to replicate the results as is. Other systems with

NVIDIA GPUs can also be used, but the results may differ.
4) Software dependencies: The following modules were

loaded on the test systems: [Summit] xl/16.1.1-5,

spectrum-mpi/10.3.1.2-20200121, cuda/10.1.243,

[Lassen] xl/2020.06.25, spectrum-mpi/rolling-release

, cuda/10.1.243
MPI, Kokkos, and Charm++ are required, see Section A-C

for installation details.

C. Installation
1) Clone Kokkos version 3.2.

$ git clone -b 3.2.00 git@github.com:kokkos/
kokkos.git

2) Build and install Kokkos (assumes Kokkos was cloned

in $HOME).

$ cd kokkos && mkdir build && mkdir install &&
cd build

$ cmake ../ -DCMAKE_CXX_COMPILER=$HOME/kokkos/
bin/nvcc_wrapper -DCMAKE_INSTALL_PREFIX=
$HOME/kokkos/install -DKokkos_ENABLE_CUDA=
On -DKokkos_ENABLE_SERIAL=On -
DKokkos_ARCH_POWER9=On -
DKokkos_ARCH_VOLTA70=On

$ make -j && make install

3) Clone Charm++ with branch jchoi/espm2-2020.

$ git clone -b jchoi/espm2 -2020 git@github.com:
UIUC -PPL/charm.git

4) Build Charm++ with NVIDIA GPU support and

PAMILRTS as the machine layer. Note that HAPI-

polling is used as the default option.

$ cd charm
$./ buildold charm ++ pamilrts -linux -ppc64le smp

cuda -j -g --with -production

5) Compile Jacobi3D. To use cudaStreamSynchronize

instead of asynchronous progress support with HAPI,

add -DCUDA_SYNC to Makefile.

$ cd charm/examples/charm ++/ cuda/gpudirect/
jacobi3d

$ make -j

6) Clone MiniMD fork (confirm that branch is charm).

$ git clone git@github.com:minitu/miniMD.git

7) Build MPI-Kokkos and Charm++-Kokkos versions of

MiniMD. Makefiles should be updated to point to the

correct Kokkos and Charm++ paths. Note that the MPI-

Kokkos version is built with CUDA-aware MPI as

default. To use the modified host-staged mechanism, add

-DCOMM_HOST_STAGE to Makefile.

$ cd miniMD/kokkos
$ make -j
$ cd ../ charm
$ make -j

D. Experiment workflow

Once the above installation steps are complete, we are now

ready to evaluate the performance of the proxy applications,

Jacobi3D and MiniMD. This can be done via job submission

scripts for Summit and Lassen provided in scripts/{summit

,laseen}/benchmark.sh, or directly with MPI launchers

(e.g. jsrun). The main differences between the execution

commands on Summit and Lasen are the jsrun arguments due

to the different number of GPUs per node, and the pemap string

for mapping Charm++ PEs to CPU cores. Sample commands

are given in the following section.

E. Evaluation and expected result

1) Running experiments: Performance evaluation can be

done with the provided scripts on Summit and Lassen. Sample

jsrun commands are shown below:

Summit:
// Jacobi3D with ODF -4 on 12 GPUs (weak scaling)
// Number of chares = (number of GPUs) * ODF
// = 12 * 4 = 48
jsrun -n12 -a1 -c1 -g1 -K3 -r6 ./ jacobi3d -c 48 -x

3072 -y 1536 -z 1536 -w 10 -i 100 +ppn 1 +pemap
L0 ,4,8,84,88,92

9

// MPI -Kokkos MiniMD on 12 GPUs (weak scaling)
jsrun -n12 -a1 -c1 -g1 -K3 -r6 -M "-gpu" ./ miniMD

-i ../ inputs/in.lj.miniMD -gn 0 -nx 384 -ny 192
-nz 192 -n 100

// Charm -Kokkos MiniMD with ODF -2 on 24 GPUs
// (strong scaling)
jsrun -n24 -a1 -c1 -g1 -K3 -r6 ./ miniMD -c 48 -i

../ inputs/in.lj.miniMD -gn 0 -nx 512 -ny 512 -nz
512 -n 100 +ppn 1 +pemap L0 ,4,8,84,88,92

Lassen:

// Jacobi3D with ODF -4 on 12 GPUs (weak scaling)
jsrun -n12 -a1 -c1 -g1 -K2 -r4 ./ jacobi3d -c 48 -x

3072 -y 1536 -z 1536 -w 10 -i 100 +ppn 1 +pemap
L0 ,4,80,84

// MPI -Kokkos MiniMD on 12 GPUs (weak scaling)
jsrun -n12 -a1 -c1 -g1 -K2 -r4 -M "-gpu" ./ miniMD

-i ../ inputs/in.lj.miniMD -gn 0 -nx 384 -ny 192
-nz 192 -n 100

// Charm -Kokkos MiniMD with ODF -2 on 24 GPUs
// (strong scaling)
jsrun -n24 -a1 -c1 -g1 -K2 -r4 ./ miniMD -c 48 -i

../ inputs/in.lj.miniMD -gn 0 -nx 512 -ny 512 -nz
512 -n 100 +ppn 1 +pemap L0 ,4,80,84

2) Obtaining performance results: The output in stdout

can be observed to determine the performance of an execution.

Jacobi3D:

...
[CUDA 3D Jacobi example]
Grid: 1536 x 1536 x 1536, Block: 384 x 384 x 256,

Chares: 4 x 4 x 6, Iterations: 100, Warm -up: 10,
Bulk -synchronous: 0, Zerocopy: 0, Print: 0

Init time: 2.938 s
Total time: 3.230 s
Average iteration time: 32303.160 us
[Partition 0][Node 0] End of program

MPI-Kokkos MiniMD:

...
Performance Summary:
MPI_proc OMP_threads nsteps natoms t_total t_force

t_neigh t_comm t_other performance perf/thread
grep_string t_extra

12 1 100 56623104 1.488910 0.057636 0.000000
0.287554 1.143720 3802990025.582719
316915835.465227 PERF_SUMMARY 0.000000

t_total can be divided by the number of iterations to obtain

the average time per iteration.

Charm++-Kokkos MiniMD:

...
[Block] Total time (exclude 1st iteration): 1.573846

s
[Block] Average time per iteration: 0.015897 s
[Main] Blocks complete
[Main] Kokkos finalized
[Partition 0][Node 0] End of program

F. Experiment customization

1) Jacobi3D: The customizable parameters for Jacobi3D

are the following:

-c [number of chares] -x [grid width] -y [grid
height] -z [grid depth] -w [number of warmup
iterations] -i [number of iterations]

2) MiniMD: The standard MiniMD parameters (force style,

system size, density, force cutoff, etc.) can be provided to the

MPI-Kokkos and Charm++-Kokkos versions, aside from some

limitations to the Charm++-Kokkos version discussed in the

following section.

G. Notes

As discussed in the paper, weak scaling performance of

MiniMD with 768 and more GPUs are not provided due to

the integer overflow in the number of atoms, as well as the

execution with 192 GPUs due to a NaN error. These errors

have been reported to MiniMD developers on GitHub.

The Charm++-Kokkos version of MiniMD currently has

some limitations compared to the MPI-Kokkos version. It does

not support EAM forces and reneighboring, as the necessary

conversions to use CUDA execution instances in Kokkos and

non-blocking commnication routines in Charm++ have not

been completed. It also does not support LAMMPS input files

and writing the output to a YAML file. These limitations will

be addressed before the Charm++-Kokkos version is requested

to be integrated into the mainline Mantevo/miniMD GitHub

repository.

10

