
Mapping Applications on Irregular Allocations
Seonmyeong Bak, Nikhil Jain(Mentor), Laxmikant V. Kale(Advisor)

Abstract
 Mapping applications on clusters becomes more difficult as the number

of nodes become larger

 Supercomputers assigns allocations with irregular shapes to users to
maximize the utilization of resources

 Much more difficult to map applications on these irregular allocations

 We extended Rubik, a python based framework to map applications on
irregular allocations with a few lines of python codes

o Rubik was originally designed for regular allocations, so we added
features to handle allocations with irregular structure and
unavailable nodes and two mapping algorithms such as row-ordering
and recursive splitting

 We evaluate our work with two widely used HPC applications on Blue
Waters: MILC and Qbox

o We reduce execution time by 32.5% in MILC and by 36.3% in Qbox,
and communication time by 60% in MILC and 56% in Qbox

Experimental ResultsBasic mechanism

Application: 8 x 8

Allocation: 4x8x3 (32 service nodes included)

Map from virtual
network grid

to irregular allocation

Network: 4x4x4

Map
From application grid

to virtual grid

 Users write a Rubik script to map
their application grids onto virtual
network grids

 Our projecting algorithms maps
virtual grids onto real irregular
allocations with possibly
unavailable nodes

 All our changes in Rubik are hidden
from users – old rubik scripts will
continue to work with very few
changes

 Configuration for experiments
o The details of the allocations

o Machine: NCSA Blue Waters , hybrid machine of Cray XE/XK nodes
o Blue Waters has 2 nodes in one gemini and we used 16 cores per node

o Applications: MILC, Qbox
o All the results are normalized to the corresponding result with the default mapping of the Blue Waters
o Rcb with opt, row with opt means the results with optimization for better shape of the virtual

network grid
o RCB and row without optimizations used regular shape of the virtual network grid(e.g. 8 x 4 x 4 for

4096 ranks, 8 x 8 x 8 for 16384 ranks.)
o On each stacked bar, USER means execution time for functions in each application excluding elapsed

time for communication related functions

 MILC

o 32.5% improved in execution

o 59.3% improved in communication

o With many number of cores,
MILC spent more time on communication

 Qbox

o 36.3% improved in execution

o 59.3% improved in communication

o Qbox doesn’t call p2p routines directly. Instead, it uses
SCALAPACK for p2p communication between ranksOptimizations

 The direction of splitting

 Calculate bisection bandwidth in
each splitting and choose the direction
where the bisection BW is lowest

 To maximize the bisection
bandwidth between closest
subcuboids

 The shape of the virtual network grid

 Estimate the shape of the virtual network grid with the shape of the allocation

 Factorize the number of tasks and use factors by this factorization for the estimation
o E.g.) 9 x 2 x 8 allocation, 4096 ranks

o Factorize 4096 -> 212

o Start from 1 x 1 x 1 -> multiply each dimension with factors until each dimension becomes
equal or larger than the corresponding dimension of the allocation

o 1 x 1 x 1 -> 2 x 1 x 1 -> 2 x 2 x 2 -> 4 x 2 x 2 -> 4 x 2 x 4(because y dimension is already 2)
-> 8 x 2 x 4 -> 8 x 2 x 8 (done)

Rubik, a python framework for structured
communication

 Rubik is a python based framework
developed at LLNL for mapping
applications with structured
communication onto regular allocation[1]

 Rubik facilitates mapping of user
application using a few lines of python
code

o Users can easily general several different
mappings for their applications

 Rubik supports many types of operations
for better mapping of application grids
onto network grids

Limitation of Rubik for irregular allocations
 Rubik is designed for mapping applications onto regular and

symmetrical allocations

 However, in many cases, the shapes of the allocations are irregular
as the Blue Waters
(Gray -> compute nodes, red -> XK nodes, blue-> service nodes)

 Motivation of this work: how to enable use of Rubik on irregular
allocations for its broader applicability

[1] A. Bhatele et al., "Mapping applications with collectives over sub-communicators on torus networks," High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, Salt Lake City, UT, 2012, pp. 1-11. doi: 10.1109/SC.2012.75

o This work minimize hops between ranks so p2p operations
are more improved than collective operations
Optimization to estimate the shape of the virtual network
grid seems effective in more irregular allocations with more
number of cores

o The random shape of the virtual network grid can increase
hops between ranks by inefficient placement of ranks

of tasks Geometry Internal fragmentation Service Nodes
16384 11 x 2 x 24 0/1024(0.00%) 32(3.03%)

o SCALAPACK in each graph include elapsed time
for functions in SCLAPACK and most of them use
MPI routines significantly

o In 16384 ranks, most of reduction comes from
the reduction in SCALAPACK

Projecting Algorithm
 Row ordering

o Place MPI ranks in the order of each

axis in an allocation

o Suitable for allocations that are mostly

regular

 Recursive splitting

o Split virtual network grid and an

allocation into subcuboids

o Map each subcuboid in the virtual

network grid into corresponding

subcuboid in the allocation

o Suitable for irregular allocations and

can minimize hops for apps having

neighbor communication pattern

