
Handling Transient and Persistent Imbalance
Together in Distributed and Shared Memory

Abstract—The recent trend of rapid increase in the number
of cores per chip has resulted in vast amount of on-node
parallelism. Not only the number of cores per node is increasing
substantially but also the cores are becoming heterogeneous. The
high variability in the performance of the hardware compo-
nents introduce imbalance due to heterogeneity. The applications
are also becoming more complex resulting in dynamic load
imbalance. Load imbalance can result in loss of performance
and decrease in system utilization. We address the challenge
of handling both transient and persistent load imbalance while
maintaining locality and incurring low overhead. In this paper,
we propose a new integrated runtime system that combines the
Charm++ distributed programming model with concurrent tasks
to handle the load imbalance problem. It utilizes an infrequent
periodic assignment of work to cores based on load measurement,
in combination with user created tasks to handle load imbalance.
We integrate OpenMP with Charm++ so as to enable creation of
potential tasks via OpenMP’s parallel loop construct. This is not
specific to Charm++ and is also available to MPI applications
as well through Adaptive MPI implementation. We show the
benefit of using this integrated runtime system on three different
applications. We show improvements of 2X on ChaNGa on 128K
cores and more than 3X on NAMD at 2K cores. We also show
the benefit on an MPI application, Kripke, using Adaptive MPI.

I. INTRODUCTION

Several trends in high-performance computing are converg-
ing to drive applications and systems software to rely on multi-
threading in each node’s shared memory, rather than running
an independent process on each CPU core. Increasing per-
chip concurrency creates pressure on system memory, system
software, and application design. The general abandonment
of specialized OS kernels [1], [2] in favor of general-purpose
Linux has rolled back past efforts to reduce system noise [3].
Finally, CPU heterogeneity [4] and increasing application so-
phistication both increase load imbalance and unpredictability.
In this paper, we present a combination of the Charm++
and Adaptive MPI distributed programming models with both
standard OpenMP and new parallel loop and concurrent task
constructs that addresses many of these challenging trends
with a low-overhead and locality-conscious design.

The number of cores and threads in each chip is increasing
rapidly. Within each node, increased hardware parallelism
entails reduced per-core/thread memory capacity and band-
width. Over entire parallel systems, treating each core as an
independent unit forces communication libraries to consume
more memory and pushes collective algorithms further toward
asymptotic scaling limits. Applications that wish to use each
core independently must be structured to expose a corre-
spondingly large and growing degree of parallelism. General

whole-job load balancing mechanisms must then address the
increased scale of both systems and applications. Thus, the
prospect of grouping many cores together as multi-threaded
units mitigates many threats to continued performance scaling.

Many parallel applications no longer work in a regime
where work and data can be neatly divided into uniform
chunks distributed to each processor. This trend encompasses
unstructured computations, data-dependent iterative methods,
variable resolution, multi-physics simulations, multi-phase ex-
ecution, and many other developments that trade reduced total
work or increased accuracy for more complicated and less
predictable execution. Even applications that do offer simple
structured decompositions are made imbalanced by hardware
heterogeneity. Load balancing in various forms can be applied
to aid these applications, but it too must be scalable, which
often means coarsening the problem to the node level to
avoid considering an excessive number of cores. Discrete units
of work assignment, heuristic algorithms, and unpredictable
processor performance also prevent perfect uniformity. Sup-
plementary within-node balancing can help make up for these
short-falls, as illustrated in Figure 1.

Even with very balanced work assignment across nodes and
individual cores, execution may not proceed at a perfectly uni-
form pace. Network contention can delay some messages more
than others. System noise from OS processes can also non-
uniformly interfere with execution [3], with hard to predict
knock-on effects [5]. Dynamic work redistribution can greatly
help in mitigating these effects [6].

All of these pressures lead to a conclusion that multiple
cores within each node must share data and work to sustain
continued scalability in problem size and performance. At
the same time, any sharing mechanism ideally should not
compromise data locality or introduce excessive new bottle-
necks or overheads. To address these desires, we introduce
a design that combines the Charm++ and Adaptive MPI
distributed programming models with both standard OpenMP
and new parallel loop and concurrent task constructs. Charm++
intermittently performs coarse load balancing in terms of
objects that encapsulate associated work and data together,
and assigns them to particular cores with good balance among
nodes. These objects then adaptively share work with other
cores in the same process, exposing fine-grained tasks only
to the extent that otherwise idle cores are available to help
execute them. Thus, our design ensures locality and low
and proportionate scheduling overhead. We demonstrate this
design’s effectiveness through the improved performance and
scalability of several applications run on large supercomputers.

(a) Without intra-node LB (b) With intra-node LB

Fig. 1: The potential benefits of intra-node work sharing on reducing load imbalance

The contributions of the paper are:
• An approach that combines infrequent global load bal-

ancing with shared-memory task parallelism to handle
transient and persistent load imbalance.

• Efficient implementation of dynamic scheduling of fine-
grained tasks which uses an adaptive schedule based on
the state of the system.

• Integration of OpenMP with Charm++ to enable fine-
grained parallelism.

• Improved performance by using the integrated runtime
system on three different applications. We show improve-
ments of 2X on ChaNGa on 128K cores and more than
3X on NAMD at 2048 cores. We also show the benefit
on an MPI application, Kripke, using Adaptive MPI.

II. RELATED WORK

Per-chip core and thread counts are steadily increasing in
HPC systems. The trend toward increasing core/thread counts
will accelerate with the increased deployment of Knight’s
Landing-generation Intel Xeon Phi hardware with several
dozen cores per chip as primary processors rather than as
accelerators (e.g. in NERSC’s Cori, LANL’s Trinity, and
ANL’s Theta). This trend has driven scalability challenges and
opportunities for increased efficiency arising from multiple
cores sharing access to common memory. The ubiquitous MPI
has correspondingly evolved in usage and implementation to
work well in this setting [7]–[12], leading to explicit support
for shared memory in the MPI-3 standard. Charm++ has
followed a similar progression, as described in Section III.

The process-per-core model of pure MPI has not been
universally sufficient. Applications may have limitations in the
scalability of their parallel algorithms and data structures, or
may present insufficient parallelism in their mode of work
decomposition among MPI processes. Communication that
could be avoided in shared memory is also an undesirable
overhead. This has led to the rise of hybrid ‘MPI+X’ program-
ming. OpenMP is the most prevalent shared-memory program-
ming model paired with MPI, with extensive work studying
its implementation and impact (e.g. [13]–[15]). This hybrid
model has been increasingly used with other shared memory

programming models to handle within node parallelism [13],
[16], [17]. Similar work has been done with Charm++ as the
distributed substrate, combined with both OpenMP1 and the
bespoke ‘CkLoop’ loop-multithreading mechanism [18], both
of which we extend in the present work.

The MPI+X model on its own has been shown to improve
load balance within each node [19]. We combine a periodic
measurement-based inter-node load balancing scheme to attain
approximate uniformity, with dynamic shared-memory execu-
tion to smooth out residual imbalances. A recent set of papers
by V. Kale, Gropp, et al. have explored the hybrid model
in more detail. They mix static and dynamic scheduling of
work among cores on a node to improve the tradeoffs among
overhead, locality, and load imbalance [20]–[22]. They also
show that these techniques can be used to reduce the impact
of system noise [6]. Our work carries these ideas further, by
adaptively tuning the level of dynamic scheduling to match its
potential utility, thus pushing overhead lower.

Projects to more tightly integrate various shared and dis-
tributed memory models have also arisen, with aims to
improve scheduling and locality further. OmpSs introduced
concurrent tasks on top of OpenMP, with data dependences
satisfied by MPI communication operations and coordinated
by its runtime system. Recent versions of MPC bind an
implementation of MPI that supports multiple ranks in each
OS process [23] to multi-threading via POSIX threads [24],
OpenMP [25], and Intel TBB. This paper moves in a sim-
ilar direction, by directly scheduling execution of various
shared-memory tasks to run on normal Charm++ worker
threads, overlaid on the work and data mappings generated by
Charm++’s distributed memory load balancing infrastructure.

The approach of work-stealing task scheduling has been
used in Cilk [26], Intel TBB [27], OpenMP 3.0 [28] and
Habanero [29]. The randomized work-stealing used in Cilk
can result in loss of locality. TBB has a mechanism to bind
each loop iteration to the same worker thread that previously
executed that iteration, thereby favoring temporal cache-reuse.
The Habanero runtime system has an adaptive locality-aware
work-stealing scheduler [30] to increase temporal data reuse.

Fig. 2: Charm++ Parallel Programming System

III. CHARM++ PROGRAMMING MODEL FOR SHARED
MEMORY

Charm++ is a parallel programming system which is based
on an asynchronous message driven execution model. Each ap-
plication’s data and computations are encapsulated in entities
called chares, which are C++ objects. An application written
in Charm++ is over-decomposed into these objects. Chares
interact via asynchronous method invocations and a method on
a chare is executed when a message is received for it. Chare
objects are assigned to a core by the runtime system. Typically
there are many more objects than the number of cores, which
is known as over-decomposition. This encapsulation of data
and its computation into a chare, each of which is mapped to
a specific core, inherently promotes data locality.

In the message driven execution model of Charm++, the
runtime system actively probes for incoming messages. On
receiving a message, it identifies the corresponding chare
which is targeted by the incoming message and schedules it.
Figure 2 shows the overdecomposition where multiple chares
are assigned to a PE and communicating via messages.

The SMP mode of Charm++ takes advantage of multi-core
shared memory processors [18]. In this mode, a Charm++ OS
process is called an SMP node which launches multiple threads
and each thread is called a PE. In a typical configuration the
number of threads launched by the Charm++ process is equal
to the number of cores or hardware threads on a node. A PE is
mapped to a separate core or a hardware thread. We use core,
hardware thread and PE interchangeably. These threads (PEs)
have CPU affinity, i.e. each PE is bound to a specific core
and the operating system is not allowed to migrate the thread
to another core. Each PE has a separate message queue and
the scheduler on the PE picks up messages from the queue
and handles it. Within an SMP node, data is shared between
the PEs via pointers. Utilizing the shared memory multi-core
processor in this way has many benefits. In SMP mode, intra-
node communication is implemented via a single copy, rather
than the double copy scheme used between nodes. It also
significantly reduces the memory footprint of the program by
eliminating the memory needed for intra-node communication
channels and buffers. Since all PEs within an SMP node share

a memory address space there needs to be only one copy of
read-only data structures. Running multiple threads in a single
process enables work sharing without explicit inter-process
data transfer.

IV. OVERVIEW

The challenge, as outlined in Section I, is to balance load
across PEs while managing locality. A pure task model with
randomized work stealing, or a pure dynamic schedule in
OpenMP, sacrifices locality significantly to an extent that
often nullifies the benefits of dynamic load balancing [20],
[22]. Dynamic load balancing strategies are used to balance
the load and redistribute the work at runtime. These load
balancing strategies can incur significant overhead due to the
cost of computing a new assignment and the consequent data
movement. If done less frequently, the overhead is reduced and
locality is maintained, but dynamically emerging load imbal-
ance may last longer before being corrected. With increasing
number of cores within a node, intra-node load balancing will
become an effective way to reduce load imbalance.

The approach we propose is to utilize a relatively infrequent
periodic assignment of work to cores based on load measure-
ment, combined with user assisted creation of potential tasks
from the work assigned to each core that the runtime can
choose to make available to other cores. The idea is to utilize
the idle cycles on other cores on a node to execute tasks. We
also need to make sure we do not incur task creation overhead
when tasks are not needed. Figure 1 shows a schematic
diagram of such a scenario where most of the computations
are executed on the core they are assigned to, but the load
imbalance towards the end triggers the dynamic creation of
fine-grained tasks which are distributed across different cores.

We support this approach with two methods for users to
create potential tasks. The first method is a task abstraction
that we have added to Charm++. The second one, which builds
on it, is an integration of OpenMP with Charm++, such that
each object can create potential tasks via OpenMP parallel
loop constructs. Both of these are capable of creating potential
tasks that can be used for dynamically utilizing all cores to
restore balance. We also develop multiple runtime scheduling
strategies for managing these potential tasks.

In the following sections we describe our approach in detail.
We first discuss the periodic load balancing in Section V. Then
we describe the task model in Charm++ in Section VI. Follow-
ing this we describe our OpenMP integration with Charm++ in
Section VII. Finally, we showcase the application performance
improvements achieved by using the new integrated runtime
system in Section VIII.

V. PERSISTENCE BASED LOAD BALANCING

Many HPC applications execute the simulation in a series
of time-steps or iterations until convergence is achieved. As
a result, consecutive iterations have a similar computation
and communication pattern. For such applications, a heuristic
called principle of persistence [31] holds which says that the
communication pattern and computation load of the recent

past is a good indicator of near future. We use this to predict
the load of future iterations; The predictions are used by the
load balancing strategies to make the global decisions. We
work with Charm++ because of the support for dynamic load
balancing. As mentioned in the earlier section, in Charm++,
the data and its computation is encapsulated into a chare
object which resides on a specific PE. A PE here refers to a
processing element such as a core or a hardware thread. This
naturally promotes locality. Load balancing aims to provide
an assignment of these objects to PEs to reduce the load im-
balance. The Charm++ load balancing framework provides a
mechanism to collect the load and communication statistics of
each chare object and the processor in a distributed database.
These statistics are used by the load balancing strategies to
generate a chare-to-core mapping at run time.

Charm++ contains a suite of load balancing strategies that
balances load between PEs. For the purpose of this work,
we use a two-level load balancing strategy for one of the
applications, ChaNGa: the load is first balanced across nodes
and then balanced within each node, both by assigning chares
to PEs. This ensures that the load is distributed evenly among
the nodes; it is also distributed evenly among cores of the
node to the extent that the load predictions hold. The other
load balancing strategy used in this paper is a hierarchical
load balancer. In this hierarchical strategy, the processors are
divided into groups organized in a hierarchical tree fashion.
At each level of the hierarchy, the root performs the load bal-
ancing strategy over the children in its sub-tree. The residual
load imbalance that results in spite of this periodic balancing
can be handled by the fine-grained intra node task balancing
strategies described below.

VI. HANDLING RESIDUAL AND TRANSIENT LOAD
IMBALANCE WITH CHARM++ TASK MODEL

A. Task API

We support two methods of task creation. One is using an
API in Charm++ to support loop parallelization. The second
one is creation of tasks via OpenMP’s parallel loop construct
described in Section VII. The following API is provided to
the programmer to expose loop parallelism.

ParallelFor(funcptr, int argc, void* argv,
int start, int end, int step,
int redOp, void *redBuf,
callback*, int sync)

The funcptr is the pointer to the function that executes the
chunk of work on any core within the node. We support a
limited number of reduction operations. If sync is set then it
does not return control until all the chunks are done executing.
If sync is not set, then the control returns as soon as all the
tasks have been picked by any of the cores. If a callback is set,
then it invoked once all the chunks of work are completed.

B. Task Generation and Scheduling

A straightforward way to schedule parallel-for tasks is to
statically assign equal chunks of work to all the cores within

Algorithm 1 Recursive Splitting
Input:
low - Lower Index of the Task Array
high - Higher Index of the Task Array
mid - Middle Index of the Task Array
taskDesc - Task Descriptor
chunkSize - Chunk Size

1: function RECURSIVESPLIT(low, high, taskDesc)
2: size = high− low
3: if (size < chunkSize) then
4: executeTask(low, high, taskDesc)
5: return 0
6: else
7: Task tPushed = new task(mid, high, taskDesc)
8: Push (tPushed)
9: RECURSIVESPLIT(low,mid, taskDesc)

10: Task tPopped = Pop()
11: if (tPopped = NULL) then . If Pushed task is stolen
12: return 0
13: else . If Pushed task is not stolen
14: RECURSIVESPLIT(mid, high, taskDesc)
15: end if
16: end if
17: end function

the node as done by OpenMP’s static schedule. This is
not suitable for our case where worker threads may be busy
with their own computation. If other cores are busy with
their computation work, then they won’t pick up the statically
assigned task to execute. This will result in the delay in
completion of the parallel-for loop and wastage of CPU cycles
at the caller. Alternatively, one could create all the chunks
and push them into a common task queue from which other
threads will pick work. This could have high overhead of task
creation and contention at the shared task queue. We use a
separate task queue for each PE which is described in detail
in Section VI-C.

We explore other task generation and scheduling strate-
gies many of which involve work-stealing such as done in
Cilk [26].

1) Recursive ParallelFor Task Generation: Algorithm 1
describes the algorithm for recursive ParallelFor. In this mode,
one task descriptor is created with all the information about
the task. Typically the task descriptor contains the object
pointer, function pointer, total number of chunks and an atomic
variable to keep track of the number of finished chunks. In
recursive ParallelFor task generation, the loop iterations are
split into two halves (similar to the Cilk recursive spawn).
A task message is created for one of the halves. This task
message contain the iteration range and a pointer to the
common task descriptor. The worker pushes the task message
into the task queue and calls the function recursively for the
other half. If the iteration range is within the chunksize, then
the task is executed. The thief steals the task from the head
of the queue. This ensures that a large fraction of the work
is stolen. The thief will then generate more tasks which are
added to its task queue and starts working on chunks.

2) Broadcast Task Message: We have a single task descrip-
tor with information about the task. A message containing

pointer to the task descriptor is sent to all the PEs within the
node via a broadcast tree. Whenever the scheduler on a PE
picks up the message it repeatedly and atomically increments
a variable to get the next chunk to work on and executes that
chunk of work, until there are no chunks left to schedule.

3) Only When Idle: A PE incur unnecessary overhead due
to task creation and queue contention when there are no idle
PEs who can steal and execute some of their tasks. We use
an atomic counter to keep track of the number of idle PEs
within the node. Any PE trying to generate fine-grained tasks
can use this information to decide number of tasks to generate
thereby adaptively controlling the number of tasks generated
depending on the state of the system.

4) History: We utilize the principle of persistence to further
reduce the overhead of task creation. Each PE keeps a history
of fraction of tasks that was locally executed. This information
is used to decide the number tasks to be generated and pushed
to the task queue to enable work sharing.

C. Task Queue

To support tasks, we created a task queue on each PE, which
is distinct from the normal message queue. The messages in
the message queue are meant for that specific PE whereas the
tasks in the task queue can be distributed across different cores
on a node. The scheduler on the PE polls the local task queue
and the message queue for messages. We chose not to have a
centralized task queue at the node level because then we lose
locality information and there could be potential contention
for the centralized queue. We have a separate task queue on
each PE, which is a single producer multiple consumer queue
for the fine-grained tasks. Whenever a PE becomes idle, it
randomly chooses a PE and picks tasks from that PE’s task
queue. This is similar to Cilk’s workstealing [26], except that
our scheduler also polls other queues, including a PE-specific
message queue for messages to chares assigned to that PE by
the periodic load balancer.

The task queue is implemented using the Chase-Lev [32]
non-blocking algorithm. The task queue is a double-ended
queue. A push(t) call enqueues a task at the tail of the queue.
A pop() call dequeues a task from the tail of the queue. A
steal() call dequeues from the head of the queue. The queue
is a cyclic array of task pointers with non-wrapping head and
tail indices. A worker does a push(t) by adding the task at the
tail of the queue and increments T, the tail pointer. A worker
does a pop() by decrementing T. If it detects that there could
be a conflict, then it uses compare and swap (CAS) to handle
the conflict. A thief reads H and T and uses CAS to atomically
increment H and obtains the task.

The task descriptor contains details about the task such
as the object pointer, function pointer, parameters and an
atomic variable. The message enqueued into the task queue
contains range parameters and a pointer to the common task
descriptor. To avoid the overhead of creation of messages
and task descriptors, we keep a pool of task messages and
descriptors which are reused.

VII. OPENMP INTEROPERATION WITH CHARM++

In this section, we discuss the OpenMP thread model and
our implementation and optimization of its runtime features
for Charm++.

A. OpenMP thread model

OpenMP is the de-facto standard for task-level parallel
programming on shared-memory systems. It has been widely
adopted and implemented on existing platforms. OpenMP was
originally based on the fork-join model of parallelism [33]. All
OpenMP programs start with a single thread, called the initial
thread. This thread runs sequentially and serves as a host. The
initial thread can offload its task into other threads on the same
node. When this initial thread encounters a parallel pragma,
it constructs a team where all threads on the same node keep
information of OpenMP tasks assigned to them. After this
parallel region ends, the initial thread continues execution.
While this initial thread is running in a sequential region, all
other threads wait in a thread dock for the next task. While
initially based on a synchronous model, the latest versions of
the OpenMP standard have added more asynchronous features.

B. Implementation of OpenMP for Charm++

Common OpenMP runtime system would spawn their own
threads independent of Charm++ worker threads. Without
proper coordination between the two runtime systems the
OpenMP and the Charm++ threads will contend for hardware
resources and lead to oversubscription of cores. To enable
OpenMP to efficiently work with Charm++, we modified an
OpenMP library to use Charm++ threads, so that the two
runtimes can share resources.

We used GNU OpenMP 4.0, which is forked from GCC
4.9.3 for better portability and support across many platforms.
First, we modified the OpenMP runtime to use Charm++
threads to execute its tasks. Instead of spawning new threads
for the execution of OpenMP tasks, our OpenMP runtime puts
the task descriptor in Charm++ message. These messages are
pushed into a thread-local task queue that can be accessed
by other threads on the same node. The idle threads steal the
tasks from the task queue. Because OpenMP is predominantly
a synchronous programming model, all OpenMP programs
have an implicit synchronization point in termination. Without
removing these implicit synchronization points, the OpenMP
tasks would make all Charm++ threads wait at a number
of barriers. As all threads in Charm++ are both worker as
well as master threads, removing these barriers is necessary
because otherwise it can lead to a hang. To solve this issue,
we eliminate all barriers in OpenMP and replace them with
atomic counters for each OpenMP task collection. When a
chare generates OpenMP tasks, it records the number of tasks
in its own team structure. Then, when other chares attempt to
steal tasks from a busy thread, they decrement the appropriate
counter to notify the master thread that its task is going to
be executed. All OpenMP tasks pushed into the task queue
can now be considered normal Charm++ messages, which
can be executed and migrated within a node. The Figure 3

Node (SMP mode)
PE 0 PE 1 PE 2 PE 3

#pragma omp parallel for
for (i = 0 ; I < n ; i ++)
{ ….. }

task	Q

#pragma omp parallel for
for (i = 0 ; I < n ; i ++)
{ ….. }

#pragma omp parallel for
for (i = 0 ; I < n ; i ++)
{ ….. }

#pragma omp parallel for
for (i = 0 ; I < n ; i ++)
{ ….. }

task	Q task	Q task	Q

T0 0

T0 1

T0 2

T0 3

T0 3 T2 0

T2 1

T2 2

T2 3

T3 0

T3 1

T3 2

T3 3

① Push	OpenMP tasks	into	local	 task	Q

② Steal	tasks	from	neighboring	 PE	when	it	become	 idle

Fig. 3: Implementation of OpenMP for Charm++ using the task API

shows how the OpenMP interoperates with Charm++ when
Charm++ runs on a node with 4 PEs and use static scheduling
to split each chare’s task into OpenMP tasks. For the purpose
of simplicity, we show how the static schedule of OpenMP
works in this integrated runtime system. First, each chare splits
its task into as many OpenMP tasks as there are PEs on a node.
The OpenMP runtime puts each OpenMP task in a Charm++
message and pushes all of the messages into the thread local
task queue. An idle thread can potentially steal a task from
one of busy threads on the same node, thereby distributing the
work.

C. Scheduling schemes of OpenMP for Charm++

1) Basic scheduling schemes for OpenMP: The number of
messages created for OpenMP tasks resulted in overheads in
message creation and queue contention. We identified various
opportunities for performance improvement and implemented
them as different scheduling schemes. In the OpenMP stan-
dard, there are four kinds of scheduling schemes for OpenMP
tasks. The first and default scheduling policy in many im-
plementations is static scheduling. static scheduling assigns
the iterations of a for-loop to cores in blocks of size number
of iterations divided by the number of physical threads in
a node. This incurs no overhead due to task creation and
contention because it is done by the compiler. In the dynamic
schedule, threads in a team pick and execute next available
iterations. Dynamic scheduling incurs some overhead due to
task creation, contention of shared resources as well loss of
locality. In the guided policy, each thread in the team is
assigned a chunk of iteration proportional to the number of
unassigned iterations divided by the number of threads in a
team. Whenever each thread in a team finishes its assigned
task, the next assigned chunk is determined in this way. User
can specify the minimum size of chunk in the guided policy.
The auto policy is specific to each implementation.

2) Changing the portion of stealable OpenMP tasks: We
first consider static scheduling and show how we minimize the
overheads of our task scheduler. Although static scheduling
avoids the runtime overhead of dynamic and guided policies,
static scheduling can still cause significant overhead by the
creation of excessive numbers of messages. We implemented
some of ideas described in Section VI-B to avoid this over-
heads. To minimize overheads of accessing the local task
queue, we make all threads have a history vector to keep a
record of previous ratios of stolen tasks and locally executed
tasks. Using the moving average of the previous ratios in
the history vector helps each thread decide how many of the
generated tasks it should push into its local task queue for work
stealing. This can reduce some overheads for each thread to
push and pop its own OpenMP messages into the local task
queue.

3) Changing the number of OpenMP messages created:
We use an atomic counter for the number of idle threads in
the Charm++ runtime to prevent each thread from creating
more messages than the number of idle threads. This can
reduce overheads in creating messages significantly and ef-
ficiently. When the OpenMP runtime splits each thread task
into OpenMP tasks, it first inspects the idle counter maintained
by the runtime system. In addition to this value, the OpenMP
runtime also looks at the local history record of previous ratios
of work stolen. These ratios represents how many of tasks
have been stolen by other threads. Then, when each thread
needs to split their task into at least the number of messages
proportional to the average of these previous ratios. In our
integration of OpenMP for Charm++, we use a bigger value
of average ratio in the history vector and the number of idle
threads in the atomic counter to decide how many messages to
be created. Using only the counter may restrict parallelism at
times because each thread may lose the opportunity to receive
help from other threads becoming idle while its tasks are being

executed.

VIII. APPLICATION STUDY

We study the performance benefits of our new integrated
runtime system that combines the Charm++ distributed mem-
ory model with the task model on two production scientific
simulation codes, ChaNGa and NAMD, as well as its use in
an MPI+OpenMP proxy application, Kripke. We compare the
performance of these codes with and without the task model
integrated. We show the performance of ChaNGa on Blue
Waters and NAMD on Blue Waters and Blue Gene Q. For
all the applications, we picked the scheduling strategy that
performed the best. For the Charm++ ParallelFor, we use the
recursive task generation scheme and for OpenMP we use the
history scheme. Both of them were used in conjunction with
the when idle strategy.

Blue Waters is a Cray XE/XK hybrid machine hosted by
NCSA consisting of AMD 6276 Interlagos processors lo-
cated at the National Center for Supercomputing Applications
(NCSA). It has 22,640 Cray XE nodes and 4,228 Cray XK
nodes that include NVIDIA GPUs. On the XE nodes there
are two AMD Interlagos 6276 processors processors and each
processor has 8 Bulldozer cores. Each Bulldozer Core compute
unit has 16 integer cores and 8 floating point cores. Our
benchmarks are run entirely on the CPU-only XE nodes.
Vesta, which is a Blue Gene Q installation located at Argonne
National Laboratory (ANL), has 2048 nodes of 1600 MHz
PowerPC A2 cores. Each node has 16 PowerPC A2 cores
available to applications with 4 hardware threads per core.

A. ChaNGa

ChaNGa is an N-body cosmology simulation application
implemented in Charm++. ChaNGa has been used in cosmol-
ogy research to model the impact of a dwarf galaxy on the
Milky Way [34], study the role of Warm Dark Matter in dwarf
galaxy formation [35] and model the intracluster gas properties
in merging galaxy clusters. ChaNGa uses adaptive time scales
for force evaluation at multiple scales. A wide variation in
mass densities results in particles having dynamical times that
vary by a large factor. The irregular distribution of particles in
the simulation space as well as having multiple scales creates
severe load imbalance. Performing frequent load balancing by
object reassignment has unacceptable overhead due to strategy
time and data movement. In addition, for clustered datasets, it
is often the case at the trailing end of the gravity calculation
that some of the PEs are idle while others are busy. For our
experiments we use a challenging dataset cosmo25 which is
a highly clustered 2 billion particle dark matter simulation.
In this multi-stepping run of cosmo25 dataset, 16 substeps
constitute a big step.

Figure 4a shows the Projections [36] time-line view of this
simulation on 128K cores. We pick only a subset of cores
within an SMP node for one of the substeps to showcase the
load imbalance problem. The colored bars indicate that the PE
is busy with computation work and the white shows idle time.
We can see that clearly there is severe load imbalance. We use

 1

 2

 4

 8

 16

 8192 16384 32768 65536 131072

G
ra

vi
ty

 T
im

e
pe

r
St

ep
 (

s)

Number of Cores

Orig Time per Step
OpenMP interop Time per Step

Par For Time per Step

Fig. 5: ChaNGa strong-scaling performance on Blue Waters
Cray XE6 system, using Charm++ alone, with integrated
OpenMP, and with the ParallelFor extension. Both intra-node
balancing mechanisms give more than 2X speedup at 128K
cores.

the task parallelization in conjunction with the node aware load
balancer to handle this load imbalance. With the intra-node
task parallelization, we are able to handle the load imbalance
and improve the performance of this substep significantly. In
figure 4b we can see the impact of this in the reduction of
load imbalance, idle time and step time before the barrier.

At the point where the application creates fine-grained tasks,
it queries the adaptive runtime system to find out whether it
is beneficial to create tasks. The runtime system monitors the
state of the PEs on a node and when there are sufficient idle
PEs, it considers it as beneficial to create tasks. This prevents
incurring unnecessary overhead of task creation when there
is no potential benefit to it because other PEs are already
busy. The chare object uses OpenMP or the Charm++ par for
construct to create tasks out of the unfinished buckets which
gets distributed among other idle cores.

Figure 5 compares the strong scaling performance of the
original version of ChaNGa with the improved one using intra-
node fine-grain tasks. At the scale of 131, 072 cores, both
ParallelFor and OpenMP give more than 2X speedup.

B. NAMD

NAMD [37] is a molecular dynamics application designed
for the simulation of large biomolecular systems. Its primary
focus is on all-atoms simulation methods using empirical force
fields with a femtosecond time step resolution. Typical NAMD
simulations include all-atom models of proteins, lipids, and/or
nucleic acids as well as explicit solvent (water and ions) and
range in size from 10,000 to 10,000,000 atoms. NAMD played
an instrumental role in a recent study resolving the atomic
level structure of the HIV Capsid. A recipient of the Gordon
Bell Award, NAMD is based on Charm++ parallel objects and
scales to hundreds of cores for typical simulations and beyond
500,000 cores for the largest simulations.

For the experiments shown here, we use the Colvar module.
Colvar stands for Collective Variables. Colvars are used to

(a) Without intra-node load balancing (b) With intra-node task parallelism
‘

Fig. 4: Time line profile of ChaNGa for all the PEs (rows) on a SMP process for the 128K cores run. White shows idle time
and colored bars indicate busy time. Fine-grained task parallelism achieves better distribution of work among PEs. The total
time per step reduces from 5.0 seconds to 4.2 seconds.

 16

 32

 64

128

256

 128 256 512 1024 2048

T
im

e
pe

r
St

ep
 (

m
s)

Number of Cores

Orig Time per Step
Time per Step

Fig. 6: Strong scaling results comparing the performance of
original Charm++ with the new integrated task model for
NAMD’s colvar benchmark on IBM Bluegene/Q.

reduce the great number of degrees of freedom present in
molecular dynamics simulations into a few parameters which
can either be analyzed individually, or manipulated in order to
alter the dynamics in a controlled manner. In NAMD, we use
the colvar module to perform energy minimization runs and
determine the time taken for each step. We use a hierarchical
load balancing strategy to infrequently to address the load
imbalance problem. For the load imbalance arising within the
node, we use our intra-node task parallelization to distribute
the computation on idle PEs within a node.

Figure 6 compares the performance of the original version
of NAMD running colvar module with the improved version
using intra-node fine-grain tasks. At the scale of 2048 cores
it gives a speedup of approximately 3.5X. We were unable
to run OpenMP integration on Bluegene/Q due to compiler
incompatibility.

We also ran NAMD colvar on Blue Waters to compare
performance of the original version and the OpenMP inter-

 8

 16

 32

 64

 128 256 512 1024 2048

T
im

e
pe

r
St

ep
 (

m
s)

Number of Cores

Orig Time per Step
OpenMP interop Time per Step

Fig. 7: Strong scaling results comparing the performance
of original Charm++ with OpenMP integration for NAMD’s
colvar banchmark on Blue Waters.

operation version. Figure 7 shows how much the OpenMP
interoperation improves the performance of NAMD colvar.
The original version reach its scalability limit at 512 cores,
while the OpenMP interoperation version continues to scale
up to 2K cores.

C. Kripke

Kripke [38] is an LLNL proxy application for parallel
deterministic transport codes. It is written using MPI and,
optionally, OpenMP for parallelism. Kripke implements the
key computation and communication aspects of a production
transport simulation application. Such codes are used to de-
terministically simulate the flux of neutral particles within a
volume of interest. Kripke implements parallel sweeps through
a 3D domain. The domain is decomposed in spatial zones, and
subdomains are distributed to MPI ranks.

Parallel sweeps are vital communication kernels for the
performance of deterministic transport codes. A sweep is a

sequential traversal through a domain. Because of the se-
quential dependencies through the domain, and because the
domain is decomposed spatially, scaling sweeps efficiently is
challenging. Thus, Kripke pipelines successive sweeps over
the different energy groups and directions in the problem to
attain higher efficiency. In addition to the sweep, a reduction
is performed every iteration to test the global particle count
for convergence. While Kripke does not actually check for
convergence (it instead runs for a fixed number of iterations),
the reduction keeps the communication pattern faithful to
production transport codes. The reduction acts as a barrier,
preventing ranks that own subdomains in the center of the do-
main from advancing until all ranks have finished all sweeps.

Adaptive MPI (AMPI [39]) is an implementation of the
MPI standard written on top of Charm++. It provides the
high-level features of Charm++, such as over-decomposition,
dynamic load balancing, and automatic fault tolerance, to
pre-existing MPI applications. It does so by implementing
MPI ranks as lightweight, migratable user-level threads, which
are encapsulated in chares. The runtime system schedules
and load balances AMPI ranks the same way it does chares
in Charm++ programs. MPI applications with no mutable
global/static variables, such as Kripke, need only be compiled
using AMPI’s compiler wrappers instead of MPI’s to run on
AMPI.

Our implementation of the GNU OpenMP runtime can be
used with AMPI+OpenMP programs the same way it is with
Charm++ applications. This allows users to run an AMPI code
on a node with N PEs using two modes: (a) 1 or a few AMPI
ranks per node with OpenMP threads within each rank or (b)
N or more AMPI ranks per node with each rank using up
to N OpenMP threads, without actually oversubscribing the
physical resources on the system. Our results show the benefits
of this approach for applications such as Kripke which have
transient load imbalances within iterations but little to no load
imbalance that persists across iterations.

All of the tests below were performed on Blue Waters, using
32 cores per node. We use the default input parameters for
Kripke version 1.1, meaning we run with 4096 zones per core
in 1 set, 32 groups in 2 sets, and 96 directions in 8 sets.
The data is laid out in the default DGZ nesting. Note that no
changes are necessary to the source code of Kripke to run it
on AMPI and our implementation of OpenMP, and that all
of the computational kernels use OpenMP parallel for
loops. We show weak scaling in the number of zones, with
the number of groups and directions held constant.

Figure 8 shows the time per iteration of Kripke using MPI,
MPI+OpenMP, AMPI, and AMPI+OpenMP with two different
configurations. The parenthetical in MPI+OpenMP (1) and
others identifies how many ranks were launched per node.
Thus, MPI+OpenMP (1) signifies the use of 1 rank per node
with 32 OpenMP threads per rank, and MPI+OpenMP (16)
means 16 ranks were launched per node with 2 OpenMP
threads per rank. AMPI+OpenMP are similarly presented, but
since our OpenMP implementation allows scheduling OpenMP
threads along with AMPI ranks without resource contention,

 4

 8

 16

 32

 64

 128

 256

 32 64 128 256 512 1024 2048

T
im

e
pe

r
Ite

ra
tio

n
(s

)

Number of Cores

MPI
MPI+OpenMP (1)

MPI+OpenMP (16)

AMPI
AMPI+OpenMP (1)

AMPI+OpenMP (32)

Fig. 8: Weak scaling Kripke with 4096 spatial zones per core
on Blue Waters, the time per iteration is shown for MPI and
AMPI with and without OpenMP. Numbers in parentheses
indicate how many ranks were used per node.

we always specify 32 OpenMP threads per rank. Consequently,
AMPI+OpenMP (32) means 32 ranks were launched per node
with 32 OpenMP threads per rank. In addition to MPI-only,
AMPI-only, and both with one process and 32-way threading,
we show the best performing combination of rank and thread
counts for each.

Kripke’s parallel sweeps benefit from the finer-grained
pipeline parallelism that decomposing into more MPI ranks
offers. On the other hand, the computational kernels benefit
from OpenMP threading. Since sweep dependencies translate
to idle times within a node while each wavefront passes
through the domain, within-node parallelism can be also be
used to balance the load across the idle threads at a given time.
The combination of 32 ranks and up to 32-way threading per
rank performs the best. It gives the runtime the most freedom
to schedule work across all available cores on a node while
still decomposing the sweep pipeline into small pipeline stages
and ensuring that each thread has its own work to schedule in
addition to stealing others’ work when idle.

IX. CONCLUSION

The recent trend of rapid increase in the number of cores per
chip has resulted in vast amounts of on-node parallelism. Not
only the number of cores per node is increasing substantially
but also the cores are becoming heterogeneous. The high
variability in the performance of the hardware components
introduces imbalance due to heterogeneity. Applications are
also becoming more complex resulting in dynamic load im-
balance. Load imbalance can result in loss of performance
and decrease in system utilization. We address the challenge of
balancing load across cores while maintaining locality and low
overhead. In this paper, we proposed a new integrated runtime
system that combines the Charm++ distributed programming
model with concurrent tasks to handle load imbalance. It
utilizes a relatively infrequent periodic assignment of work
to cores based on load measurement, in combination with
user created tasks to handle both the persistent and transient

load imbalance. We integrate OpenMP with Charm++ so
as to enable objects to create potential tasks via OpenMP’s
parallel loop construct. Our contribution is not specific to
Charm++; It is also available to MPI applications through
integration with Adaptive MPI. We show the benefit of using
this integrated runtime system on three different applications.
We show improvements of 2X on ChaNGa on 128K cores and
more than 3X on NAMD at 2, 048 cores. In these applications,
benefit naturally increase with high core counts, when one is
nearer to the limit of strong scaling. We also show the benefit
on an MPI application, Kripke, in a weak-scaling experiments
on up to 2, 048 cores using Adaptive MPI.

The task generation scheme we used currently admits rela-
tively flat set of tasks generated by parallel loops. A possible
future extension is to admit tasks with dependences, similar
to OmpSs [16], PaRSEC [40] etc. These will also create
opportunities for runtime scheduling based on the knowledge
of dependencies and cache or scratchpad availability of data.

X. ACKNOWLEDGMENTS

ChaNGa was initially developed under NSF ITR award
0205413. Contributors to the development of the code include
Graeme Lufkin, Sayantan Chakravorty, Amit Sharma, Filippo
Gioachin, Pritish Jetley, Lukasz Wesolowski and Harshitha
Menon. This work was supported by NSF award AST-
1312913.

REFERENCES

[1] E. Shmueli, G. Almasi, J. Brunheroto, J. Castanos, G. Dozsa, S. Kumar,
and D. Lieber, “Evaluating the effect of replacing CNK with Linux
on the compute-nodes of Blue Gene/L,” in Proceedings of the 22Nd
Annual International Conference on Supercomputing, ser. ICS ’08.
New York, NY, USA: ACM, 2008, pp. 165–174. [Online]. Available:
http://doi.acm.org/10.1145/1375527.1375554

[2] S. M. Kelly and R. Brightwell, “Software architecture of the light weight
kernel, Catamount,” in Proceedings of the 2005 Cray User Group Annual
Technical Conference. Citeseer, 2005, pp. 16–19.

[3] F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in ACM/IEEE SC2003, Phoenix, Arizona,
Nov. 10–16, 2003.

[4] B. Acun, P. Miller, and L. V. Kalé, “Variation among processors
under Turbo Boost in HPC systems,” in International Conference on
Supercomputing (ICS). ACM, 2016.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[6] V. Kale, A. Bhatele, and W. D. Gropp, “Weighted locality sensitive
scheduling for mitigating noise on multicore clusters,” in 18th annual
IEEE International Conference on High Performance Computing (HiPC
2011), December 2011.

[7] E. Demaine, “A threads-only MPI implementation for the development
of parallel programs,” in In: Proceedings of the 11th International
Symposium on High Performance Computing Systems, 1997, pp. 153–
163.

[8] K. Shen, H. Tang, and T. Yang, “Adaptive two-level thread management
for fast MPI execution on shared memory machines,” in Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing, ser. SC
’99. New York, NY, USA: ACM, 1999. [Online]. Available:
http://doi.acm.org/10.1145/331532.331581

[9] H. Tang, K. Shen, and T. Yang, “Program transformation and runtime
support for threaded MPI execution on shared-memory machines,”
ACM Trans. Program. Lang. Syst., vol. 22, no. 4, pp. 673–700, Jul.
2000. [Online]. Available: http://doi.acm.org/10.1145/363911.363920

[10] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett,
R. Brightwell, W. Gropp, V. Kale, and R. Thakur, “Leveraging MPI’s
one-sided communication interface for shared-memory programming,”
in Proceedings of the 19th European Conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 132–141. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33518-1 18

[11] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “MPI+MPI: a new hybrid approach
to parallel programming with MPI plus shared memory,” Computing,
vol. 95, no. 12, pp. 1121–1136, 2013.

[12] A. Friedley, G. Bronevetsky, T. Hoefler, and A. Lumsdaine, “Hybrid
MPI: efficient message passing for multi-core systems,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. ACM, 2013, p. 18.

[13] L. Smith and M. Bull, “Development of mixed mode MPI / OpenMP
applications,” Scientific Programming, vol. 9, no. 2,3, pp. 83–98, Aug.
2001. [Online]. Available: http://dl.acm.org/citation.cfm?id=1239928.
1239936

[14] E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost, “Employing
nested OpenMP for the parallelization of multi-zone computational
fluid dynamics applications,” in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International. IEEE, 2004, p. 6.

[15] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes,” in Proceedings
of the 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, ser. PDP ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 427–436. [Online].
Available: http://dx.doi.org/10.1109/PDP.2009.43

[16] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M.
Badia, E. Ayguade, and J. Labarta, “Productive cluster programming
with ompss,” in Euro-Par 2011 Parallel Processing. Springer, 2011,
pp. 555–566.

[17] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid
parallel programming with MPI and unified parallel C,” in Proceedings
of the 7th ACM international conference on Computing frontiers. ACM,
2010, pp. 177–186.

[18] C. Mei, “Message-driven parallel language runtime design and op-
timizations for multicore-based massively parallel machines,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2012.

[19] J. Corbalan, A. Duran, and J. Labarta, “Dynamic load balancing of
MPI+OpenMP applications,” in Parallel Processing, 2004. ICPP 2004.
International Conference on. IEEE, 2004, pp. 195–202.

[20] V. Kale, A. Randles, and W. D. Gropp, “Locality-optimized mixed
static/dynamic scheduling for improving load balancing on SMPs,” in
Proceedings of the 21st European MPI Users’ Group Meeting. ACM,
2014, p. 115.

[21] V. Kale, S. Donfack, L. Grigori, and W. D. Gropp, “Lightweight
scheduling for balancing the tradeoff between load balance and locality,”
2014, poster presented at SC’14.

[22] S. Donfack, L. Grigori, W. D. Gropp, and V. Kale, “Hybrid
static/dynamic scheduling for already optimized dense matrix factoriza-
tion,” in Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International. IEEE, 2012, pp. 496–507.

[23] M. Pérache, P. Carribault, and H. Jourdren, “MPC-MPI: An MPI
implementation reducing the overall memory consumption,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Proceedings of the 16th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI 2009), ser. Lecture Notes in Computer Science,
M. Ropo, J. Westerholm, and J. Dongarra, Eds. Springer Berlin
Heidelberg, 2009, vol. 5759, pp. 94–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03770-2 16

[24] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in Proceedings of the
14th International Euro-Par Conference on Parallel Processing, ser.
Euro-Par ’08. Berlin, Heidelberg: Springer-Verlag, 2008, p. 78–88.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-85451-7 9

[25] P. Carribault, M. Pérache, and H. Jourdren, “Enabling low-overhead
hybrid MPI/OpenMP parallelism with MPC,” in Beyond Loop Level
Parallelism in OpenMP: Accelerators, Tasking and More, Proceedings
of the 6th International Workshop on OpenMP (IWOMP 2010),
ser. Lecture Notes in Computer Science, M. Sato, T. Hanawa,
M. Müller, B. M. Chapman, and B. de Supinski, Eds. Springer

http://doi.acm.org/10.1145/1375527.1375554
http://doi.acm.org/10.1145/331532.331581
http://doi.acm.org/10.1145/363911.363920
http://dx.doi.org/10.1007/978-3-642-33518-1_18
http://dl.acm.org/citation.cfm?id=1239928.1239936
http://dl.acm.org/citation.cfm?id=1239928.1239936
http://dx.doi.org/10.1109/PDP.2009.43
http://dx.doi.org/10.1007/978-3-642-03770-2_16
http://dx.doi.org/10.1007/978-3-540-85451-7_9

Berlin Heidelberg, 2010, vol. 6132, pp. 1–14. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13217-9 1

[26] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” in Proc. 5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP’95, Santa Barbara, California,
Jul. 1995, pp. 207–216, mIT.

[27] C. Pheatt, “Intel R© threading building blocks,” Journal of Computing
Sciences in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[28] OpenMP ARB, “OpenMP application program interface version 3.0,” in
The OpenMP Forum, Tech. Rep, 2008.

[29] R. Barik, Z. Budimlic, V. Cave, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Taşırlar, Y. Yan et al., “The Habanero multicore
software research project,” in Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems lan-
guages and applications. ACM, 2009, pp. 735–736.

[30] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: a scalable locality-
aware adaptive work-stealing scheduler for multi-core systems,” in ACM
Sigplan Notices, vol. 45, no. 5. ACM, 2010, pp. 341–342.

[31] L. V. Kalé, “The virtualization model of parallel programming : Runtime
optimizations and the state of art,” in LACSI 2002, Albuquerque, October
2002.

[32] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in
Proceedings of the seventeenth annual ACM symposium on Parallelism
in algorithms and architectures. ACM, 2005, pp. 21–28.

[33] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” Computational Science & Engineering,
IEEE, vol. 5, no. 1, pp. 46–55, 1998.

[34] C. W. Purcell, J. S. Bullock, E. J. Tollerud, M. Rocha, and
S. Chakrabarti, “The Sagittarius impact as an architect of spirality and
outer rings in the Milky Way,” Nature, vol. 477, pp. 301–303, Sep. 2011.

[35] J.-h. Kim, T. Abel, O. Agertz, G. L. Bryan, D. Ceverino, C. Christensen,
C. Conroy, A. Dekel, N. Y. Gnedin, N. J. Goldbaum, J. Guedes, O. Hahn,
A. Hobbs, P. F. Hopkins, C. B. Hummels, F. Iannuzzi, D. Keres,
A. Klypin, A. V. Kravtsov, M. R. Krumholz, M. Kuhlen, S. N. Leitner,
P. Madau, L. Mayer, C. E. Moody, K. Nagamine, M. L. Norman,
J. Onorbe, B. W. O’Shea, A. Pillepich, J. R. Primack, T. Quinn, J. I.
Read, B. E. Robertson, M. Rocha, D. H. Rudd, S. Shen, B. D. Smith,
A. S. Szalay, R. Teyssier, R. Thompson, K. Todoroki, M. J. Turk, J. W.
Wadsley, J. H. Wise, A. Zolotov, and f. t. AGORA Collaboration29, “The
AGORA High-resolution Galaxy Simulations Comparison Project,” The
Astrophysical Journal, vol. 210, p. 14, Jan. 2014.

[36] L. Kalé and A. Sinha, “Projections : A scalable performance tool,” in
Parallel Systems Fair, International Parallel Processing Sympos ium,
Apr. 1993, pp. 108–114.

[37] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, 2005.

[38] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE - a massively
parallel transport mini-app,” 2015.

[39] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida,
X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and
L. Kale, “Parallel programming with migratable objects: Charm++ in
practice,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 647–658. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.58

[40] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and
J. J. Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

http://dx.doi.org/10.1007/978-3-642-13217-9_1
http://dx.doi.org/10.1109/SC.2014.58

	Introduction
	Related Work
	Charm++ programming model for shared memory
	Overview
	Persistence Based Load balancing
	Handling Residual and Transient Load Imbalance with Charm++ Task Model
	Task API
	Task Generation and Scheduling
	Recursive ParallelFor Task Generation
	Broadcast Task Message
	Only When Idle
	History

	Task Queue

	OpenMP interoperation with Charm++
	OpenMP thread model
	Implementation of OpenMP for Charm++
	Scheduling schemes of OpenMP for Charm++
	Basic scheduling schemes for OpenMP
	Changing the portion of stealable OpenMP tasks
	Changing the number of OpenMP messages created

	Application Study
	ChaNGa
	NAMD
	Kripke

	Conclusion
	Acknowledgments
	References

