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Abstract—The recent trend of increasing numbers of cores per
chip has resulted in vast amounts of on-node parallelism. These
high core counts result in hardware variability that introduces
imbalance. Applications are also becoming more complex, re-
sulting in dynamic load imbalance. Load imbalance of any kind
can result in loss of performance and system utilization. We
address the challenge of handling both transient and persistent
load imbalances while maintaining locality with low overhead.

In this paper, we propose an integrated runtime system that
combines the Charm++ distributed programming model with
concurrent tasks to mitigate load imbalances within and across
shared memory address spaces. It utilizes a periodic assignment
of work to cores based on load measurement, in combination
with user created tasks to handle load imbalance. We integrate
OpenMP with Charm++ to enable creation of potential tasks
via OpenMP’s parallel loop construct. This is also available to
MPI applications through the Adaptive MPI implementation. We
demonstrate the benefits of our work on three applications. We
show improvements of Lassen by 29.6% on Cori and 46.5%
on Theta. We also demonstrate the benefits on a Charm++
application, ChaNGa by 25.7% on Theta, as well as an MPI
proxy application, Kripke, using Adaptive MPI.

Keywords-Charm++, OpenMP, Adaptive MPI, Load Balancing,
Hybrid Programming

I. INTRODUCTION

Several trends in high-performance computing are converg-

ing to drive applications and systems software to rely on multi-

threading in each node’s shared memory, rather than running

an independent process on each CPU core. The general aban-

donment of specialized OS kernels [1], [2] in favor of general-

purpose Linux has rolled back past efforts to reduce noise

from system processes [3]. Finally, CPU heterogeneity [4]

and increasing application sophistication both increase load

imbalance and unpredictability.

In this paper, we present a combination of the Charm++

and Adaptive MPI [5] distributed programming models with

OpenMP that addresses many of these challenging trends with

a low-overhead and locality-conscious design.

The number of cores and hardware threads in each chip

is increasing rapidly. Within each node, increased hardware

parallelism entails reduced per-core/thread memory capacity

and bandwidth. Over entire parallel systems, treating each core

as an independent unit forces communication libraries to con-

sume more memory and pushes collective algorithms further

toward asymptotic scaling limits. Applications that wish to use

each core independently must be structured to expose a corre-

spondingly large and growing degree of parallelism. General

whole-job load balancing mechanisms must then address the

increased scale of both systems and applications. Thus, the

prospect of grouping many cores together as multi-threaded

units mitigates many threats to continued performance scaling.

Many parallel applications no longer operate in a regime

where work and data can be neatly divided into uniform

chunks distributed to each processor. This trend encompasses

unstructured computations, data-dependent iterative methods,

variable resolution, multi-physics simulations, multi-phase ex-

ecution, and many other developments that trade reduced

total work or increased accuracy for more complicated and

less predictable execution. Even applications that do offer

simple structured decompositions can be made imbalanced

by hardware heterogeneity. Load balancing in various forms

can be applied to aid these applications, but it too must be

scalable, which often means coarsening the problem to the

node level to avoid considering an excessive number of cores.

Discrete units of work assignment, heuristic algorithms, and

unpredictable processor performance also prevent perfect uni-

formity. Supplementary within-node balancing can help make

up for these short-falls, as illustrated in Figure 1. As shown in

the figure, the initial distribution of work items, represented by

blocks, results in load imbalance. Using supplementary within-

node load balancing helps redistribute only the excess work, as

represented by the shaded blocks from the overloaded cores.

Even with very balanced work assignment across nodes and

individual cores, execution may not proceed at a perfectly uni-

(a) Without intra-node LB. (b) With intra-node LB.

Fig. 1: The potential benefits of intra-node work sharing on

reducing load imbalance.

31

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

0-7695-6410-0/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00018



form pace. Network contention can delay some messages more

than others. System noise from OS processes can also non-

uniformly interfere with execution [3], with hard to predict

knock-on effects [6]. Dynamic work redistribution can greatly

help in mitigating these effects [7].

All of these pressures lead to a conclusion that multiple

cores within each node must share data and work to sustain

continued scalability in problem size and performance. At

the same time, any sharing mechanism ideally should not

compromise data locality or introduce excessive new bottle-

necks or overheads. To address these desires, we introduce

a design that combines the Charm++ and Adaptive MPI

distributed programming models with a modified OpenMP

runtime system. Charm++ intermittently performs coarse load

balancing in terms of objects that encapsulate associated work

and data together, and assigns them to particular cores with

good balance among nodes. These objects then adaptively

share work with other cores in the same process, exposing

fine-grained tasks only to the extent that otherwise idle cores

are available to help execute them. Thus, our design ensures

locality as well as low and proportionate scheduling overhead.

We demonstrate this design’s effectiveness through the im-

proved performance and scalability of several applications on

large supercomputers.

The contributions of this paper are:

• An approach that combines infrequent distributed load

balancing with shared-memory task parallelism to handle

persistent and transient load imbalances together.

• Efficient implementation of dynamic scheduling of fine-

grained tasks which uses an adaptive schedule based on

the state of the system.

• Integration of OpenMP with Charm++’s runtime system

to enable fine-grained parallelism.

• Improved performance by using the integrated runtime

system on three different applications. We show improve-

ments of 29.6% on Cori and 46.5% on Theta with Lassen

and 25.7% on Cori with ChaNGa. We also show the

benefit on a MPI application, Kripke, using Adaptive

MPI (AMPI).

II. RELATED WORK

Per-chip core and thread counts are steadily increasing in

HPC systems. The trend toward increasing core/thread counts

is accelerating with the increased deployment of Knight’s

Landing-generation Intel Xeon Phi hardware with several

dozen cores per chip as primary processors rather than as

accelerators (e.g. in NERSC’s Cori, LANL’s Trinity, and

ANL’s Theta). This trend has driven scalability challenges and

opportunities for increased efficiency arising from multiple

cores sharing access to common memory. MPI has correspond-

ingly evolved in usage and implementation to work well in

this setting [8], [9], [10], [11], [12], [13], leading to explicit

support for shared memory in the MPI-3 standard. Charm++

has followed a similar progression, as described in Section III.

The process-per-core model of pure MPI has not been

universally sufficient. Applications may have limitations in the

scalability of their parallel algorithms and data structures, or

may present insufficient parallelism in their mode of work de-

composition among MPI processes. Communication that could

be avoided in shared memory is also an undesirable overhead.

This has led to the rise of hybrid ‘MPI+X’ programming.

OpenMP is the most prevalent shared-memory programming

model paired with MPI, with extensive work studying its

implementation and impact (e.g. [14], [15], [16]). This hybrid

model has been increasingly used with other shared memory

programming models to handle within node parallelism [14],

[17], [18].

The MPI+X model itself can improve load balance within

each node [19]. We combine a periodic measurement-based

inter-node load balancing scheme to attain approximate uni-

formity, with dynamic shared-memory execution to smooth out

residual imbalances. Recent papers explored the hybrid model

in more detail [20], [21], [22]. They mix static and dynamic

scheduling of work among cores on a node to improve the

tradeoffs among overhead, locality, and load imbalance. They

also show that these techniques can be used to reduce the

impact of system noise [7]. Our work carries these ideas

further, by adaptively tuning the level of dynamic scheduling

to match its potential utility, thus reducing overhead.

Projects to more tightly integrate various shared and dis-

tributed memory models have also arisen, with aims to im-

prove scheduling and locality further. OmpSs [17] introduced

concurrent tasks on top of OpenMP, with data dependences

satisfied by MPI communication operations and coordinated

by its runtime system. Recent versions of MPC bind an

implementation of MPI that supports multiple ranks in each

OS process [23] to multi-threading via POSIX threads [24],

OpenMP [25], and Intel TBB. This paper moves in a sim-

ilar direction, by directly scheduling execution of various

shared-memory tasks to run on normal Charm++ worker

threads, overlaid on the work and data mappings generated by

Charm++’s distributed memory load balancing infrastructure.

The approach of work-stealing task scheduling has been

used in Cilk [26], Intel TBB [27], OpenMP 3.0 [28] and

Habanero [29]. The randomized work-stealing used in Cilk

can result in loss of locality. TBB has a mechanism to bind

each loop iteration to the same worker thread that previously

executed that iteration, thereby favoring temporal cache-reuse.

The Habanero runtime system has an adaptive locality-aware

work-stealing scheduler [30] to increase temporal data reuse.

III. THE CHARM++ PROGRAMMING MODEL

Charm++ is a parallel programming system which is based

on an asynchronous message driven execution model. Each ap-

plication’s data and computations are encapsulated in entities

called chares, which are C++ objects. An application written

in Charm++ is over-decomposed into these objects. Chares

interact via asynchronous method invocations and a method on

a chare is executed when a message is received for it. Chare

objects are assigned to a core by the runtime system. Typically

there are many more objects than the number of cores, which

is known as over-decomposition. This encapsulation of data
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Fig. 2: The Charm++ parallel programming system.

and its computation into a chare, each of which is mapped to

a specific core, inherently promotes data locality.

In the message driven execution model of Charm++, the

runtime system actively probes for incoming messages. On

receiving a message, it identifies the corresponding chare
which is targeted by the incoming message and schedules it.

Figure 2 shows the overdecomposition where multiple chares
are assigned to a PE and are communicating via messages. A

PE here refers to a processing element such as a core or a

hardware thread, and we use these terms interchangeably.

The SMP mode of Charm++ takes advantage of multi-core

shared memory processors [31]. In this mode, a Charm++

OS process is called an SMP node which launches multiple

threads. Each thread is called a PE. In a typical configuration,

the number of threads launched by the Charm++ process is

equal to the number of cores or hardware threads on a node.

A PE is mapped to a separate core or a hardware thread. PEs

have CPU affinity, that is, each PE is bound to a core and

the operating system is not allowed to migrate it to another

core. Each PE has a separate message queue and the scheduler

on the PE picks up messages from the queue and handles it.

Within an SMP node, data is shared between PEs via pointers.

Utilizing the multi-core processors in this way has many

benefits. In SMP mode, intra-node communication is imple-

mented via a single copy, rather than the double copy scheme

used between nodes. It also significantly reduces the memory

footprint of the program by eliminating the memory needed for

intra-node communication channels and buffers. Since all PEs

within an SMP node share a memory address space there needs

to be only one copy of read-only data structures. Running

multiple threads in a single process enables work sharing

without explicit inter-process data transfer.

IV. OVERVIEW OF OUR PROPOSAL

The challenge, as outlined in Section I, is to balance load

across PEs while managing locality. A pure task model with

randomized work stealing, or a pure dynamic schedule in

OpenMP, sacrifices locality significantly to an extent that

often eliminates the benefits of dynamic load balancing [20],

[22]. Dynamic load balancing strategies are used to balance

the load and redistribute the work at runtime. These load

balancing strategies can incur significant overhead due to the

cost of computing a new assignment and the consequent data

movement. If done less frequently, the overhead is reduced and

locality is maintained, but dynamically emerging load imbal-

ance may last longer before being corrected. With increasing

number of cores within a node, intra-node load balancing will

become an effective way to reduce load imbalance.

The approach we propose is to utilize a relatively infrequent

periodic assignment of work to cores based on load mea-

surement, combined with user assisted creation of potential

tasks from the work assigned to each core that the runtime

can choose to make available to other cores. The idea is to

utilize the idle cycles on other cores on a node to execute

tasks belonging to the overloaded cores. We also need to make

sure we do not incur task creation overhead when tasks are

not needed. Figure 1 shows a schematic diagram of such a

scenario where most of the computations are executed on the

core they are assigned to, but the load imbalance towards the

end triggers the dynamic creation of fine-grained tasks which

are distributed across different cores.

We support this approach with a method for users to

create potential tasks. This method builds on top of a new

task abstraction in Charm++ and integrates OpenMP with

Charm++, such that each object can create potential tasks

via OpenMP parallel loop constructs. Using this method, a

user can create potential tasks that can dynamically utilize all

cores to restore balance. We also develop multiple runtime

scheduling strategies for managing these potential tasks.

In the following sections we describe our approach in

detail. We first discuss periodic distributed load balancing in

Section V. Following this we describe our OpenMP integra-

tion with Charm++ in Section VI. Finally, we showcase the

application performance improvements achieved by using the

new integrated runtime system in Section VII.

V. PERSISTENCE-BASED LOAD BALANCING

Many HPC applications execute the simulation in a series

of time-steps or iterations until convergence is achieved. As

a result, consecutive iterations have a similar computation

and communication pattern. For such applications, a heuristic

called principle of persistence [32] holds which says that the

communication pattern and computation load of the recent past

is a good indicator of the near future. We use this to predict

the load of future iterations; the predictions are used by plug-

in load balancing strategies to make the global decisions. We

work with Charm++ because of its support for dynamic load

balancing. As mentioned earlier, in Charm++, the data and its

computation are encapsulated into a chare object which resides

on a specific processing element (PE). This naturally promotes

locality. Load balancing aims to provide an assignment of

these objects to PEs to reduce the load imbalance. The

Charm++ load balancing framework provides a mechanism to

collect the load and communication statistics of each chare

object and the processor in a distributed database. These

statistics are used by the load balancing strategies to generate

a chare-to-core mapping at run time.
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Charm++ contains a suite of load balancing strategies that

balances load between PEs. For the purpose of this work,

we use a hierarchical hybrid load balancing strategy for one

of the applications, Lassen. In this hierarchical strategy, the

processors are divided into groups organized in a hierarchical

tree fashion. At each level of the hierarchy, the root performs

the load balancing strategy over the children in its sub-tree.

The residual load imbalance that results in spite of this periodic

balancing can be handled by the fine-grained intra-node task

balancing strategies described below.

VI. OPENMP INTEROPERATION WITH CHARM++

In this section, we discuss the OpenMP thread model and

our implementation and optimization of its runtime features

for Charm++. We introduce the prior implementation of the

integration and discuss the changes we made over the prior

implementation afterwards.

A. Overview and limitations of the prior OpenMP integration

Initially, we implemented this integrated runtime using

GNU OpenMP [33], [34]. In the first implementation, we used

stackless Charm++ messages to implement OpenMP threads

on top of Charm++ runtime. Each chare can create OpenMP

threads, which become stackless Charm++ messages which

can be stolen across PEs within the same node. These OpenMP

threads are pushed to a PE-local work-stealing queue, which

is implemented using the Chase-Lev [35] non-blocking algo-

rithm. To minimize the overhead, we adopted two heuristics.

Each node maintains an atomic counter to keep track of idle

PEs within a node and each PE keeps a history vector of how

many OpenMP tasks have been stolen by other idle PEs. Using

these two heuristics, we can create OpenMP tasks only when

there are idle PEs and the fine-grained parallelism is beneficial.

The initial implementation still has a creation overhead

to some degree and has only limited support for OpenMP

directives, because it is implemented using stackless Charm++

messages. First, it only supports barriers at the end of each

OpenMP parallel region. OpenMP has implicit and explicit

barriers within a region, and can use multiple barriers within

each region. For example, ’omp for’ has an implicit barrier

in the end of each ’omp for’ pragma and ’omp single’

may have an implicit barrier if the variable updated within

’omp single’ is accessed outside the pragma. In addition,

many synchronization pragmas such as ’omp barrier’ are used

for correctness and verification. These barriers could not be

implemented because stackless messages were used.

To implement barriers, the OpenMP tasks should be able to

be suspended and resumed, and all the data for each OpenMP

task should be maintained when they are resumed on other

PEs. In addition, the stackless messages incur unnecessary

overhead for each OpenMP parallel region. Most OpenMP

runtimes maintain a pool of threads which are suspended and

can be resumed for the upcoming OpenMP parallel regions,

such that an OpenMP thread is initialized only when it is

created in the beginning of the first OpenMP parallel region,

and is suspended and resumed until the runtime is exiting. Our

initial implementation did the initialization for each OpenMP

parallel region because threads could not be suspended and

resumed.

B. Overview of the current implementation
We adopted user-level threads to resume and suspend

OpenMP tasks on top of the Charm++ runtime. Now, each

OpenMP parallel region creates user-level threads which can

be scheduled by the Charm++ runtime scheduler. These user-

level threads are pushed to the same work-stealing queue

as in the first queue and minimize the overhead of fine-

grained parallelism using the same heuristics in the prior

implementation. We use boost context assembly codes to

implement migration of user level threads across different

kernel threads in Charm++ runtime system. Each user level

thread has its own stack and is migratable across different

kernel-level threads.
However, even with the user-level threads, there are still

several issues to implement suspend and resume of OpenMP

threads. The first issue is how to schedule suspended OpenMP

tasks which are stolen by thieves. Thieves cannot continue

to work on this because they can be idle temporarily while

waiting for messages from other PEs. So, these suspended

tasks should be pushed to the creator’s queue. The second

issue is that the suspended tasks cannot be pushed to the

creator’s work-stealing queue by thieves because the work-

stealing queue supports one producer and multiple consumers

to minimize the usage of atomic operations. To resolve this

issue, we implemented a separate queue for suspended tasks

on each PE which supports multiple producers and consumers.
Figure 3 shows how the current implementation of OpenMP

interoperates with Charm++ on a node with 2 PEs. First,

the integrated OpenMP creates OpenMP tasks on OpenMP

parallel region which are user-level threads migratable across

PEs in Charm++. Each OpenMP parallel region keeps an

atomic counter for each barrier within the parallel region.

Created OpenMP tasks decrement the counter when encoun-

tering barriers within each OpenMP parallel region and they

are pushed to the creator’s suspended task queue if they are ex-

ecuted on PEs other than the creator. The creator waits for the

counter to become zero and moves suspended tasks from the

suspended task queue to the work stealing queue afterwards.

In this way, the integrated OpenMP resolves load imbalance

across PEs within a node and implements synchronization and

worksharing directives of OpenMP on top of the Charm++

runtime.
We initially modified the GNU OpenMP runtime for our

work but we migrated to LLVM OpenMP runtime for better

compatibility which works with common compilers such as

icc, gcc, and clang. In addition to better compatibility, the

LLVM OpenMP runtime has fine-grained optimizations such

as frequent usage of padding for shared variables and assembly

instructions for synchronization routines.

C. Benefit of the current version over the initial version
The adoption of user level threads brings several advantages

over the initial implementation. First, multiple OpenMP par-
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Fig. 3: Implementation of OpenMP for Charm++ using user-level threads.

allel parallel regions can be merged into one bigger OpenMP

parallel region. At the start of an OpenMP parallel region,

the runtime incurs an overhead and loses locality if there are

short, successive OpenMP parallel regions because the same

data can be accessed by different PEs. Implementation of

barriers resolves this issue by merging short OpenMP parallel

regions into a bigger parallel region. In addition, we can avoid

some of the initialization of each OpenMP task mentioned

above because tasks can suspend and resume within a while

loop. Each PE keeps a pool of user-level threads for OpenMP

and resumes those threads only with initialization of function

pointers to each OpenMP parallel region.

VII. APPLICATION STUDIES

We study the performance benefits of our new integrated

runtime system that combines the Charm++ distributed mem-

ory model with the task model on 4 different applications.

First, we studied the characteristics and limitations of periodic

load balancing with Lassen. And show the benefit of this

integrated runtime on the applications. We choose 2 Charm++

applications and 1 MPI+OpenMP applications such as Lassen,

ChaNGa, and Kripke. We compare the performance of these

codes with and without the task model integrated. We show

the performance of all applications on NERSC Cori and ALCF

Theta. For all the applications, we picked the scheduling

strategy that performed the best. We use two heuristics for

OpenMP to minimize overhead.

Cori and Theta are CrayXC machines hosted by Lawrence

Berkeley National Laboratory and Argonne National Labora-

tory. Cori has two different kinds of nodes, Haswell and KNL.

For Haswell nodes, Cori has two 16-core Intel Xeon E5-2698

v3 processors on each node. Theta has only KNL nodes which

consists of Intel Xeon Phi 7230. We used Haswell nodes on

Cori and KNL nodes on Theta for experiments.

A. Lassen

Lassen is an LLNL proxy application for modeling wave

propagation by tracking the wave front. This application has

significant load imbalance where the load is concentrated just

before and after the wave front. As the wave front moves, com-

putation load also shifts. We use the Charm++ implementation

of Lassen. The input to the application is a Cartesian mesh

subdivided into domains and assigned to PEs. The number of

domains used is sixteen times the number of PEs. We use

2-way SMT on both Cori and Theta for Lassen, which have

32 and 64 cores per node. First, we run Lassen on a single

node of Cori with different load balancing schemes, different

frequency of LBs and decomposition ratios to illustrate the

limitations of periodic load balancing. In these experiments,

we measure the load imbalance of Lassen with different load

balancers and calculate the percent imbalance λ [36] with

Equation 1. In the equation, L is the load vector. A higher

value of λ indicates a higher imbalance.

λ =

(
max(L)

avg(L)
− 1

)
× 100% (1)

We use four load balancing strategies: GreedyLB, GredyRe-

fineLB, RefineLB and HybridLB. GreedyLB moves objects

from most loaded PEs to least loaded PEs. RefineLB computes

the average loads across PEs and move objects so that loads

on each PE get closer to the average. GreedyRefineLB works

similar to GreedyLB but minimizes migration of objects.

HybridLB combines different load balancing strategies in

multiple levels of hierarchy of PEs. In HybridLB, the root

collects load measurements from all the PEs and makes deci-

sions on migration of objects in the first level of the hierarchy

with a predefined load balancing strategy for the level. PEs

in the first level migrate objects across siblings based on the

decision in the first level, then become the root for each region

of PEs in the second level and perform the same procedure.

This hierarchical load balancing can minimize migration of

objects between PEs which are located far from each other and

reduce the overhead of centralized load balancing. In addition,

we can use different LBs that work better in each level. We

used HybridLB with two levels and adopted RefineLB and

GreedyRefineLB for the first and second level, respectively.

Figure 4 shows the load imbalance factor λ with different
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Fig. 4: Load imbalance factor λ of Lassen with different configurations of decomposition and load balancing on a single node

of Cori without OpenMP integration.
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Fig. 5: Performance of Lassen with different configurations of decomposition and load balancing on a single node of Cori

without OpenMP integration.

Fig. 6: Application time and Load balancing overhead of

Lassen with GreedyLB and GreedyRefineLB on a single node

of Cori without OpenMP integration.

decomposition ratios and load balancing configurations on

Cori. Load imbalance is reduced by higher ratio of de-

composition and frequency of load balancing. However, the

performance of Lassen get worse or does not improve from

certain decomposition ratios and frequencies. Figure 5 shows

the performance of Lassen with different decomposition ratio

and frequency of LB. Lassen shows the best performance

with 4 chares per PE and 10 iterations with GreedyRefineLB

and RefineLB on a single node. GreedyLB doesn’t work

well even compared to execution runs without load balancing.

This performance degradation of decomposition and load

balancing comes from incurred overhead. As we decompose

problem domain into more objects, the surface to volume

ratio increases, which means application will spend more

time on communication between neighboring objects in the

problem domain. As we increase the frequency of LBs, the

application should do some global communications to collect

load measurement and migration of objects across PEs and

nodes. Figure 6 shows the detailed timing result of GreedyLB

and GreedyRefineLB in stacked bar graph of application time

and load balancing overhead. The load balancing overhead

includes cost of migrating objects and global synchronization

cost for collecting load measurements on each PE. GreedyLB

shows increasing load balancing overhead while GreedyRefine

maintains marginally increasing overhead because GreedyLB

doesn’t consider the assignment of objects, which incurs more

migrations. GreedyRefine minimizes the migration of objects

considering the assignment of objects. In addition, this load

balancing overhead affects the application time because each

PE continues its work just after they finish their contribution

and migration for each load balancing. So, while other PEs

migrating their objects, some PEs can resume their work,

which affected by migration of objects due to contention on

within or across node interconnect. We also can see that

excessive decomposition makes the performance worse by

increasing application time while reducing load balancing

overhead.

Our approach is very well suited to handle this limitation of

periodic load balancing presented above. We use implicit tasks
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Fig. 7: Improvement of load imbalance and performance of Lassen on a single node of Cori and Theta.
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(a) Strong scaling on Cori(Haswell nodes).
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(b) Strong scaling on Theta(KNL nodes).

Fig. 8: Strong scaling results of Lassen on Cori and Theta.

generated via our OpenMP integration to resolve existing load

imbalance without a significant overhead. Figures 7a and 7b

show how much the integrated OpenMP resolves load im-

balance and improves the performance of Lassen on a single

node of Cori and Theta with best configuration(4 chares/PE,

10 iterations) from Figure 5. We see that excess load is spread

to other PEs, which reduces the load imbalance factor. This

improvement in load imbalance results in improvement of

performance with all load balancing strategies we choose. In

addition, Theta shows bigger improvements in load imbalance

and performance because Xeon Phi has more cores. Load

imbalance can therefore be higher and can get resolved better

on Theta with the help of many idle PEs.

We run Lassen to show the benefit of our work on Cori

and Theta with and without best performing load balanc-

ing strategies such as GreedyRefineLB and HybridLB. Even

though HybridLB is worse than RefineLB on a single node,

it works well on multi-node runs because of its distributed

design. Figure 8 shows how much Lassen is improved. The

chosen periodic load balancing schemes can distribute load

imbalance across nodes quite well. However, as we noted in

the motivation of this work, persistent load balancing alone

cannot redistribute all of the existing load imbalance because

of its more significant overhead. Figure 8 shows how the

OpenMP integration can help distribute this load imbalance

within each node. Even only with the OpenMP integration,

the load imbalance in Lassen is quite well redistributed and

the performance is improved around 29.6% on Cori with 512

cores and 46.5% on Theta with 2K cores. Users can easily

resolve load imbalance in their application by adding simple

flags of OpenMP while they can redistribute load imbalance

across nodes by using persistent load balancing manually.

When integrated OpenMP is used with the best performing

periodic LB, HybridLB, the performance is improved 32.5%

on Cori with 512 cores and 45.9% on Theta with 2K cores.

B. Kripke

Kripke [37] is an LLNL proxy application for parallel

deterministic transport codes. It is written using MPI and,

optionally, OpenMP for parallelism. Kripke implements the

key computation and communication aspects of a production

transport simulation application. Such codes are used to de-

terministically solve for the flux of neutral particles within a

volume of interest. Kripke implements parallel sweeps through

a 3D domain. The domain is decomposed into spatial zones,

and subdomains are distributed to MPI ranks.

Parallel sweeps are vital communication kernels for the

performance of deterministic transport codes. A sweep is a

sequential traversal through a domain. Because of the se-

quential dependencies through the domain, and because the

domain is decomposed spatially, scaling sweeps efficiently is

challenging. Consequently, Kripke pipelines successive sweeps

over the different energy groups and directions in the problem
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Fig. 9: Weak scaling Kripke with 4096 spatial zones per core

on Theta, the time per iteration is shown for MPI and AMPI

with and without OpenMP. Numbers in parentheses indicate

how many ranks were used per node and the number of

OpenMP threads per rank.

to attain higher efficiency. In addition to the sweep, a reduction

is performed every iteration to test the global particle count

for convergence.

Adaptive MPI (AMPI [5]) is an implementation of the

MPI standard on top of Charm++. It provides the high-level

features of Charm++, such as over-decomposition, dynamic

load balancing, and automatic fault tolerance, to pre-existing

MPI applications. It does so by implementing MPI ranks as

lightweight, migratable user-level threads, which are encap-

sulated in chares. The runtime schedules and load balances

AMPI ranks the same way as chares in Charm++ programs.

Our OpenMP runtime can be used with AMPI+OpenMP

programs the same way it is with Charm++ applications. This

allows users to run an AMPI code on a node with N PEs

using N or more AMPI ranks per node with each rank using

up to N OpenMP threads, without actually oversubscribing the

physical resources on the system.

All of the tests below were performed on Theta, using

64 cores per node. We use the default input parameters for

Kripke version 1.1. No changes are necessary to the source

code of Kripke to run it on AMPI and our implementation of

OpenMP. We show weak scaling in the number of zones, with

the number of groups and directions held constant.

Figure 9 shows the time per iteration of Kripke using MPI,

MPI+OpenMP, AMPI, and AMPI+OpenMP with two different

configurations. The parenthetical in MPI+OMP (4:16) and

others identifies how many ranks were launched per node,

and how many threads may execute any OpenMP parallel-for

loop at a time. Thus, MPI+OMP (4:16) indicates the use of 4

ranks per node with 16 OpenMP threads per rank. In addition

to MPI-only, AMPI-only, and both with four processes and

16-way threading per node, we show the best performing

combination of rank and thread counts for each.

Kripke’s parallel sweeps benefit from the finer-grained

pipeline parallelism that decomposing into more MPI ranks

offers. On the other hand, the computational kernels benefit

from OpenMP threading. Since sweep dependencies translate

to idle times within a node while each wavefront passes

through the domain, within-node parallelism can be also be

used to balance the load across the idle threads at a given

time. Persistence-based load balancing does not help Kripke’s

performance, since across iterations the load is balanced. The

combination of 64 ranks and up to 16-way threading per

rank performs 11% better than the next best combination.

Essentially, the AMPI+OpenMP (64:16) case gives the runtime

the most freedom to schedule work across all available cores

on a node while still decomposing the sweep pipeline into

small pipeline stages. These results show the benefits of

our unified runtime approach for applications which have

transient load imbalances within iterations but little to no load

imbalance that evolves and persists across iterations. They also

exemplify how our approach can benefit MPI applications.

C. ChaNGa

ChaNGa is an N-body cosmology simulation application

implemented in Charm++. ChaNGa has been used in cosmol-

ogy research to model the impact of a dwarf galaxy on the

Milky Way [38], study the role of Warm Dark Matter in dwarf

galaxy formation [39] and model the intracluster gas properties

in merging galaxy clusters. ChaNGa uses adaptive time scales

for force evaluation at multiple scales. A wide variation in

mass densities results in particles having dynamical times that

vary by a large factor. The irregular distribution of particles in

the simulation space as well as having multiple scales creates

severe load imbalance. Performing frequent load balancing

by object reassignment has unacceptable overhead due to

strategy time and data movement. In addition, for clustered

datasets, it is often the case at the trailing end of the gravity

calculation that some of the PEs are idle while others are busy.

For our experiments we use a benchmark dataset dwf1.2048
which is a highly clustered 5 million particles representing

a high resolution dwarf galaxy. In this multi-stepping run of

dwf1.2048 dataset, 16 substeps constitute a big step.

Figure 10a shows the Projections [40] time-line view of this

simulation on a single node of Theta with 128 hyperthreads.

We pick only a subset of cores within an SMP node for one

of the substeps to showcase the load imbalance problem. The

colored bars indicate that the PE is busy with computation

work and the white shows idle time. X axis represents load

and Y axis represents #PE. We can see that clearly there

is severe load imbalance. We use the task parallelization in

conjunction with the node aware load balancer to handle

this load imbalance. With the intra-node task parallelization,

we are able to handle the load imbalance and improve the

performance of this substep significantly. In figure 10b we

can see the impact of this in the reduction of load imbalance,

idle time and step time before the barrier.

At the point where the application creates fine-grained tasks,

it queries the adaptive runtime system to find out whether it

is beneficial to create tasks. The runtime system monitors the

state of the PEs on a node and when there are sufficient idle

PEs, it considers it as beneficial to create tasks. This prevents

incurring unnecessary overhead of task creation when there is
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(a) Without intra-node load balancing. (b) With intra-node task parallelism.

Fig. 10: Time line profile of ChaNGa for all the PEs (rows) on a SMP process for the single node run of Theta with 128

hyperthreads.
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Fig. 11: ChaNGa strong scaling performance on Theta.

no potential benefit because other PEs are already busy. The

chare object uses OpenMP to create tasks out of the unfinished

buckets which are distributed among other idle cores.

Figure 11 compares the strong scaling performance of the

original version of ChaNGa with the OpenMP interoperation

version. The input data dwf1.2048 has strong scale limit so you

can see the performance converges as the number of cores

increases. On a single node, the integrated OpenMP shows

around 25.7% of improvement, 16.7% on 2 nodes, 9.4% on 4

nodes and 4% on 8 nodes compared to Charm++ only.

VIII. CONCLUSIONS

The recent trend of rapid increase in the number of cores per

chip has resulted in vast amounts of on-node parallelism. Not

only the number of cores per node is increasing substantially

but also the cores are becoming heterogeneous. The high

variability in the performance of the hardware components

introduces imbalance. Applications are also becoming more

complex resulting in dynamic load imbalance. Load imbalance

can result in loss of performance and decrease in system

utilization. We address the challenge of balancing load across

cores while maintaining locality and low overhead.

In this paper, we proposed a new integrated runtime system

that combines the Charm++ distributed programming model

with concurrent tasks to handle load imbalance. It utilizes

a relatively infrequent periodic assignment of work to cores

based on load measurement, in combination with user created

tasks to handle both the persistent and transient load imbal-

ance. We integrate OpenMP with Charm++ so as to enable

objects to create potential tasks via OpenMP’s parallel loop

construct. Our contribution is not specific to Charm++. It is

also available to MPI applications through AMPI.

We show the benefit of using this integrated runtime sys-

tem on three different applications. We show the benefit of

OpenMP integration on a Charm++ mini app, Lassen with 4

existing load balancing strategies and without load balancing

strategy in strong scaling experiments with up to 512 cores

on Cori and 2,048 cores on Theta. We also show the benefit

on an MPI proxy application, Kripke, in weak-scaling exper-

iments on up to 2,048 cores using Adaptive MPI. We show

improvements of 25.7% on ChaNGa with multistepping runs

of dwf1.2048 on a single node and the improvement becomes

smaller because of its strong scaling limit.

The task generation scheme we used currently admits rela-

tively flat set of tasks generated by parallel loops. A possible

future extension is to admit tasks with dependences, similar

to OmpSs [17], PaRSEC [41] etc. These will also create

opportunities for runtime scheduling based on the knowledge

of dependencies and cache or scratchpad availability of data.
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[32] L. V. Kalé, “The virtualization model of parallel programming : Runtime
optimizations and the state of art,” in LACSI 2002, Albuquerque, October
2002.

[33] H. Menon, S. Bak, S. White, M. Diener, and L. Kale, “Handling transient
and persistent imbalance together in distributed and shared memory,” in
PPL Technical Reports 2016, no. 16-19, December 2016.

[34] S. Bak, H. Menon, S. White, M. Diener, and L. Kale, “Integrating
openmp into the charm++ programming model,” in Proceedings of the
Third International Workshop on Extreme Scale Programming Models
and Middleware, ser. ESPM2’17. New York, NY, USA: ACM, 2017,
pp. 4:1–4:7.

[35] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in
Proceedings of the seventeenth annual ACM symposium on Parallelism
in algorithms and architectures. ACM, 2005, pp. 21–28.

[36] O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M. Amato,
“Quantifying the effectiveness of load balance algorithms,” in 26th ACM
international conference on Supercomputing, ser. ICS ’12, 2012, pp.
185–194.

[37] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE - a massively
parallel transport mini-app,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep., 2015.

[38] C. W. Purcell, J. S. Bullock, E. J. Tollerud, M. Rocha, and
S. Chakrabarti, “The Sagittarius impact as an architect of spirality and
outer rings in the Milky Way,” Nature, vol. 477, pp. 301–303, Sep. 2011.

[39] J.-h. Kim, T. Abel, O. Agertz, G. L. Bryan, D. Ceverino, C. Christensen,
C. Conroy, A. Dekel, N. Y. Gnedin, N. J. Goldbaum et al., “The agora
high-resolution galaxy simulations comparison project,” The Astrophys-
ical Journal Supplement Series, vol. 210, no. 1, p. 14, 2013.
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