
An Adaptive Non-Blocking GVT Algorithm
Eric Mikida

University of Illinois at Urbana-Champaign
mikida2@illinois.edu

Laxmikant Kale
University of Illinois at Urbana-Champaign

kale@illinois.edu

ABSTRACT
In optimistic Parallel Discrete Event Simulations (PDES), the Global
Virtual Time (GVT) computation is an important aspect of per-
formance. It must be performed frequently enough to ensure sim-
ulation progress and free memory, while still incurring minimal
overhead. Many algorithms have been studied for computing the
GVT efficiently under a variety of simulation conditions for a va-
riety of models. In this paper we propose a new GVT algorithm
which aims to do two things. First, it incurs a very low overhead
on the simulation by not requiring the simulation to block execu-
tion. Secondly, and most importantly, it has the ability to adapt to
simulation conditions while it’s running. This allows it to perform
well for a variety of models, and helps remove some burden from
developers by not requiring intensive tuning.
ACM Reference Format:
Eric Mikida and Laxmikant Kale. 2019. An Adaptive Non-Blocking GVT
Algorithm. In SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-
PADS ’19), June 3–5, 2019, Chicago, IL, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3316480.3322896

1 INTRODUCTION
Parallel Discrete Event Simulation (PDES) is a complex topic, with
many proposed solutions for various problems. In this paper, we
will be focusing on distributed optimistic simulations which utilize
Jefferson’s TimeWarp protocol to synchronize the simulation. In
particular, we look at improving the computation of the Global
Virtual Time (GVT). In optimistic simulations, the GVT at a par-
ticular real time, t , is defined as the minimum of every processes
local times and the times of all in-flight events [9]. Computing the
GVT is critical for optimistic simulations because it is the only
way for a simulator to determine simulation progress, allows for
non-reversible event side effects to be committed, and allows the
simulator to reclaim event memory from committed events. Because
of its importance to the simulation, the GVT must be computed
frequently, but without incurring too much overhead.

The GVT is a global property of the entire simulation state.When
running on a distributed memory machine, this state is spread
over multiple processes (running on different nodes). If the engine
were omniscient, it would be able to determine the exact GVT at
any given instant. However, without an omniscient simulation
engine, we must rely on different techniques to compute either the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3322896

exact GVT, or an approximation of it. A practical implementation
can either stop the simulation entirely to calculate an exact GVT,
or approximate a conservative lower bound on the GVT during
simulation execution. Such a lower bound on GVT will still allow
for the simulation to commit events and reclaim memory, albeit
less effectively than if the actual GVT was used.

In this paper, we propose a new distributed algorithm to estimate
the GVT which we call the Adaptive Bucketed GVT algorithm.
It operates alongside event communication and computation by
dividing execution of the simulation into buckets of virtual time.
Furthermore, it adapts to simulation conditions in determining the
frequency and scope of the computation. The algorithm is described
in detail in Section 3.

In order to show effectiveness of our algorithm we directly com-
pare it against a standard blocking algorithm, similar to the one
used in the highly scalable Rensselaer Optimistic Simulation System
(ROSS) [2, 3, 7], and the implementation of Mattern’s non-blocking
GVT algorithm [9]. All algorithms evaluated in this paper are im-
plemented in the Charades PDES simulator built on top of the
Charm++ runtime system [11]. We compare performance of each
algorithm on a variety of model configurations in Section 4.

Finally, when evaluating non-blocking GVT algorithms, a com-
mon pattern that appears is a low event efficiency. Here, event
efficiency is defined as the number of events committed divided
by the total number of events executed. Improving event efficiency
results in less work and communication done by the simulator, and
may therefore be an avenue to improving overall simulation per-
formance depending on what other simulation characteristics are
perturbed. Because of this, and observations made about techniques
used in the SPEEDES simulation engine [17, 18], in Section 5 we
look at one potential way to increase event efficiency using our
GVT algorithm. With its already introspective nature, we look to
use the data collected by the GVT algorithm to adaptively throttle
event communication for events which may be likely to be rolled
back. The resulting decrease in events and anti events sent is able to
improve performance in certain cases, and opens up other potential
areas of research.

2 BACKGROUND AND RELATEDWORK
This section describes previous research in the area of GVT algo-
rithms, and briefly discusses the simulator and models used in this
paper to evaluate each algorithm.

2.1 Charades
Charades is a PDES simulation engine originally based on princi-
ples in ROSS, and implemented on top of the Charm++ runtime
system [10, 11]. The driving principle behind the simulator is its
asynchronous message-driven design. All messaging between Log-
ical Processes (LPs) is handled by the Charm++ runtime system,

https://doi.org/10.1145/3316480.3322896
https://doi.org/10.1145/3316480.3322896

which is able to adaptively overlap all communication and compu-
tation in a given application. In PDES, this is able to very effectively
hide overheads of the fine-grained communication [10]. Because
the communication is handled by the runtime system rather than
the application, in this case Charades, components can be designed
modularly and all communication and computation of each compo-
nent is scheduled by the runtime system. This is relevant to thework
in this paper in particular, because the GVT Manager in Charades
is a completely separate component from the simulators scheduler
and LPs. Each GVT algorithm is implemented as a subclass of the
main GVT manager, which allows for easy development and testing
of new algorithms. The GVT algorithm proposed in this paper is
implemented in this fashion, as are the other two algorithms we
compare it against: the Blocking algorithm and the Phase-Based
algorithm. The main simulator scheduler interacts with the GVT
Manager to determine when the GVT computations should occur,
but the computation itself is entirely encapsulated within the GVT
Managers, and the communication for the GVT computation is
automatically overlapped with other simulator communication by
the runtime.

2.2 GVT
In the past, a large number of GVT algorithms have been proposed
with a wide range of characteristics. These algorithms can often
be categorized by how they affect simulation behavior. Perhaps
the most straightforward method for computing the GVT is to
halt all simulation progress and wait until there are no events in
transit. While this may incur a high degree of overhead, it also
computes the exact GVT and has been used at large scales by the
Rensselaer Optimistic Simulation System (ROSS) [2, 3, 7]. Because
of its simplicity, and success in a large-scale simulator, this is one
of the algorithms we will compare against in the results section of
this paper.

Algorithms get more complicated once they attempt to reduce
overhead by allowing event execution to continue during the com-
putation of the GVT. The SPEEDES simulation system demonstrated
an effective and scalable solution to computing the GVT while still
allowing event execution to continue [18]. However, in order to take
events in transit into account, it still blocks event communication
in order to flush the network.

A number of algorithms have also been studied which do not
inhibit simulation progress in any way. Gomes et al. [6] and Fuji-
moto [5] showed effective solutions for computing the GVT in
shared-memory simulators. In terms of distributed algorithms,
Chen et al. [4] and the ROSS team [1] both developed non-blocking
distributed GVT algorithms, however they required either atomic
operations or machine clocks. Similarly, Srinivasan developed a
non-blocking algorithm requiring specific hardware support for
global communication [16]. Our aim is to develop a more general
purpose GVT algorithm. One such algorithm is the distributed
snapshot algorithm proposed by Mattern [9], and implemented by
Perumalla [14] and Mikida [11]. As such, this is one of the algo-
rithms we will compare against in the results section of this paper.
The pGVT algorithm is also a non-blocking distributed GVT al-
gorithm, however the GVT management is centralized to a single
GVT manager, which receives updates from each LP [8]. It also

requires the use of event acknowledgment messages in order to
track in-flight events. The Target Virtual Time (TVT) algorithm
attempts to calculate the GVT at specific local virtual times, which
is a characteristic similar to our Adaptive Bucketed Algorithm [19].
The TVT, however, requires some extra state per event to manage
the algorithms vector clocks.

2.2.1 Blocking GVT Algorithm. The Blocking GVT Algorithm we
use in this paper is originally based on the GVT implementation
used in ROSS [2, 3, 7]. A similar version, which is the version we
will use in this paper was also implemented in Charades [11]. The
crux of the algorithm is that it blocks event communication and
computation until all events have been received at their destinations.
Once all events have been received, then there are no events in flight
so the GVT is simply the smallest timestamp among all unexecuted
events. In the ROSS implementation, the algorithm uses repeated
reductions interspersed with network polling to wait for the count
of sent events and received events to be equal. In Charades, a special
Quiescence Detection library in the Charm++ runtime system
is used to monitor events in flight [15]. It maintains counts of
events sent and received, but propagates information about these
counts during times where the processors are idle. This algorithm
is simple to implement, and is able to take every event into account
and therefore compute an exact GVT. However, it can incur high
overheads by blocking the entire simulation while it waits on events
to be received.

2.2.2 Phase-Based GVT Algorithm. Mattern’s Phase-Based GVT al-
gorithm is able to compute an estimate of the GVTwithout blocking
event communication or computation [9]. It runs alongside regular
event execution in alternating phases, sometimes referred to as
white and red phases. When executing in the white phase, all out-
going events are tagged as white events. Similarly, when running
in the red phase all outgoing events are tagged as red. As events are
sent and received, the algorithm maintains counters for each phase.
At some point, determined by the simulator, the GVT will switch
from one phase to the other. Now, the number of sent events for the
previous phase will not change, since outgoing events are tagged
based on the current phase. At this point, the simulator performs a
series of repeated reductions to determine when all events from the
previous phase have been received. During this time, it must also
keep track of the smallest timestamp on any outgoing event. Once
it detects completion from the previous phase, it can estimate the
GVT by taking the minimum time on each process, including the
times of the minimum sent events since the may still be in flight.
This algorithm was implemented by Perumalla [13, 14] in an MPI
based simulator, and by Mikida [11] in Charades. In Perumalla’s
implementation, communication was handled via custom imple-
mented MPI reductions. In Charades, which is the version used in
this paper, communication was handled by the Charm++ runtime
system.

2.3 Models
In this paper we use three different models to evaluate each GVT
algorithm. Each of these models were previously used to evalu-
ate the effectiveness of the Charades implementation of Mattern’s
algorithm [11].

Sent: s1
Recv: r1

Sent: s2
Recv: r2

Sent: s3
Recv: r3

Sent: s4
Recv: r4

Sent: s5
Recv: r5

Sent: s6
Recv: r6

Sending a
message
(increment s4)

Receiving a
message
(increment r6)

Current LVTCurrent GVT
Virtual Time

Figure 1: Pictorial representation of Adaptive Bucket GVT.

PHOLD is a common benchmark used to test PDES simulators
and involves LPs sending events to either themselves or other LPs
chosen uniformly at random based on the model configuration.
In order to test slightly more complex workloads the version of
PHOLD that we use also allows for imbalance in the amount of
time spent executing events as well as the distribution of events
across LPs. We test 4 different configurations of PHOLD: Base,
Work, Event, and Combo. Base is the standard PDES, where all
events are the same weight (take approximately 1 nanosecond to
execute), and every LP sends to other LPs with the same probability.
In Work and Combo, 10% of the LPs take 10× longer to process and
event than others. In Event and Combo, 10% of the LPs are twice as
likely to send events to themselves as other LPs.

Dragonfly is a model which simulates communication of packets
communicated between nodes in the Dragonfly network topology.
The model was originally adapted from the one used in ROSS [10,
12]. In this work we run configurations with four different network
traffic patterns. In Uniform, eachMPI process being simulated sends
packets to another MPI process chosen uniformly at random. In
Worst, each MPI process sends all traffic to an MPI process in the
neighboring group. Transpose sends to diagonally opposite MPI
processes, and Nearest Neighbor sends to an MPI process on the
same router.

Traffic is a very basic traffic simulation which consists of cars
moving through a grid of intersections to get from a randomly
generated source, to a randomly generated destination [11]. We
will use four different configurations of this model, each of which
consists of a different distribution of sources and destinations. In
the Base configuration, all cars choose destinations uniformly at
random. In Source and Route, 10% of cars choose their source from a
small group of intersections in the top left of the grid. In Destination
and Route, 10% of cars choose their destinations from a small group
of intersections in the bottom right of the grid.

3 ALGORITHM
The Adaptive Bucketed GVT algorithm is based on the idea of com-
pletion detection by counting events, similar to both the Blocking

and Phase-Based algorithms we will be evaluating it against. How-
ever, it attempts to improve upon these algorithms in a few key
ways. It does completion detection based on buckets of virtual time
without blocking computation or communication progress of the
rest of the simulation. Based on simulation conditions it adaptively
determines how many buckets are included in each new GVT esti-
mate. By bucketing events based on their virtual time, the algorithm
inherently becomes virtual time aware. The time stamps of events
which are being sent and received inform the algorithm on how to
proceed, and ultimately what the new GVT estimate will be upon
completion of each run of the algorithm.

Figure 1 shows how a single processor splits up virtual time into
buckets. In this diagram, the current bucket based on the current
Local Virtual Time (LVT) of the processor is colored in yellow. The
LVT is simply the smallest timestamp of all unhandled events on
the processor. The green bucket represents a bucket which has been
passed by the LVT but not the GVT, so in theorywe could end up in a
situation where rollbacks lower the LVT enough that a green bucket
becomes the current bucket again. The grey bucket represents a
bucket which has been passed by the GVT and therefore we will
never rollback to this bucket or send and/or receive events with
timestamps that fall within this bucket. The algorithm also enforces
that the GVT will always be at a bucket boundary. Red buckets
are future buckets which the processor has not yet reached. As
shown in the diagram, each bucket maintains a count of events
sent and received, and when an event is sent, the bucket which
contains the timestamp the event is scheduled for will increment
its sent counter. Because an event can never be scheduled with
a timestamp offset less than or equal to zero, this will always be
either the current bucket or a future bucket. When an event is
received, the bucket which contains its timestamp will increment
its received counter. It is important to note that bucket counters
are incremented AFTER any causality violations are resolved, so if
the received event causes a rollback to a previous bucket, the LVT
will rollback before counters. Because of this, the received counter
that is incremented will always be in the current bucket or a future
bucket.

The full algorithm for how these buckets are used to compute
the GVT is laid out in detail in Algorithm 1. As events are sent and
received on each processor, or when the Scheduler calls gvt_begin,
the GVT Manager will check to see if it has passed any buckets
beyond the current GVT. If it has, it will contribute the number
of buckets passed to an asynchronous All-Reduce (line 10). Once
all processors have contributed, each GVT Manager will know
the minimum number of buckets passed by all processors, and
can contribute its sent and received counters for the buckets in
question to an All-Reduce (line 17). Because the simulation has
continued during this time, each processor may have advanced
past more buckets, or rolled back to include less buckets, so the
number of buckets passed is also contributed to the All-Reduce.
Upon receiving the All-Reduce, we can check for completed buckets.
A bucket is considered completed if and only if its summed sent
counter matches its summed received counter, it has been passed by
all processors LVTs, and all preceding buckets are also completed.
The number of completed buckets are counted up in lines 21 to 25.
Once we know how many buckets have been completed, the GVT
is updated to the edge of the latest completed bucket (lines 27
to 29). If there are still more buckets which have been passed by
all processors but are not yet completed, we continue with further
sum reductions until no such buckets remain (lines 30 to 35).

This algorithm differs from the other algorithms in a couple of
important ways. One of the more significant differences is that it
runs almost completely independently from the simulators sched-
uler. The other two algorithms require the scheduler to inform them
when a GVT should be computed. For the Adaptive Bucketed GVT,
it decides when to compute the GVT based on simulation progress.
This allows the GVT to adapt to different models effectively. In the
next section we will show that this makes tuning the algorithm
much simpler.

Furthermore, the algorithm is virtual time aware by virtue of
monitoring the timestamps of all incoming and outgoing events.
This gives it an advantage over the Phase-Based algorithm, which
is not virtual time aware and simply keeps track of event counts.
When the scheduler tells the Phase-Based algorithm to begin a GVT
computation, it will do exactly one full computation, regardless of
simulation characteristics. If, immediately after beginning a com-
putation, there are significant rollbacks, the Phase-Based algorithm
cannot adapt to them, because once it begins checking for com-
pletion the counter for sent events must remain fixed. This results
in some GVT computations advancing very little in virtual time.
On the contrary, the Adaptive Bucketed algorithm never has to fix
its count of sent events and can shrink and expand the region of
virtual time it is considering when rollbacks occur or the simulation
is advancing quickly through time. In the next section we will show
that this is able to reduce communication required by the GVT
when compared to the Phase-Based algorithm.

4 PERFORMANCE ANALYSIS
In this section we show the results of experiments comparing the
Adaptive Bucketed algorithm described in the previous section to
the Blocking and Phase-Based algorithms described in Section 2. For
the Blocking and Phase-Based algorithms we used the best configu-
rations we could achieve, guided in part by the results demonstrated

Algorithm 1 Adaptive Bucket GVT algorithm (Per processor)

1: function BeginGVT()
2: scheduler->resume()
3: AttemptGVT()
4: end function
5:
6: function AttemptGVT()
7: lvt = scheduler->min_time()
8: buckets = (lvt - current_gvt) / bucket_size
9: if buckets > 0 then
10: min_reduction(buckets)
11: end if
12: end function
13:
14: functionMinDone(b)
15: lvt = scheduler->min_time()
16: new_buckets = (lvt - current_gvt) / bucket_size
17: reduction(sent[b],recv[b], new_buckets)
18: end function
19:
20: function ReductionDone(sent[b], recv[b], new_buckets)
21: for x = 0; x < min(b, new_buckets); x++ do
22: if sent[x] != recv[x] then
23: break
24: end if
25: end for
26: completed = x
27: if completed > 0 then
28: AdvanceGVT(completed)
29: end if
30: if new_buckets - completed > 0 then
31: residual = new_buckets - completed
32: lvt = scheduler->min_time()
33: new_buckets = (lvt - current_gvt) / bucket_size
34: reduction(sent[residual],recv[residual], new_buckets)
35: end if
36: end function
37:
38: function SendingEvent(event)
39: sent[event->ts / bucket_size]++
40: AttemptGVT()
41: end function
42:
43: function ReceivingEvent(event)
44: recv[event->ts / bucket_size]++
45: AttemptGVT()
46: end function

in [11]. For the Adaptive Bucketed algorithm, the primary tuning
parameter was the size (in virtual time units) of each bucket. First
we will discuss the effects of bucket size on our algorithm. Then
we will compare the best configuration of each algorithm on each
model configuration described in Section 2. All of these runs are
done on Blue Waters, a Cray XE machine at NCSA, using 64 nodes
with 32 processes running on each node. Then we will look at

1 2 4 8
Bucket Size

0

50

100

150

200

250

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s)

PHOLD Base
PHOLD Work

PHOLD Event
PHOLD Combo

Figure 2: Plot showing how bucket size affects event rate for
PHOLDmodel configurations. Event rate differs by less than
1%.

strong scaling behavior by running the Adaptive Bucketed algo-
rithm on up to 1,024 nodes on Vesta, the IBM BlueGene/Q machine
at Argonne National Laboratory. These runs use 64 processes per
node, for up to 65, 536 total processes.

4.1 Bucket Size Analysis
While running experiments for both the Blocking and Phase-Based
algorithms to compare against, significant effort was required to
tune each algorithm. For the Blocking algorithm, changing the fre-
quency of the GVT computation had a significant impact on the
resulting event rate of the simulation by effecting both the event
efficiency and amount of time spent blocking. For the Phase-Based
algorithm, the tuning was primarily required to prevent the simula-
tion from running out of event memory for certain model configu-
rations. Since the Phase-Based algorithm runs without blocking the
simulation, the GVT had to be computed frequently so that events
could be committed and reclaimed at regular intervals. However,
for some of the more complex configurations with low event effi-
ciency, the Phase-Based algorithm would sometimes result in very
small advances in virtual time. This resulted in too few events to
be committed, and the simulation would crash.

However, this problem did not arise with the Adaptive Bucketed
algorithm. Because it is virtual time aware, and progress of the GVT
is based on progress of the simulation, the GVT would advance
at much more regular intervals. In cases where rollbacks would
cause the Phase-Based algorithm to advance the GVT by only a
small amount, the Adaptive Bucketed algorithm would adapt the
amount of buckets included in the GVT or cancel the computation
entirely and wait for a more opportune time to compute the GVT. In
cases where problematic rollbacks did not occur, then the Adaptive
Bucketed algorithm was able to expand the range of buckets it con-
sidered for a given GVT computation. This adaptivity also means
that choosing different bucket sizes tends to have very little effect
on the overall performance of a simulation. This is demonstrated in

Bucket Size

1 4 8

PHOLD Base 1013 (1.01) 256 (1.00) 128 (1.00)
PHOLD Work 1021 (1.00) 256 (1.00) 128 (1.00)
PHOLD Event 1016 (1.00) 256 (1.00) 128 (1.00)
PHOLD Combo 1024 (1.00) 256 (1.00) 128 (1.00)
DFly Uniform 773 (10.59) 734 (2.79) 454 (2.25)
DFly Trans 2707 (3.02) 1818 (1.12) 1015 (1.00)
DFly Worst 678 (12.08) 642 (3.19) 646 (1.58)
DFly Neighbor 99 (82.74) 90 (22.75) 81 (12.64)
Traffic Base 806 (1.27) 247 (1.03) 127 (1.00)
Traffic Src 1022 (1.00) 256 (1.00) 128 (1.00)
Traffic Dest 860 (1.19) 255 (1.00) 128 (1.00)
Traffic Route 1019 (1.00) 256 (1.00) 128 (1.00)

Table 1: Table showing the number of completed GVT com-
putations for each of three different bucket sizes. The num-
ber in parenthesis shows the average number of buckets in-
cluded in each GVT.

Bucket Size

1 4 8

PHOLD Base 2005 (1.98) 512 (2.00) 260 (2.03)
PHOLD Work 2024 (1.98) 512 (2.00) 258 (2.02)
PHOLD Event 2011 (1.98) 513 (2.00) 257 (2.01)
PHOLD Combo 2040 (1.99) 512 (2.00) 256 (2.00)
DFly Uniform 774 (1.00) 784 (1.06) 782 (1.72)
DFly Trans 2724 (1.00) 2686 (1.47) 1938 (1.90)
DFly Worst 681 (1.00) 656 (1.02) 670 (1.03)
DFly Neighbor 100 (1.01) 91 (1.01) 82 (1.01)
Traffic Base 1276 (1.58) 449 (1.82) 251 (1.98)
Traffic Src 1965 (1.92) 512 (2.00) 256 (2.00)
Traffic Dest 1350 (1.57) 507 (1.99) 262 (2.05)
Traffic Route 2027 (1.99) 512 (2.00) 256 (2.00)

Table 2: Table showing the total number of reductions done
by the GVT algorithm for each of three different bucket
sizes. The number in parenthesis is the average number of
reductions per completed GVT.

Figure 2, which shows the event rate of each PHOLD configuration
under three different bucket sizes. The difference in event rate for
each configuration is less than 1%, and similar trends hold for the
other models as well.

Table 1 shows the total number of completed GVT computations
for each model configuration for the three different bucket sizes.
In this case, we measure a completed GVT computation as the
number of times the GVT manager advances the GVT. It should be
noted however, that due to residual buckets in the computation, the
GVT Manager may continue doing work even after advancing the
GVT. Because of this, the number of GVT computations does not
necessarily correspond to the number of times a GVT computation
is started, nor does it necessarily correspond directly to the number

PH
OLD

 Base

PH
OLD

 W
ork

PH
OLD

 Ev
en

t

PH
OLD

 Com
bo

DFly
 Unif

orm

DFly
 W

ors
t

DFly
 Tr

an
s

DFly
 NN

Tra
ffic

 Base

Tra
ffic

 Sr
c

Tra
ffic

 Dest

Tra
ffic

 Rou
te

0

0.5

1

1.5

2

2.5

3

Sp
ee

du
p

PH
OLD

 Base

PH
OLD

 W
ork

PH
OLD

 Ev
en

t

PH
OLD

 Com
bo

DFly
 Unif

orm

DFly
 W

ors
t

DFly
 Tr

an
s

DFly
 NN

Tra
ffic

 Base

Tra
ffic

 Sr
c

Tra
ffic

 Dest

Tra
ffic

 Rou
te

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Sp
ee

du
p

Figure 3: Speedup of the Adaptive Bucket GVT over the best blocking configuration (left) and the best Phase-Based GVT
configuration (right).

of reductions required. Table 1 also shows the average number
of buckets included in each GVT computation. In many cases we
see approximately one bucket per computation. For PHOLD and
Traffic, which run a total of 1,024 units of virtual time we see the
adaptivity agglomerate some buckets at the smaller bucket sizes.
For Dragonfly, the models run for 8,192 units of virtual time, and
the GVT counts reveal that many buckets are passed per GVT
computation. The Dragonfly model has a lower density of remote
communication per unit of virtual time than the other two models,
which means the GVT Manager updates with less frequency and
more buckets get included in each computation.

The total number of completed GVT computations is only one
factor affected by the bucket size, and only reveals part of the
picture when considering how much work is being taken up by
the GVT computation. When looking at the algorithm, we notice
that each GVT computation itself requires a variable number of
All-Reduce calls based on how quickly the bucket counts converge.
At first glance, it appears that each full GVT call would require at
least two reductions. One which starts the GVT computation at
Algorithm 1 line 10, and then the subsequent reduction on line 17
where the counts for each relevant bucket are summed and checked.
Additionally, the second reductionmay have to be repeated multiple
times before convergence is reached. However, in practice on the
models tested we actually tend to see at most two reductions per
GVT, and in many cases even fewer. This is shown in Table 2,
which shows both total reductions, and reductions per completed
GVT computation. The reason that Traffic and Dragonfly require
so few reductions is due to the adaptive portion of the algorithm
which constantly updates the number of buckets included in each
reduction. When performing the second type of reduction, some
buckets are completed, with other buckets still being checked and
new ones being pulled into the reduction. Because of this, one
reduction to start the GVT computation often results in multiple
completed GVT computations. On the other hand the Phase-Based
algorithm required on average more than four reductions per GVT

Blocking Phased Bucketed

PHOLD Base 97% 95% 96%
PHOLD Work 76% 52% 53%
PHOLD Event 84% 60% 61%
PHOLD Combo 92% 31% 31%
DFly Uniform 73% 36% 36%
DFly Trans 78% 27% 28%
DFly Worst 91% 2 % 2%
DFly Neighbor 77% 67% 68%
Traffic Base 93% 55% 55%
Traffic Src 93% 16% 16%
Traffic Dest 93% 52% 53%
Traffic Route 95% 15% 15%

Table 3: Table comparing the event efficiency of each model
configuration for the best configuration of each of the three
different GVT algorithms.

computation in all experiments we ran, and used a similar number of
GVT computations as the Adaptive Bucket algorithm with a bucket
size of one. This results in a fairly dramatic decrease in the amount
of communication required by the Adaptive Bucket algorithmwhen
compared to the Phase-Based one. As previously mentioned this is
due to the fact that it chooses to perform the computation based on
the progress of the simulation and can adaptively adjust the virtual
time span it is considering as the algorithm runs.

Figure 3 shows the event rate of the best Adaptive Bucketed
algorithm configuration plotted as speedup over the best block-
ing configuration (left), and the best Phase-Based configuration
(right). In each simulation except for Traffic Dest we see slight
speedups over the Phase-Based algorithm, and correspondingly
the speedups we see over the blocking algorithm are similar to
those demonstrated for the Phase-Based algorithm in [11]. This
means that in all but two PHOLD configurations and one Traffic

64 128 256 512 1024
of Nodes

0

100

200

300

400

500

600

700

800

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s) PHOLD Base

PHOLD Work
PHOLD Event
PHOLD Combo

64 128 256 512 1024
of Nodes

0

100

200

300

400

500

600

700

800

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s) PHOLD Base

PHOLD Work
PHOLD Event
PHOLD Combo

Figure 4: Strong scaling of the Adaptive Bucket GVT algorithm with bucket sizes of one (left) and four (right).

64 128 256 512 1024
of Nodes

0

200

400

600

800

1000

1200

of

 G
VT

 C
om

pu
ta

tio
ns

PHOLD Base
PHOLD Work
PHOLD Event
PHOLD Combo

64 128 256 512 1024
of Nodes

0

200

400

600

800

1000

1200

of
 G

VT
 C

om
pu

ta
tio

ns
PHOLD Base
PHOLD Work
PHOLD Event
PHOLD Combo

Figure 5: The number of completed GVT computations for each PHOLD configuration at different node counts for bucket sizes
of one (left) and four (right).

configuration, the adaptive bucketed GVT algorithm provides the
best performance. Table 3 shows what the event efficiency of each
model configuration is under each GVT algorithm. There is a clear
difference between the Blocking algorithm, and two non-blocking
algorithms. In computing the GVT, the blocking algorithm halts
execution of events which inherently limits the potential optimism
of the simulation. This prevents LPs from diverging widely in times-
tamp and keeps event efficiency of the simulation relatively high.
For both the Phase-Based algorithm and the Adaptive Bucketed
algorithm, there is nothing blocking execution and the optimism of
the simulation is not limited in any way. Because of this, LPs may
end up diverging in virtual time based on model characteristics and
how LPs are mapped to processors. This results in both of the non-
blocking GVT algorithms having nearly identical event efficiencies.
The improvements we see in event rate over the blocking algorithm

are therefore due to the reducing the synchronization cost of the
GVT since we no longer require event execution to halt while the
GVT is being computed. In all cases but DFly Worst, which has
extremely low event efficiency when optimism is unbounded, this
tradeoff more than makes up for the decreased event efficiency. Sim-
ilarly, the speedups over the Phase-Based algorithm come entirely
from the lowered communication costs of the Adaptive Bucketed
algorithm.

4.2 Scaling
Figure 4 shows the strong scaling event rates of the PHOLD bench-
mark for bucket sizes of one and four. The simulation shows fa-
vorable scaling up to 1,024 BG/Q nodes for each configuration. For
PHOLD Combo, which is the most complex of the different PHOLD
configurations, we achieve 16.17× speedup when comparing the

64 128 256 512 1024
of Nodes

0

250

500

750

1000

1250

1500

1750

2000

2250

of

 G
VT

 R
ed

uc
tio

ns

PHOLD Base
PHOLD Work
PHOLD Event
PHOLD Combo

64 128 256 512 1024
of Nodes

0

250

500

750

1000

1250

1500

1750

2000

2250

of

 G
VT

 R
ed

uc
tio

ns

PHOLD Base
PHOLD Work
PHOLD Event
PHOLD Combo

Figure 6: The number of All-Reduce calls for each PHOLD configuration at different node counts for bucket sizes of one (left)
and four (right).

1,024 node configuration to the 64 node configuration when using
a bucket size of one. It also has a higher event rate for each model
at almost every node count than the other two algorithms. For the
bucket size of four, scaling is very similar but slightly worse. This is
due to the fact that the adaptive portion of the algorithm has more
flexibility to agglomerate buckets as the number of nodes changes
if the bucket size is kept small.

As with the Phase-based algorithm, the amount of time event
execution is blocked by the GVT algorithm is essentially zero at all
node counts. The only factor in which the GVT algorithm competes
with event execution is contention for communication resources.
Figure 5 shows how the number of completed GVT computations
scales as we increase node count for the two different bucket sizes.
For a bucket size of one, the number of computations changes a lot
more with node count. As the number of nodes increases, the num-
ber of LPs and events per processor decreases, resulting in fewer
events per bucket per process. This means each process moves
through buckets faster at higher node counts. With the smaller
bucket size of one, the GVT algorithm ends up agglomerating more
buckets into a single GVT at higher node counts than it does for
the larger bucket size of 4. This also directly results in less commu-
nication as shown in Figure 6, which shows the total number of
All-Reductions done by the GVTManager for each node count. This
difference results in slightly better scaling for the smallest bucket
size, and better performance on the larger node counts. However,
the large buckets perform slightly better on the smaller node counts.
As discussed previously however, the difference in performance is
extremely small. It may be possible to make up for some of that
difference by checking for GVT progress less frequently on lower
node counts. This would allow for more aggressive agglomera-
tion of buckets, resulting in fewer GVT computations and fewer
All-Reduce calls.

0 3 6 9 12 15 18
Offset from GVT (buckets of size 1)

0

50

100

150

200

250

300
Th

ou
sa

nd
s o

f E
ve

nt
s

Regular Events
Anti Events

Figure 7: Plot showing the number of regular events and
anti events at each offset from the current GVT for PHOLD
Combo with a bucket size of one.

5 ADAPTIVE EVENT CONTROL
One major downside of both the non-blocking algorithms we have
evaluated is the sharp decrease in event efficiency when compared
to the blocking algorithm. The blocking algorithm bounded the
optimistic execution of each model as a side-effect of halting event
execution to compute the GVT. In this section, we devise a method
for improving the event efficiency of the Adaptive Bucketed GVT al-
gorithm without blocking event execution or event communication
for those events which are part of the final simulation result.

Our method, inspired by observations from the blocking algo-
rithm as well as ideas used in the SPEEDES system developed by
Steinman [17, 18], revolves around the fact that rollbacks are the
result processors getting too far ahead in virtual time compared

to others. It is also motivated by the fact that anti events can be
far more expensive that local rollbacks. Not only do they incur
the added cost of network communication on top of the rollback
cost, but they may also lag behind event execution and cause cas-
cading rollbacks. The idea is to allow processors to execute local
events unimpeded, but to limit outgoing events that the simulator
thinks are likely to be rolled back. Importantly, we should also have
minimal impact on the communication of events that will not be
rolled back. This should have two effects: higher event efficiency
due to the fact that the held remote events will not be executed
and rolled back, and fewer messages sent due to a decrease in both
regular and anti events that are sent between processors. SPEEDES
uses a similar approach in order to implement an asynchronous
GVT algorithm [18]. There are a few key differences with our ap-
proach however. First of all, the purpose of holding back remote
events in SPEEDES is to ensure that the network can eventually
be flushed of all in-transit events so that the GVT algorithm can
compute the next GVT. In our approach, the GVT does not require
that communication is stopped to work properly. The GVT can still
be estimated in the presence of events in transit. Here, our purpose
for holding back events is solely to improve event efficiency, com-
munication load, and performance. Secondly, in SPEEDES because
the GVT requires no in-transit events, once event sending is halted
it does not resume until the next GVT cycle. Our approach is able
to selectively hold back events based on the risk estimated for each
event independently. It may stop certain events, while not stopping
others.

In order to limit outgoing events we use the fact that events are
already passed through the GVT Manager before they are sent in
order to correctly update bucket counts. With only minor changes,
we can use this data for more than just computing the next GVT. As
events pass through the GVT Manager, the GVT Manager can use
the data it has already collected to predict whether or not the event
is likely to be rolled back later on. If it thinks the event is likely to
be rolled back, then it can temporarily hold the event until some
later point in time. To the rest of the simulator, it appears as though
this event was sent. If later on it is determined the event must be
canceled, a corresponding anti event will be sent. Just like all other
events, this anti event will also pass through the GVT Manager. If
the GVT Manager is still holding the original event, then the event
and anti event can immediately annihilate one another without
any network communication. Otherwise, the anti event will be sent
as normal. In this way, the GVT Manager can reduce unnecessary
communication and lower the risk of cascading rollbacks in a way
which is completely transparent to the rest of the simulator.

In order for this to work correctly, the GVT Manager needs to
be able to do two things effectively. First, it needs to be able to
reasonably predict which events are likely to be canceled so it can
hold them back. If it is too conservative in this estimate and lets
most events get sent normally, there will be very little benefit to be
seen. If it is too greedy, and holds back a large number of events,
it may slow down or perturb the rest of the simulation by holding
back events which should actually be sent and executed. This may
actually hurt event efficiency if other processors regularly have to
rollback due to events arriving late. The second thing it needs to be
able to do is to decide how long to hold each event. If holding events
too long, we may run into the same issue where event efficiency is

Bucket Size

1 4 8

PHOLD Base 0.12 0.03 0.12
PHOLD Work 0.17 0.04 0.02
PHOLD Event 0.18 0.04 0.02
PHOLD Combo 0.16 0.04 0.02
DFly Uniform 0.36 0.09 0.04
DFly Trans 0.64 0.16 0.08
DFly Worst 3.18 0.73 0.39
DFly Neighbor 12.30 2.95 1.75
Traffic Base 0.26 0.07 0.03
Traffic Src 0.32 0.08 0.04
Traffic Dest 1.67 0.42 0.21
Traffic Route 0.31 0.08 0.04

Table 4: Average lag between event and anti event (in buck-
ets)

actually lowered. The longer a correct event is held, the more likely
it is that its destination processor will get ahead of it and have to
rollback when it is eventually delivered.

In this work, we will focus on a fairly simplistic metric for deter-
mining which events to hold, and how long to hold them. Again it
is heavily influenced by the observation that allowing processors
to get far ahead of the most recent GVT tends to lower event effi-
ciency. As such, we will use bucket offset from the current GVT to
determine whether or not an event should be held back. Events that
are sent very close to the current GVT will be less likely to be rolled
back, whereas those events which are sent out many buckets ahead
of the current GVT have a higher chance of other events arriving
before the event that generated them, and therefore being canceled.
In order to back up this assumption, we have added tracing to the
GVT Manager which monitors events and anti events based on
their offset from the GVT at the time they are sent. Figure 7 shows
the results of this tracing for PHOLD Combo with a bucket size
of one. We see as we get further from the current GVT, the num-
ber of regular events sent decreases at a much faster rate than the
number of anti events. The ratio of anti events to regular events
increases as the offset increases to the point where every single
regular event has an anti event at the furthest offsets. This holds for
every other model we have looked at as well. For experiments later
in this section, we provide an offset cutoff to determine when to
start holding events. If an event has an offset higher than the cutoff,
it is held. Otherwise the event is sent as normal. These offsets can
be estimated by looking at the aforementioned traces, and tuned
over repeated runs.

In order to hold back events based on offset from GVT, the GVT
Manager maintains an additional set of buckets. These buckets are
based on offset from GVT and hold hash tables of events rather than
event counts. When an event is sent, if it is an event that should
be held because its offset is greater than the cutoff, it is hashed in
the bucket corresponding to its offset. For example, if an event is
sent with a timestamp that is four buckets away from the current
GVT it will be hashed in the fourth offset bucket. One important
thing to note is that since this is based on the events offset when

PHOLD Base PHOLD Work PHOLD Event PHOLD Combo
0

1

2

3

4

5

Bi
llio

ns
 o

f E
ve

nt
s S

en
t

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

DFly Worst DFly Trans
0

2

4

6

8

10

12

Bi
llio

ns
 o

f E
ve

nt
s S

en
t

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Traffic Base Traffic Src Traffic Dest Traffic Route
0

0.5

1

1.5

2

2.5

Bi
llio

ns
 o

f E
ve

nt
s S

en
t

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Figure 8: Figure showing the number of events sent remotely for each model when holding back events based on their offset
from the current GVT. The higher the offset cutoff, the further from the GVT an event has to be to be held. Therefore bars are
arranged by increasing aggressiveness.

PHOLD Base PHOLD Work PHOLD Event PHOLD Combo
0

20

40

60

80

100

Ef
fic

ie
nc

y
(%

)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

DFly Worst DFly Trans
0

20

40

60

80

100

Ef
fic

ie
nc

y
(%

)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Traffic Base Traffic Src Traffic Dest Traffic Route
0

20

40

60

80

100

Ef
fic

ie
nc

y
(%

)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Figure 9: Figure showing the efficiency for each model when holding back events based on their offset from the current GVT.

sent, events in the same hash bucket may not belong to the same
absolute time bucket. The offset of the event is also stored in the
event itself. That way, when an anti event is sent, the GVTManager
can get the offset of the original event and check if that event still
exists in the corresponding offset bucket. If it does, the event is
canceled and no communication is needed. If not, the anti event is
sent as normal.

As the simulation makes progress, events which are held back
eventually need to be released. Since progress is determined by
the GVT advancing, we also use this as a time to release held
events. After a GVT is completed and the GVT has advanced some
number of buckets, we can look at held events and determine which
ones to release. At the very least, held events which are now in the
current bucket must be released otherwise the GVT cannot properly
progress. In order to determine which events to release, we also
rely on data collected by the GVT Manager to get some intuition
about how cancellations work. Table 4 shows the average amount
of lag between event send and event cancellation for each model
configuration. This is computed by taking the difference between
the offset at which the original event was sent and the offset of the
corresponding anti event. This is the same as the number of buckets
which are completed by the GVT algorithm by the time the anti
event is sent. These numbers can be used to determine how many
GVT buckets an event should be held for before being released. For
almost all models in the table, we see numbers less than one. This

means that, on average, anti events are sent during the same GVT
bucket as their corresponding regular events. Because of this, for
most models we release all events the next time a GVT is computed.
As stated previous, holding events too long may hurt performance
by causing rollbacks when we eventually do release them and they
reach their destinations late.

First, Figure 8 shows the effects on the event communication by
showing the total number of events (including anti events) sent
for each model. For this figure, and all upcoming figures, data
for cutoffs of 2, 4, 8, and 16 buckets, as well the base case of no
throttling. The bars are arranged from most conservative to most
aggressive in terms of number of events held. By correctly holding
back an event that would eventually be canceledwe save at least two
messages: one for the original event and one for the subsequent anti
event. It could even save more events if there is a cascading effect
where many anti events are required to chase down an incorrect
event. This is where we see the most direct, and drastic, effects of
throttling. For PHOLD configurations, event communication is cut
by 30−55%. DFlyWorst, andmany of the Traffic configurations have
their communication cut by more than 70%. The Dragonfly results
also highlight a potential pitfall of holding events too aggressively.
As more events are held, the total number of events sent actually
decreases. As the next plot will show this is at least partially due to
decreased event efficiency.

PHOLD Base PHOLD Work PHOLD Event PHOLD Combo
0

50

100

150

200

250

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

DFly Worst DFly Trans
0

5

10

15

20

25

30

35

40

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Traffic Base Traffic Src Traffic Dest Traffic Route
0

20

40

60

80

100

120

Ev
en

t R
at

e
(m

illi
on

s o
f e

ve
nt

s/
s)

Cutoff (# of Buckets)
No Cutoff
16
8
4
2

Figure 10: Figure showing the event rates for each model when holding back events based on their offset from the current
GVT.

Figure 9 shows the effect on efficiency for each configuration.
In many cases these results mirror the effects on total communi-
cation, the few exceptions being PHOLD Base and PHOLD Work.
PHOLD Base already has exceptional event efficiency so holding
back events is only causing delays that hurt efficiency. For Dragon-
fly, the net gain in event efficiency is small, but relative to starting
event efficiency it still equates to significantly fewer rollbacks. For
example, the number of rollbacks in DFlyWorst are cut down to 60%
of what they were with no throttling. For Traffic, we see far more
drastic effects. The event efficiency of all model configurations sees
a significant increase, with Traffic Source and Traffic Route roughly
tripling their event efficiency.

Finally, to see how these changes affect overall performance,
we plot event rate of each model in Figure 10. We see varying
performance based on configuration. For PHOLD Base, which is
extremely uniform and already has a very high efficiency, holding
events actually hurts performance. Similar results were seen for
DFly Uniform, DFly NN, and Traffic Base. DFly Uniform and NN
are omitted to improve chart readability. For each other PHOLD
configuration holding events improves event rate by 1% for PHOLD
Work up to an 18% improvement for PHOLD Combo. For the two
Dragonfly configurations shown, we also see improvement of 70%
and 15% for the two Dragonfly models. Both of these models suf-
fered from very low event efficiency. As before, we see that being
overly aggressive can ultimately hurt performance. Traffic does not
see quite as much improvement as PHOLD or Dragonfly, but in
the best case, Traffic Dest sees a 15% improvement in event rate. In
the case of other models, it is likely that over aggressive throttling,
although improving event efficiency significantly, slowed down
overall progress by holding too many events. A scheme more tar-
geted at holding events on inefficient processors while allowing
other processors to send uninhibited may be able to address this
particular issue.

Overall, depending on the model examined, we are able to im-
prove performance by holding back events that are likely to be
canceled in the future. However, we also believe there is significant
room for improvement here by choosing more effective ways to
select which events to hold. Currently, we set a static cutoff in
distance from GVT, and use that cutoff for every processor in the
simulation at all times. The analysis was done offline and based on
aggregate results across an entire run. It seems feasible that online

analysis, and throttling on a per processor basis could even more
effectively utilize the data and structure present in the Adaptive
Bucketed algorithm.

6 CONCLUSION
In this paper, we have proposed a new GVT algorithm, the Adaptive
Bucketed algorithm, which has a few important characteristics.
First, it is completely non-blocking, as it allows the computation
and communication of other simulator tasks to continue unimpeded.
Because of this, it achieves up to 3× speedup for certain models
compared to the Blocking algorithm. This comes despite the fact
that it runs with significantly lower event efficiency.

Secondly, it is virtual time aware, which allows it to effectively
adapt to simulation characteristics by deciding when to begin and
how much virtual time to include in the computation. It is even able
to shrink or expand its scope while running. This is able to keep
to amount of communication required low, especially when com-
pared to the other non-blocking algorithm evaluated for this paper.
Due to this fact it also achieves modest speedup over the Phase-
Based algorithm, even though both are non-blocking. It also shows
very favorable strong scaling, especially as it adapts to different
simulation characteristics at different node counts.

Finally, by looking at the data collected by the algorithm and
exploiting its bucketed structure, we were able to further improve
performance for certain models by selectively holding back events
which were predicted to be rolled back later on. This decreased
the total amount of events sent across processes and often had
a positive effect on event efficiency as well. We also believe this
is an important avenue for future work. In the results presented
here, analysis was all offline, and each process behaved the same.
As future work, we would like to explore various online analysis
techniques which would allow processes to individually adapt to
evolving simulation characteristics, using the data and structure
already inherently presentwithin theAdaptive Bucketed algorithm.

REFERENCES
[1] D. Bauer, G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalyanaraman. Seven-o’clock:

A new distributed gvt algorithm using network atomic operations. In Proceedings
of the 19th Workshop on Principles of Advanced and Distributed Simulation, PADS
’05, pages 39–48, Washington, DC, USA, 2005. IEEE Computer Society.

[2] D. W. Bauer Jr., C. D. Carothers, and A. Holder. Scalable time warp on blue
gene supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop

on Principles of Advanced and Distributed Simulation, PADS ’09, pages 35–44,
Washington, DC, USA, 2009. IEEE Computer Society.

[3] C. D. Carothers and K. S. Perumalla. On deciding between conservative and
optimistic approaches on massively parallel platforms. In Proceedings of the 2010
Winter Simulation Conference, pages 678–687, Dec 2010.

[4] G. G. Chen, Boleslaw, and K. Szymanski. Time quantum gvt: A scalable compu-
tation of the global virtual time in parallel discrete event simulations.

[5] R. M. Fujimoto and M. Hybinette. Computing global virtual time in shared-
memory multiprocessors. ACM Trans. Model. Comput. Simul., 7(4):425–446, Oct.
1997.

[6] Z. X. F. Gomes, B. Unger, and J. Cleary. A fast asynchronous gvt algorithm for
shared memory multiprocessor architectures. SIGSIM Simul. Dig., 25(1):203–208,
July 1995.

[7] A. O. Holder and C. D. Carothers. Analysis of time warp on a 32,768 processor
ibm blue gene/l supercomputer. Citeseer.

[8] B. Kannikeswaran, R. Radhakrishnan, P. Frey, P. Alexander, and P. A. Wilsey.
Formal specification and verification of the pgvt algorithm. In Proceedings of the
Third International Symposium of Formal Methods Europe on Industrial Benefit
and Advances in Formal Methods, FME ’96, pages 405–424, London, UK, UK, 1996.
Springer-Verlag.

[9] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel and Distributed Computing, 18:423–434, 1993.

[10] E. Mikida, N. Jain, E. Gonsiorowski, P. D. Barnes, Jr., D. Jefferson, C. Carothers,
and L. V. Kale. Towards pdes in a message-driven paradigm: A preliminary case
study using charm++. In Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, SIGSIM PADS ’16. ACM, May 2016.

[11] E. Mikida and L. Kale. Adaptive methods for irregular parallel discrete event
simulation workloads. In Proceedings of the 2018 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, SIGSIM-PADS ’18, pages 189–200,

New York, NY, USA, 2018. ACM.
[12] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns. Modeling a million-node

dragonfly network using massively parallel discrete-event simulation. In High
Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 366–376, Nov 2012.

[13] K. S. Perumalla, A. J. Park, and V. Tipparaju. Gvt algorithms and discrete event
dynamics on 129k+ processor cores. In High Performance Computing (HiPC), 2011
18th International Conference on, pages 1–11, Dec 2011.

[14] K. S. Perumalla, A. J. Park, and V. Tipparaju. Discrete event execution with
one-sided and two-sided gvt algorithms on 216,000 processor cores. ACM Trans.
Model. Comput. Simul., 24(3):16:1–16:25, June 2014.

[15] A. B. Sinha, L. V. Kale, and B. Ramkumar. A dynamic and adaptive quiescence
detection algorithm. Technical Report 93-11, Parallel Programming Laboratory,
Department of Computer Science , University of Illinois, Urbana-Champaign,
1993.

[16] S. Srinivasan and P. F. Reynolds, Jr. Non-interfering gvt computation via asyn-
chronous global reductions. In Proceedings of the 25th Conference on Winter
Simulation, WSC ’93, pages 740–749, New York, NY, USA, 1993. ACM.

[17] J. Steinman. SPEEDES: Synchronous Parallel Environment for Emulation and
Discrete Event Simulation. In Proceedings of the 1991 SCS Multiconference on
Advances in Parallel and Distributed Simulation, pages 95–103, January 1991.

[18] J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol. Global virtual time and
distributed synchronization. In Proceedings of the Ninth Workshop on Parallel and
Distributed Simulation, PADS ’95, pages 139–148, Washington, DC, USA, 1995.
IEEE Computer Society.

[19] A. I. Tomlinson and V. K. Garg. An algorithm for minimally latent global virtual
time. In Proceedings of the SeventhWorkshop on Parallel and Distributed Simulation,
PADS ’93, pages 35–42, New York, NY, USA, 1993. ACM.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Charades
	2.2 GVT
	2.3 Models

	3 Algorithm
	4 Performance Analysis
	4.1 Bucket Size Analysis
	4.2 Scaling

	5 Adaptive Event Control
	6 Conclusion
	References

