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I. INTRODUCTION

Topology-aware mapping of applications on clusters and
supercomputers becomes more difficult as the number of nodes
in the systems increase and interconnection networks become
more complex. To facilitate this process, Rubik [1] was
proposed to generate mappings that lead to good performance
on allocations that are symmetric, compact, and convex, e.g.
allocations on most Blue Gene/Q systems. However, many
supercomputers provide irregular, asymmetric, and disjoint
allocations to users for better utilization of resources. It
is significantly more difficult to map applications on these
allocations because of the lack of structure in the allocations
and unavailability of certain nodes which are reserved for
other work, e.g. IO servers. In this poster, we extend Rubik
to provide mapping support for these complex cases by using
different heuristics to project virtual machine topologies onto
real machine topologies. We evaluate our work using two
widely used HPC applications, namely MILC and Qbox,
on Blue Waters, a Cray XE supercomputer. We show that,
for these communication intensive applications, MPI time is
reduced by 60% in MILC and 56% in Qbox when running on
16,384 ranks using the proposed extension to Rubik.

II. RELATED WORK AND MOTIVATION

Rubik [1] is a python based framework for mapping appli-
cations with structured communication patterns onto regular
allocation grids. Figure 1 shows the basic idea of Rubik.

Fig. 1: Rubik: high level overview [1].
In a Rubik script, application and network grids are de-

scribed as cuboids. The map() function in the script maps
each MPI rank in the application grid to the network grid.
Using the transformations provided by Rubik, users can group
together different sets of points in the two grids, and map
these sets to one another based on their choice. With Rubik,
users, who have a good understanding of an application’s

algorithms and communication patterns, can minimize the
cost of communication by writing a simple python script.
Following is a Rubik script to partition and map MPI ranks in
a 8× 8 application grid onto a 4× 4× 4 3D torus allocation.

# C r e a t e app p a r t i t i o n t r e e o f 64− t a s k p l a n e s
app = box ( [ 8 , 8 ] )
app . t i l e ( [ 8 , 1 ] )

# C r e a t e ne twork p a r t i t i o n t r e e o f 64− p r o c e s s o r cubes
ne twork = box ( [ 4 , 4 , 4 ] )
ne twork . t i l e ( [ 2 , 2 , 2 ] )
ne twork . map ( app ) \# Map Task p l a n e s i n t o cubes

As we can see, Rubik makes partitioning and mapping of
MPI ranks easy by using a few lines of code in a python
script. Rubik supports many kinds of partition methods such
as tile, divide, mod, and cut (described in [1]). It also provides
permuting operations like tilt, zigzag and zorder.
Rubik’s limitation on irregular allocations: Currently, Rubik
only supports partitioning and permuting of MPI ranks on
regular allocations. It neither handles the case in which the
allocated nodes may not form full cuboids, nor does it support
exclusion of certain unavailable nodes such as the service
nodes or IO nodes. This limits usage of Rubik to Blue Gene
systems only.

III. EXTENSION AND MAPPING SCHEMES

In this work, we extend Rubik to support allocations that are
either irregular in shape and/or consist of unavailable nodes.
To do so, we introduce the concept of virtual network grid.
Instead of mapping the application grid to the real network
grid, users can now define a virtual network grid. Application
grid is mapped to this virtual grid, which in turn is mapped to
the real allocation grid using heuristics defined inside Rubik.
Currently, two such heuristics are supported.
Row ordering maps the MPI ranks in the virtual grid to
nodes in the real allocation using a dimension ordered traversal
ordered by bandwidth of links in each dimension.
Recursive Coordinates Splitting groups neighboring nodes
in an allocation into subcuboids. This technique splits the
given grids into smaller subcuboids and distributes holes in
an allocation into those small cuboids to prevent the cost
of the holes from being concentrated in certain regions of
the allocation. Figure 2 shows how the recursive splitting
works and the advantages of recursive coordinates splitting
over row-ordering in asymmetrical allocations having holes
inside. As shown in this figure, applications with near-neighbor
communication pattern such as stencil benefit from recursive
splitting because it groups neighboring MPI ranks into groups



so neighboring MPI ranks can be placed in tiles even on the
asymmetrical allocation having service nodes. For example,
Rank 6 communicates with Rank 2, 5, 7 and 8. The number
of total hops between Rank 6 and others is reduced by half
when it is placed with recursive splitting compared to row-
ordering.

Fig. 2: The advantage of Recursive Coordinates Splitting on
an asymmetrical allocation having service nodes.

With recursive coordinates splitting, how an allocation is
split is important. More specifically, the benefit of this scheme
can change depending on the order of directions of each
splitting and the shape of the logical torus. We placed MPI
ranks to maximize bisection bandwidth in each splitting and
used simple heuristic to give users approximately similar shape
of logical torus to the real allocation. The heuristic factorizes
the number of PEs and starts from 1 x 1 x 1 for a logical
torus. Repeatedly it multiplies each dimension with factors by
the factorization. It enables more similar shape of virtual grids
than using a simple fixed shape of virtual grids

IV. EXPERIMENTAL RESULTS

# of tasks Geometry Internal fragmentation Service Nodes
4096 9 x 2 x 8 24/280 (8.57 %) 8 (2.78%)
16384 11 x 2 x 24 0/1024 (0.00%) 32 (3.03% )

TABLE I: Details of the allocations used in this experiment.
To evaluate the benefit of this work, we have run MILC

and Qbox on NCSA Blue Waters with the parameters and
allocations shown in Table I. Internal fragmentation is the
number of gemini routers (nodes) in each allocation which are
not available for the experiment. Service nodes is the number
of service nodes in each allocation; percentage values shown
are the ratio of service nodes to the number of nodes in each
allocation excluding the internal fragmentation. We ran both
the applications with 4K and 16K cores and used CrayPat to
get timing results for user functions and MPI routines.

Each stacked bar graph in Figures 3 & 4 shows time spent in
MPI communication routines. In each graph, ‘default’ means
the result with the default mapping, ‘rcb’ means the result with
recursive coordinates splitting, ‘row’ means the result with
row-ordering, and ‘With opt’ are the results with heuristics
for better shape of virtual grid in a Rubik script. All the data

points are normalized by the result of run with the default
mapping.

In both applications, we achieved significant reduction in
MPI communication time. For MILC, we achieved reduction
in MPI communication routines by 27% on 4K ranks and
59% on 16K ranks. For Qbox, the benefit of this work was
not significant in experiments on 4K ranks but we achieved
significant reduction in timing for SCALAPACK functions
on 16K ranks. Note that the functions of the SCALAPACK
used by Qbox uses MPI routines such as MPI Send/Recv,
MPI Bcast and MPI Alltoall.
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Fig. 3: MILC with 4096 and 16384 ranks on 9x2x8 and
11x2x8 allocations
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Fig. 4: Qbox with 4096 and 16384 ranks on 9x2x8 and 11x2x8
allocations

V. CONCLUSION

We extended Rubik to help users map their applications
on irregular allocations with minimal changes to their existing
scripts. We implemented and evaluated two mapping schemes,
namely the row-order and recursive splitting, and applied a few
heuristics to maximize the bisection bandwidth and minimize
hops. Our experiments on NCSA Blue Waters show significant
improvement in MPI communication time for two widely used
HPC applications, MILC and Qbox.
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