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Abstract—Today’s supercomputers are moving towards de-
ployment of many-core processors like Intel Xeon Phi Knights
Landing (KNL), to deliver high compute and memory ca-
pacity. Applications executing on such many-core platforms
with improved vectorization require high memory bandwidth.
To improve performance, architectures like Knights Landing
include a high bandwidth and low capacity in-package high
bandwidth memory (HBM) in addition to the high capacity but
low bandwidth DDR4. Other architectures like Nvidia’s Pascal
GPU also expose similar stacked DRAM. In architectures with
heterogeneity in memory types within a node, efficient allocation
and data movement can result in improved performance and
energy savings in future systems if all the data requests are
served from the high bandwidth memory. In this paper, we
propose a memory-heterogeneity aware runtime system which
guides data prefetch and eviction such that data can be accessed
at high bandwidth for applications whose entire working set
does not fit within the high bandwidth memory and data needs
to be moved among different memory types. We implement
a data movement mechanism managed by the runtime system
which allows applications to run efficiently on architectures with
heterogeneous memory hierarchy, with trivial code changes. We
show upto 2X improvement in execution time for Stencil3D and
Matrix Multiplication which are important HPC kernels.

I. INTRODUCTION

As we move towards Exascale era, the ratio of memory

bandwidth to compute capacity of a node is expected to be

low. In order to provide high bandwidth for such many-core

platforms, stacked DRAMs can be used, like in Intel Xeon

Phi, Knights Landing (KNL). Proposed future architectures

like Traleika Glacier [1] for Exascale computing also envision

a fast near memory and a slow far memory, namely Block

Shared Memory and DRAM, respectively. Some architectures

propose the use of Non Volatile Memory (NVM) as slow

memory for scaling DRAM capacity, when the application’s

working set does not fit within DRAM. Stacked DRAM

architectures exploit heterogeneity in memory types to sus-

tain high memory bandwidth at large core counts per node.

Architectures like KNL which are now being deployed in pro-

duction (Stampede 2.0 and ALCF Theta) employ MCDRAM

as the High Bandwidth memory (HBM), in addition to using

DDR4 as slow memory. Slow memory can either mean high

latency or low bandwidth or both. In KNL, DDR4 has about

4X lower bandwidth than MCDRAM with comparable latency

for access. We show in Figure 1 the bandwidth difference for

Stream benchmark [2] measured on an Intel Xeon Phi Knight’s

Landing. Due to much higher bandwidth of MCDRAM, it is
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Fig. 1: Bandwidth comparison for stream

critical for bandwidth sensitive applications to make efficient

use of HBM.

While architectures like KNL currently provide hardware

caching mechanisms for fetching data into HBM, caching

could result in increased latency from conflict misses or

capacity misses and would not be practical for multiple tiers of

memory hierarchy. Our focus is on handling memory hetero-

geneity in the absence of hardware-level caching mechanisms.

Data movement costs are predicted to be the dominant energy

costs in Exascale systems, shifting the onus for efficient data

movement to the software stack.

Several HPC applications perform memory sensitive com-

putation like Stencil3D, in which among 3D grid of objects,

each object communicates with its 6 immediate neighbors.

For dataset sizes worked on by 64 or 128 threads in many-

core machines, the entire grid would not fit in small capacity

HBM. As a result, any data that overflows from HBM and is

allocated on slow memory can result in poor performance.

In architectures like KNL, with upto 272 threads working

simultaneously on the data, the application becomes bandwidth

sensitive.

For Stencil3D, we observe in Figure 2 that the performance

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.168

1293

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.168

1293



��

��

��

��

��

���

���

��	
�
��

��

�� ��	
�

���

��

��

�
��
��
��
�

�	
��
�����������
����	
���	�������

�	��������
��

������� ���
���	
�����

Fig. 2: Comparison of performance of Stencil3D on HBM and

DDR4, when the dataset size fits in HBM. Compute kernel

time refers to total time spent in bandwidth sensitive task.

on HBM is 3X higher than on DDR4, when the working set

fits within HBM. This motivates our implementation within

the runtime system for performing migrations across hetero-

geneous memory nodes, when the working set does not fit

within HBM.

We present a runtime-aware prefetching mechanism within

the CHARM++ [3] runtime system to prefetch and evict data

to reduce the cost of low bandwidth access to far memory. We

also demonstrate the overheads associated with data prefetch

and eviction and scheduling. The contributions of this paper

are:

• An implementation within the runtime system that tracks

the data blocks used by tasks to perform memory-aware

scheduling

• Incorporation of data movement inside the runtime sys-

tem, i.e adding a system level abstraction that can be

extended to other kinds of memory heterogeneity

• Performance evaluation of the proposed mechanism for

bandwidth-sensitive HPC applications on Intel Xeon Phi

KNL

The rest of this paper is organized as follows. Section II

describes related work. In Section III we describe the CHAR-

M++ programming model and runtime system, and KNL

architecture. Section IV talks about design and implementation

of scheduling and data movement strategies. Section V covers

the evaluation of our strategies with commonly used HPC

codes. Section VI is the conclusion.

II. RELATED WORK

Khaldi et al. [4] study HBM aware allocation using compiler

hints. This work uses compiler analysis to efficiently allo-

cate bandwidth sensitive data in HBM. However, this study

assumes that the bandwidth sensitive portion of data fits in

HBM. Our work performs prefetch and eviction of data at the

runtime level when the dataset does not fit in HBM.

Yount et al. [5] look at improving HBM usage in cache

mode by performing tiling based mechanism to increase usage

of cached data in HBM. This work focuses on cache mode in

HBM. This work is not easily extendable to other applications,

since it requires algorithmic changes to the application to

reduce the working set size to enable it to fit within HBM.

In previous similar work [6] data reuse was explored in

the context of simulation and analytics running on the same

machine. It studies the bounded buffer problem in a producer-

consumer scenario. It works at OS-level controls and does not

explore lone applications with out-of-core memory require-

ments. Also, the experiments were performed on a functional

simulator. We show our results using the latest Xeon Phi KNL.

Legion runtime system [7] allows data dependences between

tasks to be indicated by programmers. The data dependence

is used to generate parallelism and to move data across

memory hierarchies. The evaluation of Legion runtime system

is performed using GASNet memory to map data from remote

nodes. Our focus is on evaluation of data movement strategies

at node-level on architectures like KNL and future Exascale

systems exploring within node memory hierarchy.

Sequoia [8] is another runtime system that performs task

scheduling with the consideration of memory hierarchy. It is

evaluated on Cell processor and distributed memory clusters,

while our focus is on within node memory heterogeneity in

recent and futuristic many-core systems.

In [9], similar mechanism of data prefetch and eviction

has been used to use NVM as additional memory to relieve

memory pressure when an application’s dataset does not fit in

DDR4. Our work uses similar infrastructure but is different

since our work focuses on memory hierarchy where the

slow memory is bandwidth restricted, whereas NVM is both

bandwidth and latency restricted.

NVM has been used as persistent virtual memory [10] to

perform out-of-core execution with OS based control. Mech-

anisms for limited buffer scheduling aim at migrating data

between memory hierarchies by storing metadata or relying on

application-supplied hints. The focus is on managing multiple

applications running on a server. Also, prediction mechanisms

for prefetching in general have to rely on regular application

behavior.

III. BACKGROUND

A. Charm++ Programming Model and Runtime System

We implement memory-heterogeneity aware execution us-

ing the CHARM++ runtime system. CHARM++ requires for

work to be over-decomposed in work units called chares.

Over-decomposition implies that there are more work unit-

s/chares than number of processors. Over-decomposition with

migratability allows for load balancing of chares. We use

overdecomposition of chares to schedule tasks that fit in

the low capacity high bandwidth memory. Over-decomposition

allows us to divide work units into pieces and schedule at a
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Fig. 3: Over-decomposition with CHARM++

time, only a set of work units that fit in HBM. Hence, even

for very large input size, with the help of overdecomposition

we can reduce the working set size of an application in

HBM. The runtime system can use the knowledge of data

block dependences for tasks to prefetch and evict data to

mitigate performance penalty from accessing DDR4. It can

avoid latency for fetching data by means of prefetching data.

Naive methodologies that do not take memory heterogeneity

into account would suffer from reduced performance as a result

of increased accesses to low bandwdith memory.

The CHARM++ programming system allows us to provide

simple hooks like attributes to indicate which methods are

bandwidth sensitive. Each chare executes multiple entry meth-

ods or tasks per iteration in an iterative application. Entry

methods allow a chare’s work to be broken down into finer

grained tasks, to allow for overlap of communication and

computation. While a chare’s entry method waits for its input

data to arrive, the entry methods of other chares on the same

Processing Entity (PE) whose input data is present, can be

executed.

In Charm++, the converse layer performs delivery of mes-

sages for objects for execution. When a message arrives for

an object, the converse scheduler delivers the message and in

turn the object executes the corresponding entry method for the

message. Objects do not migrate at anytime, they migrate only

when load balancing explicitly moves them to a different PE.

We look to intercept messages from the converse scheduler in

order to perform prefetching for certain entry methods before

having the objects execute the entry method. This is described

later in IV-B.

B. KNL Architecture

We describe the architecture of Intel Xeon Phi Knight’s

Landing in detail. KNL has 68 cores with 4-way SMT, thereby

providing 272 virtual cores if SMT is enabled. There are 34

L2 tiles in all, such that each tile is shared by 2 physical

cores. We show a depiction of KNL in Figure 4. There are two

types of memory: MCDRAM which is the High Bandwidth

Memory with a capacity of 16GB and DDR4 which is the

low bandwidth memory with a capacity of 96GB, which can

be increased upto 384GB. MCDRAM has over 4X higher

bandwidth than DRAM.

We now describe the different memory modes that can be

configured in KNL.
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Fig. 4: KNL Architecture - Overview

1) Cache Mode: In cache mode, MCDRAM is configured

to serve as a direct-mapped cache for data in DDR4.

Any data that is accessed, that misses in MCDRAM, is

fetched from DDR4 and cached in MCDRAM. Hence,

misses in MCDRAM suffer from additional latency

fetches from DDR4.

2) Flat Mode: In flat mode, MCDRAM and DDR4 are

treated as separate memory nodes. Data can allocated in

either memory nodes. This mode requires the application

to perform memory node-aware allocation.

3) Hybrid Mode: Hybrid mode allows part of the MC-

DRAM to be configured in flat mode and part of the

MCDRAM to be configured in cache mode with the

DDR4. This avoids latency from misses for data in the

flat mode portion of MCDRAM while also allowing

memory node-agnostic allocation for applications with

the partial cache mode.

Following cluster modes are possible in KNL.

1) All-to-All: Memory addresses are uniformly distributed

across all tag directories on all tiles.

2) Quadrant: Memory addresses corresponding to the

Memory controller in each quadrant are distributed to

tag directories in tiles in that quadrant.

In our study we use KNL configured in Flat All-to-All

mode. Flat mode allows programmer-control over allocation

of data and is representative of architectures with memory

hierarchy and memory heterogeneity. All-to-All cluster mode

has the most impact on memory bandwidth, hence we use

this mode since our emphasis is on heterogeneity in memory

bandwidth.

IV. DESIGN AND IMPLEMENTATION

A. Data dependence API

In order to indicate the bandwidth-sensitive data in a CHAR-

M++ application, we require the programmer to annotate the

data and tasks with simple attributes.

First, the bandwidth-sensitive task or entry method of

chare needs to be annotated with prefetch for the runtime to

ensure that the entry method’s data is prefetched into HBM

before execution. Secondly, the task or entry method’s data

dependence needs to be marked, so that the runtime system
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can ensure that the data is prefetched before execution.

Following shows an example from an excerpt of CHARM++

.ci file:

module Compute{
. . .

e n t r y [ p r e f e t c h ] void c o m p u t e k e r n e l ( ) [

↪→ r e a d w r i t e : A, w r i t e o n l y : B]

. . .

} ;

In the above example, compute_kernel method requires

prefetching of its data dependences namely A and B of types

readwrite and writeonly respectively. In the C++ file, we need

to declare the type as CkIOHandle which allows the runtime

system to store and query metadata about the data block.

c l a s s Compute : p u b l i c CBase Compute {
. . .

p u b l i c :

CkIOHandle<double> A;

CkIOHandle<double> B ;

. . .

} ;

We reuse the API from [9] for specification of data de-

pendence and for storing metadata on the dependence data

blocks.

B. Scheduling work units and data movement

We make changes to the Converse scheduler in order to

perform prefetching at node level. Before a chare’s entry

method is about to be executed by delivery of its input

message, we intercept the call and check whether the entry

method needs prefetching of data. If so, instead of delivering

the message we queue the message and the corresponding

object in a queue. We use two queues types: wait queues and

run queues. There is one run queue per PE, though we plan

to use a node-level run queue in the future. The wait queue

contains tasks that need data to be prefetched and the run

queue contains tasks that are ready to be scheduled by the

Converse scheduler. Tasks are picked up in FIFO order from

the run queue and scheduled.

When an object of type prefetch arrives, the message

for the object is not delivered, instead the object calls pre-

processing method which is generated specifically for every

prefetch method. Preprocessing and post-processing methods

corresponding to [prefetch] type entry method is generated

as part of charmxi tool’s autogeneration of header files. This

allows methods to be executed within the runtime before

and after execution of the entry method of interest [9]. In

this method, the object along with its input dependences, i.e

the input data that were annotated as specified in IV-A and

input message are encapsulated as an OOCTask. Once the

object’s prefetch annotated entry method finishes executing,

there is a similar post-processing method which allows for

data eviction as needed. The prefetch and eviction scheduling

policies implemented are described below:

Algorithm: IO thread

while While space remains in HBM do
pop first task in wait queue;

bring in data for task;

if all data for task in HBM then
add task to run queue;

else
bring in remaining data;

end
end
Data blocks not in use are evicted to DDR4;

Algorithm 1: General Prefetch and Evict strategy

Multiple queues, Single IO thread In this strategy, we

use multiple queues to add all pending tasks and a single IO

thread to prefetch data and evict data. Multiple queues allow

handle load imbalance that can arise if the IO thread served IO

requests for chares mapped to the same PE. For example, with

a single wait queue, it is possible that IO thread prefetches data

for n tasks on PE0 instead of fetching data for n tasks on n
PEs. This can result in load imbalance when there is no space

left in HBM and tasks on some PEs have to wait for other

tasks to finish execution to free up HBM space. This results

in load imbalance across PEs. We avoid such load imbalance

by having one queue per PE, so that the IO thread can serve

same number of requests for each wait queue at a time, thereby

serving all PEs equally. Every task/entry method, in its pre-
processing method, checks whether all its data dependence

blocks are in memory. The CkIOHandle specified in IV-A has

two states: INHBM and INDDR that indicates whether the data

block is in HBM or in DDR4. A task checks if it is ready to

execute, i.e. if all the data dependences are in INHBM, if

so, the task is immediately added to the run queue, ready to

be executed. However, if the task is not ready, that is, not

all data dependences are in state INHBM, the worker thread

locks the corresponding PE’s wait queue and adds the task to

wait queue[PEindex]. The IO thread waits conditionally for a

signal. When a worker adds a task to the wait queue, it sends

a signal to wake up the IO thread to begin processing from

the wait queue. The IO thread then wakes up, locks each wait

queue (one per PE) one by one and pops the first candidate task

in the queue. It then goes through the task’s data dependences

and for any dependence that is INDDR, brings it into HBM

and changes its state to INHBM. It then verifies that all its

dependences have been brought into HBM and adds the task to

the run queue of the corresponding PE, ready to be scheduled

by the Converse scheduler. The IO scheduler keeps track of

the HBM memory in use out of the total 16GB by keeping

track of each block size being brought into HBM. If there

are no more tasks in the wait queue or if allocating a data

block would exceed the remaining HBM capacity, then the IO

thread goes to sleep/conditional wait. Whether a data block is
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in use, is tracked by a reference counter, incremented every

time a task depending on the block is scheduled. When a task

finishes execution, it evicts its data dependences to DDR4, if

they are not currently in use by another task, by checking the

data blocks’ reference counts. If the IO thread is sleeping, the

task wakes it up after the eviction, so that more data can be

prefetched asynchronously.

One of the issues with this scheduling strategy is that the IO

thread preteches data for all tasks. Hence, before an iteration

begins the IO thread fetches data for atleast 64 tasks at a time,

if there are 64 worker threads. Hence some tasks have to wait

longer for their data to be fetched. This causes some additional

wait time as shown in 5a. We mitigate load imbalance by using

one wait queue per PE. Another mechanism to mitigate load

imbalance could be by using a node-level run queue.

Multiple queues, no IO thread We use parallel fetch and

eviction in order to reduce overhead for prefetching data. This

handles the load imbalance problem described earlier and also

reduces overhead of all worker threads waiting for a single IO

thread, especially for many-core systems like KNL. Each wait

queue is a FIFO-based queue. When a task arrives on a PE,

if there is sufficient allocation space in HBM, it fetches it’s

own data in the preprocessing step. If it is able to bring in

all its dependences to HBM, then it schedules itself by adding

itself to the corresponding PE’s run queue. If there is no space

in HBM, it adds itself to the PE’s wait queue. When a task

finishes executing, it calls its postprocessing step, where it

evicts its own data dependences, as long as they are not in use

by other tasks, by checking the reference count on the data

blocks. After evicting its own data, it checks in the wait queue

on its PE, to see if there are any tasks waiting to be scheduled

on the PE. As a result of its own data eviction, it can now

bring in data blocks for a waiting task and schedules the task

onto the run queue. This mechanism allows for parallel fetch

and parallel evict instead of a single IO thread performing all

fetches and evicts. However this method has two drawbacks.

The fetch and evicts are synchronous calls, as a result, they

add overhead to the execution time. This time could worsen,

if the data dependence count is very high, requiring a large

number of blocks to be fetched and evicted for each task.

Multiple queues, multiple IO threads The next strategy

we employ has the benefits of both of the previously described

mechanisms. It has two benefits, namely, it uses multiple wait

queues (one per PE), to allow for parallel processing of fetches

and evictions along with ensuring load balance in the tasks that

are scheduled and it uses multiple IO threads so as to allow

the fetch and evict to be performed asynchronously, thereby

allowing tasks to run as data is being prefetched for the next

task. In this implementation, there is one IO thread per worker

thread. When a task arrives at its preprocessing step, it simply

adds itself to the corresponding PE’s wait queue. The IO thread

is then woken up by the worker thread. Each IO thread pops

tasks from the wait queue of that PE and brings in data till

the HBM is full. All IO threads are likely working in parallel,

hence there is no starvation problem. The IO thread then adds

tasks to the corresponding run queue and enters conditional

(a) Multiple Queues, Single IO thread

(b) Multiple Queues, Multiple IO threads (Asynchronous)

Fig. 5: Projections of Stencil3d comparing naive HBM alloca-

tion with Single and Multiple IO threads’ asynchronous data

prefetch

wait, since there are no more tasks in the wait queue or the

HBM is full. Once a task finishes execution, in the post process

step, it evicts its own data, evicting only those that have a

reference count of 0. It then wakes up the IO thread for the PE,

since it has evicted data, allowing any more additional tasks to

have their data prefetched and be scheduled. We also plan on

finding more optimal IO thread count such that one IO thread

can be assigned to a subgroup of wait queues. Currently the IO

threads are scheduled on the hyperthread cores corresponding

to the worker threads, so as to not increase the usage of the

number of physical cores being used.

No Prefetch/Evict - Baseline In our baseline mechanism,

we do not perform any prefetch or eviction of data. numactl
tool allows controlling the memory node on which the data

for the process needs to be allocated. We assume sufficien-

t data is available from the combination of both memory

nodes (HBM and DDR4). We use numa_alloc_onnode
described in Section IV-C to place data blocks in HBM and any

remaining data blocks that do not fit within the 16GB HBM

are placed in DDR4, which is memory node 0. The numactl

policy –preferred 1, which indicates that it is preferable to

allocate data to memory node 1 (HBM) is an alternate way of

performing naive allocation. We use the former mechanism to

maintain consistency across libnuma library allocation APIs

used by the runtime system for prefetch and eviction. We

allocate close to 15GB or more on HBM in Baseline case

depending on data block sizes, ensuring that we do not over-

subscribe the HBM memory.

Performance visualization We show differences in perfor-

mance in the different strategies via projections, a performance

visualization tool for CHARM++. Figure 5 compares the data

prefetch and eviction performed with single IO thread with

asynchronous data prefetches performed with multiple IO

thread. The red portion shows wait time caused due to delays

from scheduling tasks, data prefetch, eviction and locking of

queues and data blocks. As can be seen, single IO thread has

a lot more overhead (red) than multiple IO threads case.
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(a) Zoomed In: Multiple Queues, No IO thread (Synchronous)

(b) Zoomed In from 5b: Multiple Queues, Multiple IO threads (Asyn-
chronous)

Fig. 6: Projections of Stencil3d comparing synchronous and

asynchronous data prefetch. Synchronous incurs fetch/evict

overheads while asynchronous masks these overheads.

Figure 6 shows difference between synchronous and asyn-

chronous data fetch. We observe that the preprocessing time

before compute kernels which is of order of 20 ms is removed

from asynchronous scheduling. There are still some delays that

are caused by waiting for queue locks and data block locks.

C. Data movement Methodology

For moving data across memory hierarchies, we provide a

hardware level abstraction that can be ported across different

memory hierarchies.

We use two operations to allow data movement across HBM

and DDR4: create space in destination memory and then move

the data to the destination location. Here move itself is a two

step process, consisting of copy to destination and then freeing

the source. The creating of space in destination memory could

be avoided if we maintain a memory pool in each memory

type. We plan to perform this optimization in the future to

further reduce the overhead of prefetch.

void ∗ numa a l loc onnode ( s i z e t s i z e , i n t
↪→ node ) ;

numa_alloc_onnode allows allocation of a data block on

a memory node. HBM is exposed to the userspace as Memory

node 1 and DDR4 is exposed as Memory node 0.

Once a same sized buffer on the destination memory is

allocated, a data block is moved to the other memory node,

by performing memcpy. memcpy can be used to move data

between buffers within a memory node or between memory

nodes, in userspace. It is described below:

void ∗ memcpy ( void ∗ d e s t i n a t i o n , c o n s t
↪→ void ∗ sou rce , s i z e t num ) ;

Then we free source buffer by numa_free.

We use memcpy as the mechanism for moving data between

the memory nodes for two reasons.

• Pointers to buffers are more relevant to the data types

used by the CHARM++ runtime system compared to oth-

er recommended operation of migrate_pages which
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Fig. 7: memcpy cost for data migration

migrates memory pages. This would require conversion

between bytes and 4K sized pages or other size depending

on the OS setting. It might require padding to perform

correct conversions.

• Previous work [11] paper evaluates migrate_pages
and memcpy mechanisms and projects memcpy to be a

more scalable mechanism for Xeon Phi KNL

D. When to Prefetch

By principle, the prefetch and eviction of data needs to be

overlapped with the computation of tasks. Over-decomposition

allows for such overlap between data prefetch and computa-

tion.

We present the cost associated with prefetching and evicting

data to provide an insight into the associated overheads. In

order to measure the cost of migrating data between HBM and

DDR4, we try to stress the bandwidth by having 64 threads

simultaneously perform prefetches. In addition, we consider

a working set size such that high amount of data is moved

between the memory nodes. The average costs associated, in

seconds, with the main step performed as part of the data

migration routine, memcpy is shown in Figure 7. We find

memcpy costs for HBM to DDR4 to be slightly higher.

V. EXPERIMENTS

We evaluate Stencil3D and Matrix Multiplication , on Intel

Xeon Phi Knights Landing. Stencil3D accesses large amounts

of data in quickly executing loops which makes it bandwidth

sensitive. Matrix multiplication with optimizations for Xeon

Phi KNL and with vectorization becomes bandwidth sensitive

as a result of several threads simultaneously accessing data

from memory. Our experiments are conducted on a single

machine to focus solely on within node memory heterogeneity.

The KNL node used in the experiments has the configuration:

Flat, All-to-All mode and was one of the nodes from Stam-

pede 2.0. Each KNL node has 68 physical cores with 4-way

SMT, hence providing a total of 272 cores. HBM has about

4X higher bandwidth than DDR4 as shown in Figure 1. In

our study, all active application data is accessed from HBM.

While some of DDR4 bandwidth is used for prefetching,
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the remaining DDR4 bandwidth could potentially be used to

augment the bandwidth provided by high bandwidth memory.

The capacity of HBM, MCDRAM is 16GB, whereas the

capacity of DDR4 is 96 GB, 6 times that of HBM. We use

only 64 out of the 68 cores for our experiments. An aspect

we do not consider in our study is comparison with cache

mode, which will be considered in the future. We do not use

SMT since different applications could benefit differently from

hyperthreading [12].

A. Stencil3D
In this section, we show speedup normalized to baseline

performance described in Section IV-B, for Stencil3D on KNL.

Stencil3D is a communication and memory intensive bench-

mark. It is a commonly used kernel in several applications

like MIMD Lattice computation. It involves communication

with its immediate neighbors in 2D or 3D space. For our

evaluation purposes, we consider only Stencil3D. The total

working set size for the grid that we consider is 32 GB. Our

scheme supports total working set size upto the capacity of

DDR4. The reduced working set size as a result of over-

decomposition is varied between 2GB and 8 GB. We perform

20 iterations to mimic tiling patterns that increase computation

to reduce the overhead incurred by data communication [13],

a commonly used technique of performing computations after

receiving the updated values from neighbors in the grid. The

Stencil3D communication and computation pseudo-code is

shown in Algorithm 2.

Algorithm: Run method on each stencil chare

while not converged do
Perform iteration:

while receive message from neighbors do
collect all data;

end
update all grid elements with received data;

send updated data to neighbors;

end
Algorithm 2: Stencil3D computation

Figure 8 shows the application iteration time speedup for

different queuing strategies.
Single IO thread. We observe considerable slowdown in the

application iteration time when performing Single IO thread

fetches. This is because, in Stencil3d, the update of grid

elements by each chare is done independently, i.e. each chare

reads and writes to independent data blocks in each iteration.

As a result, the IO thread needs to perform prefetch of blocks

for each chare on each PE, hence increasing the wait time as

observed in projections in Section IV-B.
Multiple queues, no IO thread. Compared to Single IO

thread this performs better since each chare has to wait only for

data for itself as the prefetch and eviction is done in parallel.
Multiple queues, Multiple IO threads. This shows best

performance since the prefetch and eviction are done asyn-

chronously. For applications that have low sharing of data

blocks across tasks, multiple IO threads would work best.
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Fig. 8: Speedup from data movement in Stencil3D. Single IO

thread is significantly slow since it fetches data for atleast one

chare per PE, for all PEs, before scheduling the tasks.

B. Matrix Multiplication

Matrix multiplication divides the work units into a 2 di-

mensional array of chares. The data is divided such that the

entire 2D grid of elements for input matrices A and B and

output matrix C are distributed into blocks of sub-rows X sub-
columns across the 2D array of chares. A and B input matrices

are readonly blocks and hence can be shared across chares.

The IO threads process the chares in a FIFO manner. For

our experiments, the total working set size for the matrices is

varied between 24 GB and 54 GB, while keeping the reduced

working set size constant at 6GB. Increasing the total working

set size allocates several blocks to DDR4, in Naive method.

Since several input A and B blocks are reused across chares, as

a result of overflow to DDR4, we see a significant slowdown

in Naive method as we increase the total working set size.

In our Matrix multiplication implementation, we use MKL’s

cblas_dgemm calls which are highly tuned for performing

matrix multiplication computations. In order to share the

common input readonly blocks across tasks depending on

them, we use a nodegroup in CHARM++ which allows

caching of data at node-level. We find that the MKL library’s

cblas_dgemm call for KNL has been optimized internally to

perform allocations on HBM. It is likely that the MKL library

uses the memkind library [14] in order to perform allocation

of datastructures created and used within the call. In order to

make our measurements independent of such optimizations,

we set MEMKIND_HBW_NODES to 0, so that such allocations

performed internally go to memory node 0, i.e low bandwidth

memory DDR4 in all our runs. This gives us explicit control

over where the primarily used matrices (input matrices A and

B, and output matrix C) are allocated. For DDR4only case,
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all matrices are allocated on DDR4. For Naive case, once

the MCDRAM is full, remaining sub-blocks of matrices A,

B and C are allocated to DDR4. As before, with fetch and

eviction strategies, data is allocated on DDR4 and fetched into

MCDRAM before being accessed by the dgemm call.
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Fig. 9: Speedup from data movement for Matrix Multiplica-

tion. Single IO thread performs as well as Multiple IO threads,

due to high data reuse of read-only data blocks.

Single IO thread. We observe in Figure 9 that single IO

thread performs almost as well as other cases, primarily due

to high data reuse in matrix multiplication. When a read-

only block is being used by another chare, it is not evicted.

As a result, when a data block is fetched into HBM, it is

consequently reused before eviction to DDR4.

Multiple queues, no IO thread. Parallel fetch does not see

much additional improvement compared to Single IO thread

which benefits from data reuse.

Multiple queues, Multiple IO threads. Similar to parallel

fetch, results are comparable to Single IO thread case. For

applications with high data block sharing and reuse, Single

IO thread would work well and incur low overhead.

VI. CONCLUSION

In this paper, we demonstrate the benefits of memory-

heterogeneity aware execution within the runtime system and

showe large speedups on the latest Intel Xeon Phi KNL in

flat mode memory configuration. We demonstrate scalable

mechanisms for prefetching and evicting data for many-core

systems with memory heteroegeneity. Our implementation

within the runtime system allows for such mechanism to be

used across any set of HPC applications by making trivial

annotations in the code.

Benefits were shown on a heterogeneous memory architec-

ture where memory nodes differ in their bandwidth. Architec-

tures with heterogeneity in both latency and bandwidth would

benefit even more. We plan to extend this implementation

to other heterogeneous memory architectures. We will also

perform comparisons with cache mode in KNL in the future

and in multi-node cluster settings.
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