
Automatic Topology Mapping of Diverse Large-scale Parallel
Applications

Juan J. Galvez

University of Illinois at

Urbana-Champaign

jjgalvez@illinois.edu

Nikhil Jain

Lawrence Livermore National

Laboratory, CA

nikhil@llnl.gov

Laxmikant V. Kale

University of Illinois at

Urbana-Champaign

kale@illinois.edu

ABSTRACT
Topology-aware mapping aims at assigning tasks to processors in

a way that minimizes network load, thus reducing the time spent

waiting for communication to complete. Many mapping schemes

and algorithms have been proposed. Some are application or domain

speci�c, and others require signi�cant e�ort by developers or users

to successfully apply them. Moreover, a task mapping algorithm

by itself is not enough to map the diverse set of applications that

exist. Applications can have distinct communication patterns, from

point-to-point communication with neighbors in a virtual process

grid, to irregular point-to-point communication, to di�erent types

of collectives with di�ering group sizes, and any combination of

the above. These patterns should be analyzed, and critical patterns

extracted and automatically provided to the mapping algorithm, all

without specialized user input. To our knowledge, this problem has

not been addressed before for the general case.

In this paper, we propose a complete and automatic mapping

system that does not require special user involvement, works with

any application, and whose mapping performs better than existing

schemes, for a wide range of communication patterns and machine

topologies. This makes it suitable for online mapping of HPC appli-

cations in many di�erent scenarios.

We evaluate our scheme with several applications exhibiting dif-

ferent communication patterns (including collectives) on machines

with 3D torus, 5D torus and fat-tree network topologies, and show

up to 2.2x performance improvements.

KEYWORDS
Topology aware mapping, Automated mapping, Network topology,

Pro�ling

ACM Reference format:
Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale. 2017. Automatic Topology

Mapping of Diverse Large-scale Parallel Applications. In Proceedings of ICS
’17, Chicago, IL, USA, June 14-16, 2017, 10 pages.

DOI: http://dx.doi.org/10.1145/3079079.3079104

This research is part of the Blue Waters sustained-petascale computing project, which

is supported by NSF award number OCI 07-25070 and the State of Illinois. Blue Waters

is a joint e�ort of the University of Illinois and NCSA. This work was performed

under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-728887).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ICS ’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5020-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3079079.3079104

1 INTRODUCTION AND MOTIVATION
The ever increasing demand for computational power has resulted

in deployment of supercomputers with tens of thousands of nodes.

Due to the large number of nodes, scalability of applications is often

limited by the communication performance of current generation

supercomputers. As computational capacity continues to rapidly

increase due to introduction of GPUs and Many-core CPUs, network

resources are expected to remain critical in next generation systems.

Network aware mapping of tasks to processors, referred to as

task mapping, is one of the primary ways of improving the observed

communication performance. A good mapping can reduce overall

load on the network in two ways: 1) avoiding network communica-

tion by co-locating heavily communicating tasks on the same node,

and 2) by reducing the average and worst-case loads on links.

Existing mapping strategies are either application-speci�c [1–3]

or can require too much e�ort on the part of users or developers

to adopt. For example, Rubik [4] is a manual scheme that assumes

structured communication patterns and knowledge of the applica-

tion’s virtual topology, and may require manual calculation of a

solution for each topology and shape. General purpose schemes

typically provide a generic mapping algorithm [5, 6], but it is up to

the user to obtain a suitable communication graph of their applica-

tion, convert to a format which the implementation understands,

and translate the solution to a format which the machine scheduler

can use. As a result, there has not been a widespread adoption of

topology mapping techniques, even though they have been proven

to (sometimes substantially) improve performance.

Automatic task mapping is attractive because it can reap these

bene�ts for any parallel application on any architecture, topology

and allocation shape without specialized user knowledge. In this

paper we propose a novel mapping scheme named TopoMapping
1
,

designed to meet the following goals:

• Is automatic and works for any MPI application (no user

involvement or input required).

• Produce solutions given any time constraint. Because opti-

mal mapping depends on the particular job allocation, it

must be calculated “on-line” right before the application

starts; thus it must not increase the overall job execution

time and in fact should shorten it.

• Produce solutions at least as good as current best-performing

algorithms, including expensive algorithms and those based

on graph partitioning.

• Can optimize based on multiple criteria. Existing algo-

rithms typically use a single metric as predictor of appli-

cation performance. Proposed metrics do not guarantee

1
TopoMapping is currently available to users on Blue Waters [7] as a system module.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale

strong correlation, therefore using multiple predictors can

improve performance as we will show.

We could not �nd an existing scheme that satis�es all of these

goals. A critical component in such a system is automatic commu-

nication graph generation, i.e. to pro�le the communication pattern

of an application and generate a suitable graph for the mapping

algorithm. Some parallel applications make heavy use of collec-

tives, and this information has to be included in the communication

graph. However, including all patterns is not desirable, because this

can produce graphs with high node degree that will slow down

most mapping algorithms, or impede the optimization of the pat-

terns that are more critical for the application. To the best of our

knowledge this has not been adequately addressed before.

TopoMapping also implements a parallel mapping scheme capa-

ble of �nding good solutions quickly for a wide range of problems.

The scheme is particularly tailored for HPC scenarios. It exploits

the high parallelism in a job by running separate instances of a

custom randomized mapping algorithm on each processor. The

search space depends on the parameters and heuristics chosen for

each particular instance of the algorithm, thus allowing for a deep

search over a wide search space.

The main contributions of this paper are summarized below:

• Automatic mapping system that adapts to application, topol-

ogy and shape without specialized user control. An impor-

tant part of this scheme is selection of the optimal commu-

nication graph for the given scenario.

• Parallel mapping scheme that exploits job parallelism and

fast mapping algorithm to quickly �nd good solutions, and

selects best solution based on multiple criteria.

• Con�gurable mapping algorithm whose search space and

behavior depends on input parameters and heuristics.

• Evaluation of scheme in terms of hopbytes and congestion,

two of the most relevant metrics in literature.

• Evaluation of scheme with several HPC applications, in-

cluding MILC [8], Qbox [9], and pF3D [10] on CrayXE,

BG/Q and fat-tree clusters.

2 RELATEDWORK
Many existing mapping schemes are either designed for speci�c

applications, networks, structured graphs, or require some form

of manual tuning from the user to optimize the solution for the

application of interest [3, 4, 11, 12].

Several general-purpose schemes have also been proposed over

the years. In general, they only focus on mapping algorithms, pro-

posed for either generic Quadratic assignment problems (QAP) [13]

or speci�cally for large mapping problems in HPC scenarios. For ex-

ample, Vogelstein et al. [13] recently proposed the Fast Approximate

Quadratic (FAQ) assignment algorithm. They show it to be faster

and achieve lower objective values for large part of the QAPLIB

benchmark library compared with previous state-of-the-art. In this

paper we compare our scheme with FAQ, and show that FAQ is too

expensive for many large-scale HPC problems. Agarwal et al. [6]

proposed an algorithm designed for mapping and load balancing

of parallel applications. The algorithm can also be applied to QAP

problems. It has a similar complexity compared to FAQ and we

also evaluate it in this paper. In [5] Hoe�er et al. propose three

general algorithms intended for mapping of large-scale applica-

tions. They evaluate the algorithms using a congestion metric, and

sparse-matrix vector multiplication code, but don’t evaluate the

mappings using production HPC applications. We will show that

our scheme outperforms these for a wide range of problems.

Some mapping heuristics are based on graph partitioning. One

example is Recursive Bisection in [5] where task and network

graphs are recursively partitioned in two at each stage using a

graph partitioner like METIS [14] or Zoltan [15]. The Scotch [16]

suite implements a similar mapping scheme. We also compare our

scheme with the recursive bisection scheme [5] using METIS.

The scheme we propose matches or outperforms existing schemes,

addresses the issue of communication graph generation and limita-

tion of single performance metrics, and is automatic, thus facilitat-

ing adoption for any MPI application in many di�erent systems.

3 TASK MAPPING PROBLEM
In this paper we use the well-known Task Graph Model (TGM) [5, 6].

Here we describe the model, and explain two important limitations

which are frequently ignored by existing schemes that need to be

addressed for e�ective mapping.

3.1 Task Graph Model (TGM)
Let the task graph be an undirected graphGt = (Vt ,Et) representing

the communication of an application with |Vt | tasks. There is an

edge eab ∈ Et between two tasks a,b ∈ Vt with weightw(e) if they

communicate a total of w bytes in both directions.

Let N be the set of nodes in the system, and Gn = (N ,En) a

directed graph representing the network topology. An edge exists

between nodes if there is a network link directly connecting them.

A node n has a set P(n) of processors (which can be empty for nodes

that should not be used for mapping, i.e. nodes not allocated to the

current job). The total set of processors is given by P = ∪n∈NP(n).
We assume that |Vt | = |P |, i.e. each processor will run one task.

The task mapping problem consists of assigning tasks to proces-

sors such that some objective function is minimized. Let S : Vt 7→ P
denote an assignment of tasks to processors. This is a combinatorial

optimization problem with n! possible assignments, where n is the

number of tasks.

3.2 Optimization objectives
Accurately modeling an application’s execution time and solv-

ing the mapping problem based on this criteria, particularly for a

general-purpose scheme, proves too complicated. Previous work

has proposed minimizing indirect objectives which are simpler to

model, like hopbytes [6], network congestion or dilation [5]. For

these objectives, the problem of task mapping has been shown to

be NP-hard. Most formulations have focused on optimizing hop-

bytes, making the problem equivalent to a Quadratic assignment

problem
2
.

Given a task mapping S , hopbytes of task t is de�ned as:

hopbytes(S, t) =
∑

et,u ∈Et

w(e) × distance(S(t), S(u)) (1)

2
Furthermore, �nding an approximate solution to QAP within some constant factor

of the optimal cannot be done in polynomial time unless P=NP [17].

Automatic Topology Mapping of Diverse Large-scale Parallel Applications ICS ’17, June 14-16, 2017, Chicago, IL, USA

where distance(p,q) is the number of network links between

processorsp and q. The average hopbytes
¯h and maximum hopbytes

ˆh are de�ned as:

¯h =

∑
t ∈Vt hopbytes(t)

|Vt |
(2)

ˆh = max

t ∈Vt
{hopbytes(t)} (3)

We will measure congestion in terms of the maximum link load

in the system. Let the binary variable ltu indicate if tra�c between

tasks t ,u ∈ Vt traverses link l , then the maximum link load is

de�ned by
3
:

maxload = max

l ∈En
{load(l)} (4)

load(l) =
∑

etu ∈Et

w(e) where ltu = 1 (5)

3.3 Limitations of Task Graph Model
TGM has two important limitations which are frequently ignored

or not adequately addressed:

3.3.1 Optimization criteria. One obvious limitation is that there

is no guarantee that the optimization objectives used in TGM will

correlate with application execution time. In fact, correlation may

depend on various factors including the speci�c application, the

machine topology, network architecture and shape of the alloca-

tion. As such, there are situations when using only one criteria as

predictor proves insu�cient.

Consider the performance results for MILC [8] on BG/Q with

di�erent mapping solutions, shown in Table 1. MILC has heavy

point-to-point (p2p) communication pattern which typically ac-

counts for most of the communication time. It also uses a global

Allreduce which induces global synchronization and is sensitive to

imbalance. Hopbytes is measured only for p2p (expressed as hops

per byte in table for legibility).

As we can see, there are solutions with similar mean hopbytes,

but di�erent max hopbytes. Mean and max hopbytes correlate very

strongly with mean and max p2p time, respectively. For MILC,

the imbalance resulting from high max p2p time has a large in�u-

ence on the global Allreduce, and negatively impacts application

execution time. As such, if we want to use hopbytes as predictor

for performance of MILC, the average (or equivalently the total

hopbytes), which is the widely used predictor when measuring

hopbytes, proves inadequate and the maximum must also be con-

sidered.

Table 1: E�ect of Avg and Max hopbytes on MILC perfor-
mance on BG/Q (using di�erent mapping solutions)

avg hops

per byte

max hops

per byte

mean

p2p time

max p2p

time

avg comm

time

max comm

time

exec

time

0.71 1.14 55.5 76.5 78.0 88.1 618.3

0.73 1.37 56.7 89.5 92.7 106.2 631.3

0.88 4.79 75.0 266.0 256.5 291.3 783.3

1.61 2.02 96.4 113.6 122.8 134.2 646.9

3
In systems with dynamic routing, this metric will vary dynamically.

Many existing mapping schemes do not consider multi-objective

optimization (e.g. [5, 6]).

3.3.2 Task graph. In general, previous work either implicitly as-

sumes that the task graph will include all communication between

tasks in the application, or leaves the responsibility of building a

suitable graph to others. This, however, is not trivial and imposing

it upon users only serves to limit adoption of topology mapping

techniques. Many applications have a mix of di�erent communica-

tion types which occur in di�erent phases of the application, and

congestion can happen at di�erent times. Applications can also

employ collectives which involve communication between a large

number of tasks
4
. Collectives can account for a signi�cant amount

of the run time and should not be ignored. However, including any

and all information in the graph is undesirable because:

(1) Collectives can substantially increase the node degree in

the task graph, increasing the time to solution of most map-

ping algorithms, with no guaranteed bene�t to mapping

quality and application performance. Since we require fast

calculation, this aspect must be controlled.

(2) Many collectives that involve all tasks or a signi�cant num-

ber of tasks don’t bene�t from mapping.

(3) Communication volume does not necessarily correlate with

communication time, and trying to optimize for everything

makes it harder to optimize for the communication types

that are more important for the application.

To illustrate point 3, suppose we have an application where the

volume of communication in bytes of an Alltoall does not have the

same e�ect on performance as the same volume of communication

of p2p exchanges. This can happen for various reasons, e.g. some

machines may optimize di�erent types of collectives and commu-

nication operations in di�erent ways, or these operations might

occur in di�erent stages of an application with possibly di�erent

overlap of computation and communication. Since it may not be

possible to minimize the hopbytes of both types of communication,

we need to select the trade-o� that’s right for the application. A

real-world example of this is shown in Section 4.1.

4 TOPOMAPPING SCHEME
As we explained at the beginning of the paper, we desire a process

that automatically maps any parallel application without specialized

user knowledge or control. The main novelty of our scheme is that

it can achieve this while addressing the limitations of the TGM. The

principal components of our proposed strategy are:

• Automatic application pro�ling step that generates a suit-

able task graph.

• Con�gurable mapping algorithm: takes as input the task

graph, network graph, set of heuristics and cost function.

• ParMapper: Parallel mapping calculator that runs multiple

instances of the mapping algorithm at the same time and

selects the best solution based on multiple criteria.

The TopoMapping scheme is outlined in Fig. 1. It consists of

a pro�ling phase where the best communication graph for the

application (referred to as Task_Graph*) is generated. Production

runs will use this graph and ParMapper to calculate the best task

4
Examples are MPI Alltoall, AllReduce, Gather, Scatter.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale

Profiling run Production runs

Application +
CommProfiler

Graph
Evaluation

Application

ParMapper

Task graphs

Task_Graph*

Task
placement file

Figure 1: Overview of TopoMapping scheme.

placement for the given job allocation. The result is a map �le that

is used by the system to launch the application. We explain the

process and components in detail below.

4.1 Automatic pro�ling and task graph
generation

As explained in 3.3, a critical step in the mapping scheme is auto-

matic generation of suitable task graphs. This is done in the pro�ling

phase, which is performed once for a given job size. In this phase,

the user runs the application (linked with a pro�ling library called

CommProfiler) using the same or similar parameters as would

be used in production runs. The duration or number of iterations

can be small, as long as communication that occurs in that time

is representative of the patterns that occur during a complete run

(i.e. it is not important to record the exact volume in bytes between

tasks, but rather the connections and weights between them).

4.1.1 CommProfiler. We have developed a PMPI-based pro�ling

library, called CommProfiler, which can be linked with any MPI

application to record useful information about the communication

behavior of the application. This information includes time spent

waiting for communication to complete classi�ed by type, and the

amount of bytes sent between MPI ranks for each type. Supported

types are point-to-point (p2p) and all of the di�erent MPI collectives

(Alltoall, Gather, etc).

The weight of a type is the amount of time spent in that operation.

We identify the most important types used by the application based

on their weight during the pro�ling run. First, large collectives

(global or involving a substantial amount of tasks) are �ltered out,

because they consist of a signi�cant portion of the nodes in the job,

so there is little to no room for improvement through mapping. For

the remaining communication types, we select the heaviest ones

whose total time is a signi�cant percentage of the total communica-

tion time. LetC∗ be the most critical types identi�ed in this fashion.

For example, if the application spends 85% of its communication

time doing point-to-point and Alltoall, C∗ = {p2p,Alltoall}.

For each type t in C∗, the pro�ler generates a cдt task graph

containing only communication of that type. Next, it generates two

graphs Sum and Weighted-sum, with aggregated information of

the cдt graphs. The Sum graph contains the union of tasks of cдt
graphs, and weights of edges are the sum of weights from the cдt
graphs. The Weighted-sum graph also contains the union of tasks

from the cдt graphs, but weights of edges are proportional to the

amount of time spent by the type in the pro�ling run. For example,

Table 2: Qbox execution time using di�erent task graphs
(All-to-all are non-global collectives)

Task graph avg p2p time avg a2a time exec time (s)

Point-to-point (p2p) 7.73 49.87 168.72

All-to-all (a2a) 44.96 22.80 192.54

Sum 21.54 22.62 166.17

Weighted-sum 16.60 23.88 161.49

if p2p represents 60% of the communication time and Alltoall 40%,

the edge weights of the former are multiplied by 0.6 while the edge

weights of the latter are multiplied by 0.4.

4.1.2 Task graph evaluation. The information collected by Comm-

Pro�ler gives some intuition about how the application will respond

to mapping based on the identi�ed critical types. However, without

specialized knowledge of the application, it is di�cult to know a

priori which graph is best. In order to select the best graph, we

provide an automatic script that tests the graphs by mapping and

running the application with each of them (using ParMapper). The

graph that leads to the lowest execution time (Task_Graph*) will

be the graph used in production runs (see Fig. 1).

We should note that the evaluation is tied to the job allocation

where the pro�ling run is performed. There is no guarantee that the

resulting task graph is the best choice for all possible allocations

in the machine. However, in most cases the graphs generated by

CommPro�ler are su�ciently distinct that the result translates to

di�erent allocations. Also, the graph evaluation step is optional,

but if the user decides to skip it, he must determine which of the

graphs generated by CommPro�ler to use for production runs.

Table 2 shows the e�ect of task graph when mapping Qbox [9]

on Blue Waters [7]. The identi�ed critical types C∗ in this scenario

are p2p and non-global Alltoall. We observe that p2p has a greater

e�ect on performance, and also how optimizing for a single type can

have the greatest e�ect on performance of that type, as opposed

to optimizing for multiple types. The best graph in this case is

Weighted-sum, because it is possible to optimize for both p2p and

Alltoall while taking into account the greater weight of p2p.

4.2 ParMapper: The parallel map calculator
The ParMapper utility runs inside the job prior to the application,

takes as input the task graph obtained in a separate pro�ling run,

and calculates a task mapping optimized for the job (i.e. the speci�c

topology and geometry where the scheduler has placed the job).

ParMapper uses the TopoMgr open-source library [18] that pro-

vides an abstract API to access topology information like set of

nodes in the job, processors in each node and distance between

nodes. TopoMgr supports Cray XT/XE machines and Blue Gene sys-

tems. It can easily be extended to other systems (we added support

for Catalyst which has a fat-tree network).

ParMapper exploits the parallelism in the job by running a cus-

tom greedy randomized mapping algorithm (named GreedyMap)

simultaneously on multiple processors. The search space explored

by GreedyMap (i.e. the set of solutions it can reach given in�nite

number of trials) varies depending on the parameters and heuristics

chosen. ParMapper can choose di�erent combinations of parame-

ters for each instance, called con�gurations. This will be described

Automatic Topology Mapping of Diverse Large-scale Parallel Applications ICS ’17, June 14-16, 2017, Chicago, IL, USA

in detail later. Once every instance �nishes, or the time limit elapses,

results are communicated to one processor, who determines the

best solution.

Multiple trials of GreedyMap with di�erent search spaces pro-

duce a wide spectrum of solutions, which is particularly helpful in

ensuring that the scheme is e�ective for a large number of applica-

tions, topologies and allocation shapes. Furthermore, it facilitates

choosing solutions based on multiple criteria. This capability is

bene�cial for task mapping because, like we showed in 3.3, we

cannot expect individual predictors by themselves to correlate per-

fectly with application execution time. The default
5

strategy used

by ParMapper to select the best solution is to generate the Pareto

frontier [19] based on two metrics:
¯h and

ˆh (see Eqs. 2 and 3). Let

¯h0 be the smallest
¯h in the Pareto set. ParMapper will select the

solution i with smallest
ˆhi that satis�es

¯hi < α · ¯h0, where α ≥ 1.

4.3 TopoMapping run time
Let M be the time to run ParMapper. M is user-con�gurable. We

recommend 1 minute for task graphs with low node degree (like

MILC), and 3-10 minutes for others (containing large collectives,

like Qbox). We use these time limits in Section 6.

For pro�ling runs, the time required by the scheme is T = P(n +
1) + nM where n is number of graphs generated by CommPro�ler,

and P the time to run the application in pro�ling mode (for each

graph, we need to calculate a mapping and run the application

in order to evaluate it). For example, in our experiments, average

execution time P with Qbox was 2.5 minutes, n = 4 (as seen in

Table 2), and we chose M = 5, making T roughly 32.5 minutes. For

MILC, n = 1 (p2p graph), M = 1, P = 5, thus T = 11.

For production runs, with the best graph already known, the only

requirement is to run ParMapper (scheme run time is thus M).

4.4 GreedyMap mapping algorithm
We now explain the GreedyMap algorithm used as part of our

scheme. One of the most important design constraints for GreedyMap

is low complexity, because we require �nding solutions given any

possible time constraint by the user. This precludes using more com-

plex algorithms, including existing greedy algorithms [5, 6]. Lower

complexity heuristics translate to reduced search, risking lower

quality solutions. To compensate for this, we exploit the parallelism

in the job by running multiple instances of GreedyMap simultane-

ously using di�erent con�gurations (i.e di�erent set of parameters

and heuristics). Note that a con�guration doesn’t simply change

the starting point of GreedyMap as in multi-start procedures like

GRASP [20]. Here it alters the heuristics used for the search. As we

will see, this allows achieving solutions similar in quality to O(n3)

algorithms in less time.

GreedyMap is shown in Algorithm 1. It takes as input the set of

nodesN in the job allocation, the task graphGt , and a con�guration.

It iterates sequentially over the tasks in T , and in each step places

the task in the best free processor. Cost is estimated using a function

that measures the cost of the partial solution. Cost functions include

measurement of hopbytes, max hopbytes and max link load.

5
Hop-bytes is faster to calculate than congestion and available on many machines. A

congestion metric, on the other hand, requires knowledge of routes which in systems

with dynamic routing like BG/Q is not known prior to running the application.

Algorithm 1 GreedyMap

Input: N , Gt , T , ∆, packNodeFirst, cost_function

Output: Task mapping S : Vt 7→ P
1: freeProcessors(n) ← number of available processors in n

∀n ∈ N
2: S ← ∅ // Initialize empty solution
3: nl ← node of p0 // last used node
4: for t ∈ T do
5: if packNodeFirst and freeProcessors(nl) > 0 then
6: K ← {free processor in nl }
7: else
8: K ← processors with same lowest cost in ∆ closest nodes

to nl
9: end if

10: p ← random processor from K

11: S(t) ← p // assign task t to processor p
12: nl ← node of p
13: freeProcessors(nl)← freeProcessors(nl) −1

14: end for

When a task has been placed in a node, the parameter ‘packNode-

First’, if TRUE, forces subsequent tasks to be assigned to that node

until it is �lled. This con�guration notably reduces the complexity

of the algorithm and works well in combination with other heuris-

tics as we will analyze later. If packNodeFirst=FALSE or current

node has been �lled, GreedyMap examines the ∆ closest nodes, and

selects a random processor from the set with equal lowest cost.

4.4.1 GreedyMap complexity analysis. The complexity of the

algorithm depends on the con�guration used. Let N = |N | be the

number of nodes in the allocation, and T = |Vt | the number of

tasks. Note that nodes contain multiple processors and one task is

assigned to each processor, so N < T .

In the slowest con�guration (packNodeFirst=FALSE), ∆ nodes

are explored in each iteration, and the cost function is applied for

the current task (which requires traversing the task’s neighbors in

the task graph Gt). The complexity of GreedyMap in this case is

thusO(T∆d) where d is the average node degree inGt . ∆ is at most

N , and some con�gurations use a reduced value like

√
N .

We should note that d � T in general. Useful graphs tend to

be sparse. As explained in 4.1, we ignore collectives involving a

signi�cant number of tasks when generating task graphs.

If packNodeFirst=TRUE, the complexity is O(T + N∆d), which

is considerably less than the previous con�guration, particularly

with “fat” nodes (with many processors)
6
.

As we can see, the complexity depends on the con�guration

used. ParMapper can return, if necessary, a solution as soon as one

of the con�gurations is �nished.

4.5 GreedyMap con�gurations and heuristics
A con�guration of GreedyMap is given by the tuple

(T ,∆, packNodeFirst, cost_function,Torus_Wrap) where T is the

task list. Torus_Wrap is only applicable for torus topologies and, if

true, allows wrapping through torus edges when exploring nodes.

6
On Blue Waters [7], one compute thread runs this con�guration with MILC [8]

communication graph (65k tasks mapped to 4096 nodes) in roughly 0.5 seconds.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale

The total number of con�gurations is system-dependent but is less

than 100. ParMapper will run every possible con�guration in paral-

lel, and a given con�guration will also run on multiple processors

to exploit randomness of GreedyMap. We will analyze the e�ect of

di�erent heuristics in Section 5.4.

The task list determines the order in which GreedyMap processes

the tasks. For many combinatorial problems, selection order is

known to be a powerful way of achieving good approximation

ratios with greedy algorithms
7
. This order has a major impact with

GreedyMap, and di�erent orders yield di�erent results depending

on the task graph and network topology. GreedyMap supports the

following lists, and custom ones may be provided by users:

(1) OO: tasks in original (application) order.

(2) BFS (Breadth-�rst search): Starting from one of the tasks,

tasks are inserted in the list by performing a breadth-�rst

traversal of the task graph (this is equivalent to doing a

bandwidth reduction [22] on the task graph).

(3) BFS-DFS (breadth-�rst and depth-�rst search combination):

Paths in the task graph are explored in a depth-�rst manner.

When the depth-�rst search cannot progress, breadth-�rst

search is used to pick the next task.

(4) GPART (min edge-cut): Task graph is partitioned into a

set of N (the number of allocated nodes) partitions that

minimize edge-cut, using partitioners like METIS [14]. The

task list is then composed by placing tasks that are in the

same partition into consecutive positions in the list.

The �rst three lists can be generated in O(T), while the last

depends on the complexity of the graph partitioning algorithm.

5 EVALUATION OF TASK MAPPING SCHEMES
In this section we evaluate the TopoMapping scheme using the

hopbytes and congestion metrics and compare with many previ-

ously proposed algorithms and common heuristics. We evaluate

using regular and irregular task graphs, under a variety of network

topologies (3D and 5D torus, and fat-tree). In Section 6, we show

performance of production applications with TopoMapping.

5.1 Algorithms
We compare TopoMapping with the following algorithms:

• TopoLB by Agarwal et al. [6] of O(n3) complexity.

• Fast Approximate Quadratic [13] of O(n3) complexity.

• Algorithms by Hoe�er et al. [5]: Greedy, Recursive Bisec-

tion and Graph similarity.

• List mapping variations consisting of assigning task i in a

list of tasks to processor i in a list of processors. We use the

�rst three task lists from Section 4.5. To form the lists of

processors, we use planar order and Hilbert curve (based

on geometrical coordinates of processors). The complexity

of these schemes is O(n).

Together with ParMapper, they represent a total of twelve dif-

ferent schemes. We have implemented them in C++ according to

their published descriptions, except FAQ for which we use the

authors’ MATLAB implementation
8
. In this section, the default

7
For example, for the job scheduling problem to minimize makespan, a simple greedy

algorithm is at worst 4/3-optimal, by simply ordering jobs by weight [21].

8
Available at https://github.com/jovo/FastApproximateQAP

scheme refers to the assignment of tasks in application order to

a list of processors generated in planar order. RCM refers to the

graph similarity algorithm of [5].

For each solution, we measure the hopbytes (Eq. 1), congestion

(Eq. 4) and time to obtain the solution. Results shown are normal-

ized to the lowest observed value, where 1 represents the best value

obtained for that metric. For ParMapper, we run all of its con�gura-

tions in parallel, and choose the best solution according to Section

4.2 (i.e. it considers both average and maximum hopbytes).

To measure congestion as de�ned in Eq. 4, we need to know the

routes between nodes. For the experiments in this section we use

a heuristic that selects, for each pair of communicating tasks, the

currently least loaded shortest path and updates the load of links

accordingly. It is not guaranteed to be optimal but produces less

congestion than a random shortest path strategy.

We will report the time taken by FAQ, TopoLB and Recursive

Bisection when explaining the results. ParMapper is run with �xed

durations shown next to its name (10, 20 and 60 s). For the rest of

heuristics the calculation time is only a few seconds and so will not

be mentioned.

Because TopoLB and FAQ haveO(n3) complexity and run slowly

on most of the problems tested, we partition the task graph to size N
where N is the number of nodes, and use the algorithm to map the

N coarsened tasks to nodes (i.e. does not map tasks to processors).

We only show results with TopoLB and FAQ for cases where we

could obtain solutions in under one hour.

Results are shown in Figs. 2-5. The shape of the topology is

indicated at the top of each �gure, the last number being the number

of processors per node.

5.2 Regular communication graphs
5.2.1 MILC. MILC [8] is a widely used application for studying

quantum chromodynamics (QCD). It simulates four dimensional

SU(3) lattice gauge theory by de�ning quark �elds on a 4D grid of

space time points. These points are divided among MPI processes,

which are also arranged in a virtual four dimensional grid. Most of

the communication in MILC is near-neighbor in which every MPI

process exchanges data with its eight neighbors in the 4D grid.

We use the MILC task graph obtained from CommPro�ler (con-

taining p2p communication, i.e. MPI_Send calls and its variants).

The results are shown in Fig. 2. As we can see, ParMapper �nds the

best solution in terms of hopbytes in all cases. The max link load

of the solution found by ParMapper is in many cases the smallest

or at worst 24% higher. Note that di�erences in max link load be-

tween ParMapper schemes are due to the fact that ParMapper is

trying to minimize hopbytes, not max link load. Minor di�erences

in hopbytes are due to random aspect of GreedyMap.

Other algorithms that perform well for MILC are FAQ and TopoLB.

TopoLB takes more than 3 minutes to run for problem sizes with

65,536 tasks and 2,048 nodes, while FAQ takes almost 17 minutes

for the largest problem. Recursive Bisection performs well in some

cases but not in others (e.g. for 3D torus of shape 16x2x16, hopbytes

is 46% higher than the best and max link load is 65% higher), and

runs in less than 30 seconds. The performance of Greedy is not very

consistent, with its solution being more than two times worse than

the best one in some cases.

https://github.com/jovo/FastApproximateQAP

Automatic Topology Mapping of Diverse Large-scale Parallel Applications ICS ’17, June 14-16, 2017, Chicago, IL, USA
0

1
2

3
4

5
6

MILC 8192 tasks, 8x8x8x16_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
FA

Q
Rec

Bise
ct

Gre
ed

y
Def

au
lt

OO_H
ilb

er
t

BFS
_H

ilb
er

t

BFS
_D

FS
_H

ilb
er

t

BFS
_P

lan
ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

0
1

2
3

4
5

6

MILC 65536 tasks, 4x4x4x16x2x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
FA

Q
Rec

Bise
ct

Gre
ed

y
Def

au
lt

OO_H
ilb

er
t

BFS
_H

ilb
er

t

BFS
_D

FS
_H

ilb
er

t

BFS
_P

lan
ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

0.
0

0.
5

1.
0

1.
5

2.
0

MILC 65536 tasks, 2048x32_fattree

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
Rec

Bise
ct

Gre
ed

y
Def

au
lt

RCM

hopbytes
max link load

Figure 2: Mapping results with MILC task graph. Left axis results normalized (one represents best value found).

0
2

4
6

8

Qbox 32768 tasks, 16x4x16x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
FA

Q
Rec

Bise
ct

Gre
ed

y
Def

au
lt

OO_H
ilb

er
t

BFS
_H

ilb
er

t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

0
1

2
3

4
5

Qbox 16384 tasks, 4x4x4x4x2x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
FA

Q
Rec

Bise
ct

Gre
ed

y
Def

au
lt

OO_H
ilb

er
t

BFS
_H

ilb
er

t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Qbox 16384 tasks, 1024x16_fattree

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
Rec

Bise
ct

Gre
ed

y

Def
au

lt

RCM

hopbytes
max link load

Figure 3: Mapping results with Qbox task graph (composed of point-to-point and Alltoall).

5.2.2 Qbox. Qbox [9] is a scalable implementation of �rst-principles

molecular dynamics based on the plane-wave pseudopotential for-

malism. MPI processes are arranged in a 2D grid, with di�erent

electronic states divided among the columns. FFT operations within

electronic states result in Alltoall among MPI processes that are part

of each column. Large sized broadcast and reductions are performed

among MPI processes that are part of each row.

The task graph for Qbox is generated by CommPro�ler and

contains point-to-point and Alltoall communication. Fig. 3 shows

that ParMapper is the best performing in terms of both metrics in all

cases. TopoLB closely approximates the best solution, particularly

in terms of hopbytes, but took 23 minutes to run for the scenario

with 32k tasks and 2,048 nodes. FAQ performs similarly to TopoLB,

but we could only run it for the smaller problem sizes (1024 nodes

or less, taking up to 130 seconds). Greedy, which didn’t perform

consistently for MILC, performs well for Qbox, although max load

is 65% worse than the best in one of the cases. Recursive Bisection

performs slightly worse than Greedy, and the max load in the

second scenario (5D torus with 16k tasks) is 66% worse than the

best. Recursive Bisection took at most 18 seconds to run.

5.3 Irregular communication graphs
To capture the characteristics of irregular applications, we use the

real-world matrices F1 and scircuit from the University of Florida

Sparse Matrix Collection (a similar analysis of mapping algorithms

was conducted in [5]). We focus on large problem sizes from now

on, and avoid TopoLB and FAQ based solutions for large scenarios.

5.3.1 F1. In Fig. 4, we can see that OO_Hilbert is the best per-

forming strategy in general for this problem, but ParMapper is close

to it. Also, ParMapper �nds the best solution in fat-tree (note that

Hilbert curve doesn’t apply in this topology).

TopoLB performs very well in the case where we used it (with a

time to solution of almost 3 minutes), but we didn’t test it in the

other cases due to the large problem size. The solution found by

Greedy is more than 2 times worse than the best in some cases.

The hopbytes of Recursive Bisection are within 30% of the best

solution, but the max load is more than 2 times worse in some cases.

Recursive Bisection took up to 77 seconds (5D torus scenario).

5.3.2 scircuit. This graph is highly irregular, with a few tasks

having many more neighbors than the rest, turning them into severe

bottlenecks if not mapped correctly. Results are shown in Fig. 5.

As we can see, many of the solutions are very far from the best

observed value (y axis is logarithmic scale), with solutions up to

200 times worse than the best.

In terms of congestion, ParMapper �nds the best solution or

closely approximates it. OO_Hilbert performs best in general for

torus topologies, while ParMapper �nds the best solution in fat-tree.

Solutions found by Greedy and Recursive Bisection are far from

the best value, particularly with congestion, which suggests that

the critical tasks were not mapped correctly. Recursive Bisection

took up to 65 seconds to calculate a solution.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

F1 65536 tasks, 16x8x16x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Top
oL

B
Rec

Bise
ct

Gre
ed

y
Def

au
lt

OO_H
ilb

er
t

BFS
_H

ilb
er

t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

H_R
CM

hopbytes
max link load

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

F1 131072 tasks, 4x4x8x16x2x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Rec
Bise

ct
Gre

ed
y

Def
au

lt
OO_H

ilb
er

t
BFS

_H
ilb

er
t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

0.
0

0.
5

1.
0

1.
5

2.
0

F1 131072 tasks, 4096x32_fattree

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Rec
Bise

ct

Gre
ed

y

Def
au

lt

RCM

hopbytes
max link load

Figure 4: Mapping results with graph based on F1 matrix from UFL sparse matrix collection.

1
2

5
10

50
20

0
50

0

scircuit 131072 tasks, 32x8x32x16_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Rec
Bise

ct
Gre

ed
y

Def
au

lt
OO_H

ilb
er

t
BFS

_H
ilb

er
t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

1
2

5
10

50
20

0

scircuit 131072 tasks, 4x8x8x8x2x32_torus

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Rec
Bise

ct
Gre

ed
y

Def
au

lt
OO_H

ilb
er

t
BFS

_H
ilb

er
t

BFS
_D

FS
_H

ilb
er

t
BFS

_P
lan

ar

BFS
_D

FS
_P

lan
ar

RCM

hopbytes
max link load

1
2

5
10

20
50

20
0

scircuit 131072 tasks, 4096x32_fattree

Pa
rM

ap
pe

r_
10

Pa
rM

ap
pe

r_
20

Pa
rM

ap
pe

r_
60

Rec
Bise

ct

Gre
ed

y

Def
au

lt

RCM

hopbytes
max link load

Figure 5: Mapping results with graph based on scircuit matrix from UFL sparse matrix collection. Y-axis is log-scale.

5.4 Analysis of heuristics
In the wide range of problems tested, the schemes that perform best

in general are ParMapper, TopoLB and FAQ. TopoLB and FAQ are

largely equivalent in terms of quality but are both too expensive to

be used for large problems. Of the remaining schemes, Recursive

Bisection, Greedy, OO_Hilbert and default can obtain good results

in some cases, but not in every scenario.

In general, the heuristic that has the largest in�uence on solution

quality with ParMapper is task selection order. All of the orderings

considered are heuristics aimed at grouping together tasks that

communicate between themselves. There is not a single strategy

which is best for every scenario.

With MILC and scircuit, the best task list is OO. Often, the appli-

cation order of tasks contains information about the structure of

the problem domain, and mapping this structure to processors in a

way that minimizes cost obtains best results. Note that this is also

the reason why other strategies that use OO sometimes perform

well. However, their strategy of selecting processors is not optimal

for every geometry. Default, for example, selects processors in the

order given by the machine. packNodeFirst=True and OO usually

work well together, because packNodeFirst helps to preserve the

structure given by the application.

OO does not always produce best results, however. On torus,

GPART sometimes performs better with Qbox, while BFS is always

best in F1. On fat-trees, GPART is usually the best for every test

case. The main reason for this is that existing graph partitioning

algorithms are e�ective at minimizing communication between

partitions. GreedyMap will roughly assign each partition to a node

which, by the fact that there are very small variations in distance

between nodes in fat-trees, leads to good solutions. It is interesting

to note that GreedyMap �nds the best solution on fat-trees with

packNodeFirst=False, which means it does not necessarily preserve

the exact group structure given by GPART.

In general, the purpose of ∆ is to control calculation time at the

expense of solution quality, although sometimes lower ∆ can result

in better solutions by keeping the partial solution of GreedyMap

constrained to the current processor space being explored, which

keeps indirectly related tasks close together.

We should also note that we have not used congestion metric

as cost function in these experiments, but ParMapper was still

able to �nd solutions with low congestion, suggesting that multi-

criteria optimization (based on average and max hopbytes) also

helps minimize the congestion metric.

6 APPLICATION PERFORMANCE
In this section we show results running production HPC applica-

tions with our automatic mapping scheme on several systems. Each

system has its own default mapping strategy to place tasks. De-

pending on the application’s task graph and other factors like the

shape of the allocation, default mapping may or may not perform

well. We conduct these experiments on Blue Waters [7] (3D torus

topology), Blue Gene/Q [23] (5D torus) and Catalyst (fat-tree). Note

that while Blue Waters has a 3D torus topology, it may allocate

non-contiguous torus partitions, where non-compute nodes are

interspersed in the allocation. TopoMapping works well in this sit-

uation because it can map to any arbitrary topology. Due to space

Automatic Topology Mapping of Diverse Large-scale Parallel Applications ICS ’17, June 14-16, 2017, Chicago, IL, USA
E

xe
cu

ti
on

 ti
m

e
(s

)

0
20

0
60

0

ParMapper
default
topaware

8x
4x

8
/ 8

k

11
x2

x1
2

/ 8
k

6x
6x

8
/ 8

k
11

x2
x2

4
/ 1

6k

8x
8x

8
/ 1

6k
16

x8
x1

6
/ 6

5k
22

x4
x2

4
/ 6

5k
11

x8
x2

4
/ 6

5k

Figure 6: MILC execution time on Blue Waters with
TopoMapping, topaware and default mapping. Bottom axis
shows allocation shape and number of tasks.

restrictions we will show a subset of representative results that

cover a wide range of applications and systems.

6.1 MILC
For MILC, CommPro�ler automatically determines the best task

graph to be p2p because (disregarding the global Allreduce) it ac-

counts for almost all the communication time.

6.1.1 Blue Waters. We compare TopoMapping with the system

mapping and with a mapping tool called topaware available on Blue

Waters. This tool has been used in the past for MILC production

runs on this system. Note that topaware is not an automatic tool: it

needs to know how the application partitions its virtual topology,

assumes regular communication within this grid and it cannot run

on any arbitrary allocation shape returned by the scheduler.

Fig. 6 shows results for various allocation shapes and sizes. As

we can see, topaware performs best, but it only runs on a limited

number of shapes. Execution time using ParMapper is very close to

topaware in most cases. ParMapper shows very good weak scaling

performance regardless of number of tasks or allocation shape. The

performance of system mapping depends notably on the shape of

the allocation. MILC runs up to 60% faster with ParMapper than

default with 16k ranks, and up to 2.2x faster with 65k ranks.

6.1.2 BlueGene/Q (Mira and Vesta). MILC has high computa-

tion to communication ratio due to the slow speed of cores; with

TopoMapping, communication time is as low as 7% of the total run

time in our results. With system mapping, it is 20% in the worst case.

Results are shown in Fig. 7. ParMapper shows good weak scaling

performance. The system mapping scheme is highly dependent on

allocation shape. With 32k tasks in shape 4x4x4x8x2, it performs

badly and ParMapper improves performance by 16%, while they

perform similarly in the other shape. For 65k tasks, system scheme

performs well in the shape we obtained, and improvement with

ParMapper is smaller (5.4%). Note that ParMapper signi�cantly

improves the communication time of MILC (as seen in Fig. 7 (b)).

6.1.3 Catalyst. For many cases, we �nd that our scheme results

in unexpectedly high reduction in communication time and total

execution time. For example, we observe 88% and 76% lower total

execution time for runs performed on 1024 and 512 processes, re-

spectively. To understand the reasons for these high improvements,

we analyzed the default mapping on Catalyst and found that MPI

ranks are assigned to cores using a cyclic scheme, i.e. rank 0 is

run on core 0 of node 0, rank 1 is run on core 0 of node 1, and

4x4x4x8x2 / 32k 4x4x8x4x2 / 32k 4x4x4x16x2 / 65k

(a) Execution time

P
ro

gr
am

 e
xe

cu
ti

on
 ti

m
e

(s
)

0
20

0
40

0
60

0
80

0

4x4x4x8x2 / 32k 4x4x8x4x2 / 32k 4x4x4x16x2 / 65k

(b) Communication time

C
om

m
un

ic
at

io
n

ti
m

e
(s

)

0
50

10
0

15
0

20
0

ParMapper
default

Figure 7: MILC execution time and communication time on
Blue Gene/Q with TopoMapping and default mapping. Run-
ning on 32 processors per node.

so on, which is not good for an application like MILC that does

near-neighbor communication. Thus, to be fair, we also compare

TopoMapping results with runs that perform block mapping. In this

scenario, we �nd that TopoMapping reduces the communication

time by up to 34% while the total execution time is reduced by 14%.

6.2 Qbox
6.2.1 Blue Waters. As with MILC, the performance of the sys-

tem mapping varies with allocation shape. CommPro�ler deter-

mines the best graph to be sum-weighted of p2p and subcommuni-

cator Alltoalls, which are the types where Qbox spends most of its

communication time. Results are shown in Fig. 8 (a) (strong-scaled).

We observe a performance increase with ParMapper of 45% with

16k ranks, and 70% with 32k ranks.

6.2.2 Catalyst. On this system, TopoMapping improves per-

formance of Qbox by 17% with 512 processes and 28% with 1024

processes compared to the system mapping. It is interesting to note

that CommPro�ler also includes subcommunicator Allreduce in

the task graph (whereas it did not on Blue Waters). The di�erence

in topology (fat-tree vs torus) has an e�ect on the performance of

the Allreduce, and CommPro�ler automatically detects this.

6.3 PSDNS-CCD3D
PSDNS-CCD3D is an in-development research code for the simu-

lation of turbulent �ows. One of the its main components is the

combined compact di�erence (CCD) [24] kernel. In these experi-

ments we map the CCD kernel on Blue Waters, using test cases

provided by authors. Most of the communication time is due to

p2p and Alltoall, but CommPro�ler determines the best graph to

be Alltoall-only, as it allows better optimization of this collective

and leads to lower execution time. Results are shown in Fig. 8

(b). TopoMapping shows better weak-scaling performance and im-

proves the run time of the kernel by 16.6% compared to the system

map with 32k tasks, and by 22.6% with 65k tasks.

6.4 pF3D
pF3D [10] is a scalable multi-physics code used for simulating

laser-plasma interactions in experiments conducted at the National

Ignition Facility (NIF) at LLNL. A 3D Cartesian grid is used for

decomposing pF3D’s domain among MPI processes. The commu-

nication performed by pF3D consist of Alltoall operations within

subcommunicators de�ned along X and Y axes in every Z plane,

and point-to-point communication across Z planes.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Juan J. Galvez, Nikhil Jain, and Laxmikant V. Kale

11x2x24 / 16k 8x8x8 / 16k 22x2x24 / 32k

(a) Qbox on Blue Waters

P
ro

gr
am

 e
xe

cu
ti

on
 ti

m
e

(s
)

0
50

10
0

15
0

20
0

25
0

ParMapper
default

11x2x24 / 32k 22x2x24 / 65k

(b) CCDKernel on Blue Waters

P
ro

gr
am

 e
xe

cu
ti

on
 ti

m
e

(s
)

0
10

20
30

40
50

32768 65536 131072

(c) pF3D on BG/Q

P
ro

gr
am

 e
xe

cu
ti

on
 ti

m
e

(s
)

0
10

20
30

40
50

Figure 8: Execution time of Qbox, CCD kernel and pF3D with TopoMapping on di�erent machines.

CommPro�ler determines the best graph to be Alltoall-only,

for the same reason as with PSDNS-CCD3D. Fig. 8 (c) shows that

ParMapper reduces the total execution time of pF3D execution on

a Blue Gene/Q by up to 14% when weak scaled. For pF3D, roughly

27% of time is spent in communication with default mapping. With

ParMapper, the fraction of time spent in communication reduces

to 18%, with a 44% drop in absolute communication time.

7 CONCLUSION AND FUTUREWORK
Task mapping is an e�ective way of improving the execution time

of HPC applications on many systems. Improvement depends on

several factors like the application, network topology and job size.

In this paper, we proposed a novel task mapping system which is

automatic, avoids limitations of existing schemes, and performs bet-

ter in general. We evaluated our scheme with diverse applications

on many systems, using no special knowledge of the applications

or domain-speci�c techniques. Results show typical improvements

in execution time ranging from 15% to 54%.

As future work, we would like to integrate the scheme into

runtime systems like Charm++ [25] so that mapping is dynamically

optimized for di�erent phases of the application by migrating tasks

between processors during application execution. This can also be

combined with load balancing capabilities to dynamically balance

workload between processors.

REFERENCES
[1] Hao Yu, I-Hsin Chung, and Jose Moreira. Topology Mapping for Blue Gene/L Su-

percomputer. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,

SC ’06, New York, NY, USA, 2006.

[2] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. Mcmanus. Partitioning

& mapping of unstructured meshes to parallel machine topologies. In Proc.
Irregular ’95: Parallel Algorithms for Irregularly Structured Problems, volume 980,

pages 121–126. Springer, 1995.

[3] Abhinav Bhatele and Laxmikant V. Kale. Application-speci�c Topology-aware

Mapping for Three Dimensional Topologies. In Proceedings of Workshop on
Large-Scale Parallel Processing (IPDPS ’08), April 2008.

[4] Abhinav Bhatele, Todd Gamblin, Steven H. Langer, Peer-Timo Bremer, Erik W.

Draeger, Bernd Hamann, Katherine E. Isaacs, Aaditya G. Landge, Joshua A. Levine,

Valerio Pascucci, Martin Schulz, and Charles H. Still. Mapping Applications with

Collectives over Sub-communicators on Torus Networks. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 97:1–97:11, Los Alamitos, CA, USA, 2012.

[5] Torsten Hoe�er and Marc Snir. Generic topology mapping strategies for large-

scale parallel architectures. In Proceedings of the international conference on
Supercomputing, ICS ’11, pages 75–84, NY, USA, 2011. ACM.

[6] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware Task

Mapping for Reducing Communication Contention on Large Parallel Machines.

In Proceedings of the 20th International Conference on Parallel and Distributed
Processing, IPDPS’06, pages 145–145, Washington, DC. IEEE Computer Society.

[7] National Center for Supercomputing Applications. Blue waters project. http:

//www.ncsa.illinois.edu/enabling/bluewaters.

[8] MILC Collaboration. MIMD Lattice Computation (MILC) Collaboration Home

Page. http://www.physics.indiana.edu/~sg/milc.html.

[9] Francois Gygi, Erik W. Draeger, Martin Schulz, Bronis R. de Supinski, John A. Gun-

nels, Vernon Austel, James C. Sexton, Franz Franchetti, Stefan Kral, Christoph W.

Ueberhuber, and Juergen Lorenz. Large-scale Electronic Structure Calculations of

high-Z Metals on the BlueGene/L Platform. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[10] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and E. A. Williams.

Filamentation and forward brillouin scatter of entire smoothed and aberrated

laser beams. Physics of Plasmas, 7(5):2023, 2000.

[11] Mehmet Deveci, Sivasankaran Rajamanickam, Vitus J. Leung, Kevin Pedretti,

Stephen L. Olivier, David P. Bunde, Umit V. Çatalyürek, and Karen Devine.

Exploiting geometric partitioning in task mapping for parallel computers. In

Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 27–36, Washington, DC, USA, 2014.

[12] H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keasler, K. Tomko,

K. Schulz, A. Moody, and D. K. Panda. Design of a scalable in�niband topology

service to enable network-topology-aware placement of processes. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 70:1–70:12, Los Alamitos, CA, USA, 2012.

[13] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley,

D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast Approximate Quadratic

Programming for Graph Matching. PLoS ONE, 10(4), 2015.

[14] George Karypis and Vipin Kumar. A coarse-grain parallel formulation of multi-

level k-way graph partitioning algorithm. In Proc. of the 8th SIAM conference on
Parallel Processing for Scienti�c Computing, 1997.

[15] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson,

James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New

challenges in dynamic load balancing. Appl. Numer. Math., 52:133–152, 2005.

[16] Cédric Chevalier, François Pellegrini, Inria Futurs, and Université Bordeaux I.

Improvement of the e�ciency of genetic algorithms for scalable parallel graph

partitioning in a multi-level framework. In In Proceedings of Euro-Par 2006, LNCS
4128:243–252, pages 243–252, 2006.

[17] Sartaj Sahni and Teo�lo Gonzalez. P-complete approximation problems. J. ACM,

23(3):555–565, July 1976.

[18] Abhinav Bhatele, Eric Bohm, and Laxmikant V. Kale. Optimizing communication

for charm++ applications by reducing network contention. Concurrency and
Computation: Practice and Experience, 23(2):211–222, 2011.

[19] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses for

maximal vector computation. The VLDB Journal, 16(1):5–28, January 2007.

[20] Paola Festa and Mauricio G.C. Resende. Grasp: An Annotated Bibliography, pages

325–367. Springer US, Boston, MA, 2002.

[21] Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for scheduling independent

tasks on nonidentical processors. J. ACM, 24(2):280–289, April 1977.

[22] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In Proceedings of the 1969 24th National Conference, ACM ’69, pages 157–172,

New York, NY, USA, 1969. ACM.

[23] Dong Chen, Noel A. Eisley, Philip Heidelberger, Robert M. Senger, Yutaka

Sugawara, Sameer Kumar, Valentina Salapura, David L. Satter�eld, Burkhard

Steinmacher-Burow, and Je�rey J. Parker. The IBM Blue Gene/Q interconnection

network and message unit. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’11, pages

26:1–26:10. ACM, 2011.

[24] T. Gotoh, S. Hatanaka, and H. Miura. Spectral compact di�erence hybrid computa-

tion of passive scalar in isotropic turbulence. J. Comput. Phys., 231(21):7398–7414,

August 2012.

[25] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon,

Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz

Wesolowski, and Laxmikant Kale. Parallel programming with migratable objects:

Charm++ in practice. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14, pages 647–658,

Piscataway, NJ, USA, 2014. IEEE Press.

http://www.ncsa.illinois.edu/enabling/bluewaters
http://www.ncsa.illinois.edu/enabling/bluewaters
http://www.physics.indiana.edu/~sg/milc.html

	Abstract
	1 Introduction and motivation
	2 Related work
	3 Task mapping problem
	3.1 Task Graph Model (TGM)
	3.2 Optimization objectives
	3.3 Limitations of Task Graph Model

	4 TopoMapping scheme
	4.1 Automatic profiling and task graph generation
	4.2 ParMapper: The parallel map calculator
	4.3 TopoMapping run time
	4.4 GreedyMap mapping algorithm
	4.5 GreedyMap configurations and heuristics

	5 Evaluation of task mapping schemes
	5.1 Algorithms
	5.2 Regular communication graphs
	5.3 Irregular communication graphs
	5.4 Analysis of heuristics

	6 Application performance
	6.1 MILC
	6.2 Qbox
	6.3 PSDNS-CCD3D
	6.4 pF3D

	7 Conclusion and Future Work
	References

