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Abstract

One of the critical factors that affect the performance of many applications is load

imbalance. Applications are increasingly becoming sophisticated and are using ir-

regular structures and adaptive refinement techniques, resulting in load imbalance.

Moreover, systems are becoming more complex. The number of cores per node is

increasing substantially and nodes are becoming heterogeneous. High variability in

the performance of the hardware components introduces further imbalance. Load

imbalance leads to drop in system utilization and degrades the performance. To

address the load imbalance problem, many HPC applications employ dynamic load

balancing algorithms to redistribute the work and balance the load.

Different application characteristics warrant different load balancing strategies.

We need a variety of high-quality, scalable load balancing algorithms to cater to

different applications. However, using an appropriate load balancer is insufficient to

achieve good performance because performing load balancing incurs a cost. More-

over, due to the dynamic nature of the application, it is hard to decide when to

perform load balancing. Therefore, deciding when to load balance and which strat-

egy to use for load balancing may not be possible a priori.

With the ever increasing core counts on a node, there will be a vast amount of on-

node parallelism. Due to the massive on-node parallelism, load imbalance occurring

at the node level can be mitigated within the node instead of performing a global

load balancing. However, having the application developer manage resources and

handle dynamic imbalances is inefficient as well as is a burden on the programmer.

The focus of this dissertation is on developing scalable and adaptive techniques
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for handling load imbalance. The dissertation presents different load balancing

algorithms for handling inter and intra-node load imbalance. It also presents an

introspective run-time system, which will monitor the application and system char-

acteristics and make load balancing decisions automatically.
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1 Introduction

Many of the breakthrough scientific research requires computational modeling us-

ing supercomputers. Consequently, high performance computing has a critical role

to play in the advancement of science and engineering. However, many challenges

need to be addressed to utilize the increasing power of parallel machines. One of the

critical factors that affect the performance of many applications is load imbalance.

Increasingly, science and engineering applications are becoming more complex and

dynamic. Many applications use adaptive multiscale algorithms, such as adaptive

mesh refinement, multi-grid methods, which introduce dynamically changing com-

putation resulting in load imbalance. Moreover, systems are becoming more com-

plex. The number of cores per node is increasing substantially and are becoming

heterogeneous. The high variability in the performance of the hardware components

introduces further imbalance due to heterogeneity [1]. As we move towards systems

with billions of cores, even well-balanced applications will experience load imbalance

due to variability and heterogeneity in the hardware.

1.1 Motivation

In scientific simulations the work is assigned to processing elements. Uneven distri-

bution of work to processing elements can result in imbalance of load. Load imbal-

ance is an insidious factor that can reduce the performance of a parallel application

significantly. For some applications, such as basic stencil codes for structured grids,

the load is easy to predict and does not vary dynamically. However, for a significant

1



class of applications, load represented by pieces of computations varies over time,

and may be harder to predict. This is becoming increasingly prevalent with the

emergence of sophisticated applications. For example, atoms moving in a molecular

dynamics simulation will lead to (almost) no imbalance when they are distributed

statically to processors. But, they create imbalance when spatial partitioning of

atoms is performed for more sophisticated and efficient force evaluation algorithms.

The presence of moisture and clouds in weather simulations, elements turning from

elastic to plastic in structural dynamics simulations and dynamic adaptive mesh

refinements are all examples of sophisticated applications which have a strong ten-

dency for load imbalance.

All the examples above are of “iterative” applications: the program executes

series of time-steps, or iterations, leading to convergence of some error metric. Con-

secutive iterations have relatively similar patterns of communication and compu-

tation. There is another class of applications, such as combinatorial search, that

involves dynamic creation of work and therefore also has a tendency for imbalance.

This class of applications has distinct characteristics and load balancing needs, and

has been addressed by much past work such as work-stealing [2, 3, 4]. This thesis

does not focus on such applications, but instead on the iterative applications, which

are predominant in science and engineering.

Different application characteristics warrant different load balancing strategies.

For example, an application that does substantial communication will benefit most

from a load balancing strategy that takes communication into account and tries to

minimize it. Alternatively, applications suffering from high compute load imbal-

ance with little communication overhead will require load balancing strategies that

are focused on balancing the computation load. This thesis presents various load

balancing algorithms that are suitable for different application characteristics.

With ever increasing core counts on a node, there will be a vast amount of on-
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node parallelism. There is heterogeneity in performance and the functionality of

cores [1]. Due to the massive on-node parallelism, there is more opportunity to

mitigate the load imbalance occurring at the node level within the node instead

of performing a global load balancing. However, having the application developer

manage resources and handle dynamic imbalances is inefficient as well as is a burden

on the programmer. It is now widely accepted that the run-time system will be

required to play a more active role in managing resources and handling imbalance.

However, using an appropriate load balancer is not sufficient to achieve good

performance because performing load balancing incurs a cost. Moreover, due to

the dynamic nature of the application, it is hard to decide when to perform load

balancing. Therefore, deciding when to load balance and which strategy to use for

load balancing may not be possible a priori.

This dissertation will demonstrate that an introspective run-time system that

inspects the system resources and monitors the application characteristics can auto-

matically make load balancing decisions. Since the run-time system is orchestrating

the scheduling on processors and the communication between the work/data units,

it can collect real time statistics about the state of the application and system to

make informed load balancing decisions.

1.2 Summary

This thesis presents new load balancing strategies developed for different classes of

applications. The focus in on GrapevineLB, which is a distributed load balancing

algorithm implementing a high-quality balancer with very little overhead.

An important work of this thesis is an introspective run-time system compo-

nent, called MetaBalancer, which monitors application and system performance,

uses models to predict their behavior and applies machine learning algorithms to
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make load balancing decisions automatically without any input from the user. The

intra-node component of the introspective run-time system identifies load imbalances

within a node and chooses a mechanism to share the work-load between compute

units on a node. By performing intra-node load balancing to handle small and un-

predictable variability in the application load and resources, we reduce the need for

expensive application-level load balancing. The systemwide inter-node component

identifies load imbalances across the nodes, calculates an ideal load balancing period

weighing the cost benefit and also chooses the load balancing strategy to use based

on the application and system characteristics.

1.3 Thesis Organization

This work is built on Charm++ and Chapter 2 gives a brief introduction of the

Charm++ programming model and load balancing framework. Chapter 3 presents

a novel, highly scalable, distributed load balancing strategy, which uses partial in-

formation about the global state of the system to give very good balance of load

with low overhead. Chapter 4 discusses other load balancing strategies implemented.

Chapter 5 presents how imbalance can be handled in distributed and shared memory

by utilizing the large number of cores within a node. Chapters 6,7,8 presents the

work on the introspective run-time system to automate the load balancing decisions.
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2 Background

The load balancing strategies and the MetaBalancer framework are implemented in

the Charm++ run-time system. In this section, we elaborate on the Charm++

programming model and the load balancing framework.

2.1 Over-decomposed Migratable Model to

Support Load Balancing

For the run-time system to support load balancing, the problem needs to be over-

decomposed into many more chunks than the number of processors. Over-decompo-

sition refers to the division of a problem into a large number of work and data units,

which can then be remapped to processors when load imbalance is detected. Mi-

gratability refers to the ability to move the work and data units from one processing

element to another. Over-decomposition with migratability enables the run-time

system to perform dynamic load balancing. This model has been implemented in

the Charm++ parallel programming model. In Charm++ the programmer ex-

poses parallelism by decomposing their computation into tasks or objects which are

mapped and remapped on to the processors by the run-time system.

2.2 Charm++

The Charm++ parallel programming model is based on asynchronous message

driven execution. It has parallel objects, called chares, which are migratable and
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communicate via messages. Chares are the basic units of parallel computation in

Charm++ and they are mapped onto processing elements (PEs) initially by the

runtime system. Charm++ applications are over-decomposed into many more

work units than the number of processors. Overdecomposition along with migrata-

bility of chares empowers the Charm++ run-time system to perform dynamic load

balancing.

Decomposition of work 
into MPI processes and 

placement on processors

Over-decomposition of 
work into Charm++ objects 

(by the user)

Placement of Charm++ objects 
on physical processors

(by the runtime)

Figure 2.1: Charm++ system view with over-decomposition

Applications written in Charm++ over-decompose their computation into vir-

tual processors or objects called “chares” which are then mapped onto physical

processors by the runtime system (shown in Figure 2.1). The initial static map-

ping can be changed as the execution progresses if the application suffers from load

imbalance by migrating chares to other processors. This is facilitated by the load

balancing framework in Charm++ [5]. Load balancing in Charm++ is based on

instrumenting the load from the recent past as a guideline for the near future, a

heuristic known as the principle of persistence [6]. It posits that empirically, the

computational loads and communication patterns of the tasks or objects tend to

persist over time, even in dynamically evolving computations. Therefore, the load

balancer can use instrumented load information to make load balancing decisions.

The key advantage of this approach is that it is application independent and it

has been shown to be effective for a large class of applications such as NAMD [7],
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ChaNGa [8] and Fractography3D [9].

Charm++ provides a mature load balancing framework with a suite of load

balancing strategies comprising of various centralized, distributed and hierarchical

schemes for balancing computation load or communication [10]. Depending on the

needs of applications, the user can invoke appropriate load balancers. The load bal-

ancing framework in Charm++ instruments each chare as well as records the PE’s

load. In the AtSync mode of load balancing, all the chares pause their execution and

call AtSync. The load statistics are collected and the user specified load balancing

strategy is used to compute the new mapping. Once the load balancing decision is

made, the framework handles the migration of the chares to the newly mapped PEs

and resumes them.
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3 Load Balancing Algorithm :
GrapevineLB

Load imbalance is a critical factor that can significantly impact the performance

of a parallel application. Many HPC applications employ dynamic load balancing

algorithms to redistribute the work and address the load imbalance problem. Var-

ious strategies have been proposed to address the load balancing problem. Many

applications employ a centralized load balancing strategy, where load information

is gathered on to a single processor, and the decision algorithm is run sequentially.

Such strategies have been shown to be effective for a few hundred to thousand pro-

cessors, because the total number of work units is relatively small (on the order

of ten to hundred per processor). However, they present a clear performance bot-

tleneck beyond a few thousand processors, and may become infeasible due to the

memory capacity bottleneck on a single processor.

An alternative to centralized strategies are distributed strategies that use lo-

cal information, e.g., diffusion based [11]. In a distributed strategy, each processor

makes autonomous decisions based on its local view of the system. The local view

typically consists of the load of its neighboring processors. Such a strategy is scal-

able, but tend to yield poor load balance due to the limited informationi available

locally [12].

Hierarchical strategies [13, 14, 12] overcome some of the aforementioned disad-

vantages. They create subgroups of processors and collect information at the root of

each subgroup. Higher levels in the hierarchy only receive aggregate information and

deliver decisions in aggregate terms. Although effective in reducing memory costs

and ensuring good balance, these strategies may suffer from excessive data collection
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at the lowest level of the hierarchy and work being done at multiple levels.

In this work we propose a fully distributed strategy, GrapevineLB, that has been

designed to overcome the drawback of other distributed strategies by obtaining a

partial representation of the global state of the system and basing the load balancing

decisions on this. We describe a light weight information propagation algorithm

based on the epidemic algorithm [15] (also known as the gossip protocol [16]) to

propagate the load information about the underloaded processors in the system to

the overloaded processors. This spreads the information in the same fashion as gossip

spreads through the grapevine in a society. Based on this information, GrapevineLB

makes probabilistic transfer of work units to obtain good load distribution. The

proposed algorithm is scalable and can be tuned to optimize for either cost or

performance.

The primary contributions of this chapter are:

• GrapevineLB, a fully distributed load balancing algorithm that attains a load

balancing quality comparable to the centralized strategies while incurring sig-

nificantly less overhead.

• Analysis of propagation and randomized transfer in GrapevineLB , which leads

us to an interesting observation that good load balance can be achieved with

significantly less information about underloaded processors in the system.

• Detailed evaluations that experimentally demonstrate the scalability and qual-

ity of GrapevineLB using simulation.

• Demonstration of its effectiveness in comparison to several other load balanc-

ing strategies for adaptive mesh refinement and molecular dynamics on up to

131,072 cores on a BlueGene/Q.
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3.1 Background

Load characteristics in dynamic applications can change over time. Therefore, such

applications require periodic load balancing to maintain good system utilization.

To enable load balancing, a popular approach is overdecomposition. The applica-

tion writer exposes parallelism by overdecomposing the computation into tasks or

objects. The problem is decomposed into communicating objects and the run-time

system can assign these objects to processors and perform rebalancing.

We focus on the iterative applications, which are predominant in science and

engineering. For iterative applications, the basic scheme we follow is: The applica-

tion is assumed to consist of a large number of migratable units (for example, these

could be chunks of meshes in adaptive mesh refinement application). The applica-

tion pauses after every so many iterations, and the load balancer decides whether

to migrate some of these units to restore balance. Load balancing is expensive in

these scenarios and is performed infrequently or whenever significant imbalance is

detected. The load balancer needs information about the loads presented by each

object. This can be based on a model (simple examples being associating a fixed

amount of load with each grid point, or particle). However, for many iterative ap-

plications, another metric turns out to be more accurate. For these applications,

a heuristic called principle of persistence [6] holds which posits that computational

loads and communication patterns of objects tend to persist over time. This allows

us to use recent instrumented history as a guide to predicting load in near-future

iterations. The load balancing strategy we describe can be used with either model-

based or persistence-based load predictions. In persistence-based load balancer, the

statistics about the load of each task on a processor is collected at that processor.

The database containing the task information is used by the load balancers to pro-

duce a new mapping. The run-time system then migrates the tasks based on this
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2 4
√

6 1

Table 3.1: Choice of load imbalance metric

mapping.

It is important to choose the right metric to quantify load imbalance in the

system. Using standard deviation to measure load imbalance may seem like an

appropriate metric, but consider the two scenarios shown in Table 3.1. In both the

cases, the average load of the system is 2. If we consider standard deviation, σ, to

be a measure of imbalance, then we find that in case 1 and case 2 we obtain the

same σ of
√

6 whereas the utilization and the total application times differ. A better

indicator of load imbalance in the system is the ratio of maximum load to average

load. More formally, load imbalance (I) can be measured using

I =
Lmax
Lavg

− 1 (3.1)

In case 1, I is 0.5 and in case 2, I is 1. We use this metric of load imbalance as one

of the evaluation criteria to measure the performance of the load balancing strategy.

Notice that this criteria is dominated by the load of the single processor — viz. the

most overloaded processor — because of the max operator. This is correct, since the

execution time is determined by the worst-loaded processor and others must wait

for it to complete its iteration.
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3.2 Related Work

Load balancing has been studied extensively in the literature. For applications

with regular load, static load balancing can be performed where load balance is

achieved by carefully mapping the data onto processors. Numerous algorithms have

been developed for statically partitioning a computational mesh [17, 18, 19, 20].

These model the computation as a graph and use graph partitioning algorithms to

divide the graph among processors. Graph and hypergraph partitioning techniques

have been used to map tasks on to processors to balance load while considering

locality. They are generally used as a pre-processing step and tend to be expensive.

Our algorithm is employed after the application work has already been partitioned

and used to balance the computation load imbalance that arises as the application

progresses. Our algorithm also takes into consideration the existing mapping and

moves tasks only if a processor is overloaded.

For irregular applications, work stealing is employed in task scheduling and is

part of runtime systems such as Cilk [3]. Work stealing is traditionally used for task

parallelism of the kind seen in combinatorial search or divide-and-conquer applica-

tions, where tasks are being generated continuously. A recent work by Dinan et

al. [21] scales work stealing to 8192 processors using a PGAS programming model

combined with RDMA. In work that followed, a hierarchical technique described

as retentive work stealing was employed to scale work-stealing to over 150K cores

by exploiting the principle of persistence to iteratively refine the load balance of

task-based applications [14]. CHAOS [22] provides an inspector-executor approach

to load balancing for irregular applications. Here the data and the associated com-

putation balance is evaluated at runtime before the start of the first iteration to

rebalance. The proposed strategy is more focused towards iterative computational

science applications, where computational tasks tend to be persistent.
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Dynamic load balancing algorithms for iterative applications can be broadly

classified as centralized, distributed or hierarchical. Centralized strategies [23, 24]

tend to yield good load balance, but exhibit poor scalability. Alternatively, sev-

eral distributed algorithms have been proposed in which processors autonomously

make load balancing decisions based on localized workload information. Popular

nearest neighbor algorithms are dimension-exchange [25] and the diffusion methods.

Dimension-exchange method is performed in an iterative fashion and is described

in terms of a hypercube architecture. A processor performs load balancing with its

neighbor in each dimension of the hypercube. Diffusion based load balancing algo-

rithms were first proposed by Cybenko [11] and independently by Boillat [26]. This

algorithm suffers from slow convergence to the balanced state. Hu and Blake [27]

proposed a non-local method to determine the flow which is minimal in the l2-

norm, but this approach requires global communication. The token distribution

problem was studied by Peleg and Upfal [28] where the load is considered to be

a token. Several diffusive load balancing policies, like direct neighborhood, aver-

age neighborhood, have been proposed in [29, 30, 31]. In [32], a sender-initiated

model is compared with receiver-initiated in an asychronous setting. It also com-

pares Gradient Method [33], Hierarchical Method and DEM (Dimension exchange).

The diffusion based load balancers are incremental and scale well with number of

processors. However, they can be invoked only to improve load balance rather than

obtaining global balance. If global balance is required, multiple iterations might be

required to converge [34]. To overcome the disadvantages of centralized and dis-

tributed, hierarchical [13, 14, 12] strategies have been proposed. It is another type

of scheme which provides good performance and scaling.

In our proposed algorithm, global information is spread using a variant of gossip

protocol [16]. Probabilistic gossip-based protocols have been used as robust and

scalable methods for information dissemination. Demers et al. use a gossip-based
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protocol to resolve inconsistencies among the Clearinghouse database servers [16].

Birman et al. [35] employ gossip-based scheme for bi-modal multicast which they

show to be reliable and scalable. Apart from these, gossip-based protocols have been

adapted to implement failure detection, garbage collection, aggregate computation

etc.

3.3 Grapevine Load Balancer

Our distributed load balancing strategy, referred to as GrapevineLB, can be concep-

tually thought of as having two stages. 1) Propagation: Construction of the local

representation of the global state at each processor. 2) Transfer : Load distribution

based on the local representation.

At the beginning of each load balancing step, the average load is calculated in

parallel using an efficient tree based all-reduce. This is followed by the propaga-

tion stage, where the information about the underloaded processors in the system is

spread to the overloaded processors. Only the processor ID and load of the under-

loaded processors is propagated. An underloaded processor starts the propagation

by selecting other processors randomly to send information to. The receiving pro-

cessors further spread the information in a similar manner.

Once the overloaded processors have received the information about the un-

derloaded processors, they autonomously make decisions about the transfer of the

work units. Since individual processors do not coordinate at this stage, the transfer

has to happen such that the probability that an underloaded processor becomes

overloaded is low. We propose a randomized algorithm that meets this goal. We

elaborate further upon the above two stages in the following sections.
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Algorithm 1 Informed selection at each processor Pi ∈ P
Input:
f - Fanout
Lavg - Average load of the system.
k - Target number of rounds
Li - Load of this processor

1: S ←− ∅ . Set of underloaded processors
2: L←− ∅ . Load of underloaded processors
3: if (Li < Lavg) then
4: S ←− Pi; L←− Li

5: Randomly sample
{
P 1, . . . , P f

}
∈ P

6: Send (S,L) to
{
P 1, . . . , P f

}
7: end if
8: for (round = 2→ k) do
9: if (received msg in previous round) then

10: R←− P \ S . Informed selection
11: Randomly sample

{
P 1, . . . , P f

}
∈ R

12: Send (S,L) to
{
P 1, . . . , P f

}
13: end if
14: end for

1: when (Snew, Lnew) is received . New message
2: S ←− S ∪ Snew; L←− L ∪ Lnew . Merge information

3.3.1 Information Propagation

To propagate the information about the underloaded processors in the system,

GrapevineLB follows a protocol that is inspired by the epidemic algorithm [15] (also

known as a gossip protocol [16]). In our case, the goal is to spread the information

about the underloaded processors such that every overloaded processor receives this

information with high probability. An underloaded processor starts the ‘infection’

by sending its information to a randomly chosen subset of processors. The size of

the subset is called fanout, f . An infected processor further spreads the infection by

forwarding all the information it has to another set of randomly selected f proces-

sors. Each processor makes an independent random selection of peers to send the

information.

We show that the number of rounds required for all processors to receive the

information with high probability is O(logf n), where n is the number of processors.

15



Algorithm 2 Informed transfer at each processor Pi ∈ P
Input:
O - Set of objects in this processor
S - Set of underloaded processors
T - Threshold to transfer
Li - Load of this processor
Lavg - Average load of the system

1: Compute pj ∀ Pj ∈ S . Using eq. 3.2
2: Compute Fj =

∑
k<j pk . Using eq. 3.21

3: while (Li > (T × Lavg)) do
4: Select object Oi ∈ O
5: Randomly sample X ∈ S using F . Using eq. 3.22
6: if (LX + load(Oi) < Lavg) then
7: LX = LX + load(Oi)
8: Li = Li − load(Oi)
9: O ←− O \Oi

10: end if
11: end while

We propose two randomized strategies of peer selection as described below. Note

that although we discuss various strategies in terms of rounds for the sake of clarity,

there is no explicit synchronization between rounds in our implementation.

Naive Selection: In this selection strategy, each underloaded processor indepen-

dently initiates the propagation by sending its information to a randomly selected

set of f peers. A receiving processor updates its knowledge with the new infor-

mation. It then randomly selects f processors, out of the total of n processors,

and forwards its current knowledge. This selection may include other underloaded

processors.

Informed Selection: This strategy is similar to the Naive strategy except that

the selection of peers to send the information to is done incorporating the current

knowledge. Since the current knowledge available at the processor at that time

includes a partial list of underloaded processors, the selection process is biased

to not include these processors. This helps propagate information to overloaded

processors in fewer number of rounds. This strategy is depicted in Algorithm 1.
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Figure 3.1: (a) Initial load of the underloaded processors, (b) Probabilities assigned
to each of the processors, (c) Work units transferred to each underloaded processor,
(d) Final load of the underloaded processors after transfer.

3.3.2 Probabilistic Transfer of Load

In our distributed scheme the decision making for transfer of load is decentralized.

Every processor needs to make these decisions in isolation given the information

from the propagation stage. We propose two randomized schemes to transfer load.

Naive Transfer: The simplest strategy to transfer load is to select processors uni-

formly at random from the list of underloaded processors. An overloaded processor

transfers load until its load is below a specified threshold. The value of threshold in-

dicates how much of an imbalance is acceptable. As one would expect, this random

selection results in overloading processors whose load is closer to the average. This

is illustrated in the top row of Figure 3.1 and described in detail in Section 3.6.1.

Informed Transfer: A more informed transfer can be made by randomly selecting

underloaded processors based on their initial load. We achieve this by assigning to

each processor a probability that is inversely proportional to its load in the following

manner:
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pi =
1

Z
×
(

1− Li
Lavg

)
(3.2a)

Z =
N∑
1

(
1− Li

Lavg

)
(3.2b)

Here pi is the probability assigned to the ith processor, Li its load, Lavg is the

average load of the system and Z is a normalization constant. To select processors

according to this distribution we use the inversion method for generating samples

from a probability distribution. More formally, if p(x) is a probability density func-

tion, then the cumulative distribution function F (y) is defined as:

F (y) = p(x < y) =

∫ y

−∞
p(x)dx (3.3)

Given a uniformly distributed random sample rs ∈ [0, 1], a sample from the target

distribution can be computed by:

ys = F−1(rs) (3.4)

Using the above, we randomly select the processors according to pi for transfer-

ring load. This is summarized in Algorithm 2. Figure 3.1 illustrates the results.

3.3.3 Partial Propagation

An interesting question to ask is what happens if the overloaded processors have

incomplete information. This may happen with high probability if the propagation

stage is terminated earlier than log n rounds. We hypothesize that to obtain good

load balance, information about all the underloaded processors is not necessary.

An overloaded processor can have a partial set of underloaded processors and still
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achieve good balance. We empirically confirm our hypothesis by a set of experiments

in Section 3.6.1.

3.3.4 Grapevine+

Even though the scheme where every processor makes autonomous decision for ran-

domized transfer of work is less likely to cause underloaded processors to become

overloaded, this may still happen. To guarantee that none of the underloaded proces-

sors get overloaded after the transfer, we propose an improvement over the original

GrapevineLB strategy. In the improved scheme, referred to as Grapevine+LB, we

employ a negative-acknowledgement based mechanism to allow a presumed under-

loaded processor to reject a transfer of work unit. For every potential work unit

transfer, the sender initially sends a message to the receiver, which contains details

about the load of the work unit. The receiver, depending on the current load, chooses

to either accept or reject the newly assigned load. If accepting the work unit makes

the receiver overloaded, then it rejects with a Nack (negative-acknowledgement). A

sender on receiving a Nack will try to find another processor from the list of under-

loaded processors. This trial is carried out for a limited number of times after which

the processor gives up. This scheme will ensure that no underloaded processor gets

overloaded. Although this requires exchanging additional messages, the cost is not

significant as the communication is overlapped with the decision making process.

3.4 Analysis of the Algorithm

This section presents an analysis of the information propagation as well as the

randomized transfer algorithm.
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3.4.1 Information Propagation

We consider a system of n processors and, for simplicity, assume that the processors

communicate in synchronous rounds with a fanout f . Note that in practice the

communication is asynchronous (Section 3.5). We show that the expected number

of rounds required to propagate information to all the processors in the system with

high probability is O(logf n). Although we analyze the case of a single sender, the

results are the same for multiple senders since they communicate concurrently and

independently.

In round r = 1, one processor initiates the information propagation by sending

out f messages. In all successive rounds, each processor that received a message in

the previous round sends out f messages. We are interested in the probability, ps,

that any processor Pi received the message by the end of round s. We can compute

it by ps = 1 − qs, where qs is the probability that the processor Pi did not receive

any message by the end of round s.

Probability that a processor Pi did not receive a message sent by some other

processor is (1 − 1
n−1) ≈ (1 − 1

n
),∵ n � 1. Further, the number of messages sent

out in round r is f r, since the fan-out is f .

Consequently,

q1 =

(
1− 1

n

)f
(3.5)

Therefore, the probability that Pi did not receive any message in any of the

r ∈ {1, . . . , s} rounds is

qs =
s∏
r=1

(
1− 1

n

)fr
=

(
1− 1

n

)(f+f2+f3+···+fs)

=

(
1− 1

n

)f fs−1
f−1

≈
(

1− 1

n

)γfs
, Where γ =

f

f − 1
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Here f s − 1 ≈ f s,∵ f s � 1. Taking log of both sides

log qs ≈ γf s log

(
1− 1

n

)
≈ −γf

s

n

∴ qs ≈ exp

(
−γf s

n

)

Approximating by the first two terms of the Taylor expansion of ex

qs ≈ 1− γf s

n

Since we want to ensure that the probability that a processor Pi did not receive

any message in s rounds is very low, i.e., qs ≈ 0, substituting this in the above yields

γf s ≈ n As qs → 0

∴ s log f ≈ log n− log γ

s ≈ logf n− logf

(
f

f − 1

)
= O(logf n)

Our simulation results shown in Figure 3.4 concur with the above analysis. It is

evident that increasing the fan-out results in significant reduction of the number of

rounds required to propagate the information.

3.4.2 Randomized Transfer

Due to the probabilistic transfer of load, some of the underloaded processors can

become overloaded. After the information propagation phase, the overloaded pro-

cessor will have the information about the underloaded processors in the system.

Let us consider the case where number of rounds is log(n). This will ensure that the
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overloaded processors will have all the information about the underloaded processors

in the system with high probability.

The transfer can be considered as n independent Bernoulli trials, where n is the

total number of transfers. A processor i with load Li has a probability pi, given in

Eq 3.2, of being selected for transfer. This results in a binomial distribution. The

expected load of an underloaded processor i due to the transfer is E[Xi] = npi. This

gives us only the mean, but for load balancing we are interested in the max load.

Using the results from [36], for k ≥ npi, following inequality holds:

P (Xi ≤ k) > 1− e−nD(pi,k/n)

max

{
2,
√

4πnD(pi, k/n)

} (3.10)

where D(pi, k/n) represents the Kullback-Leibler( KL ) divergence between two

Bernoulli variables with respective probabilities of success pi and k/n and is given

by

D(pi, k/n) = (k/n)log
k/n

pi
+ (1− k/n)log

1− k/n
1− pi

(3.11)

This can be written as the probability that processor i has at least k transfers is:

P (Xi > k) ≤ e−nD(pi,k/n)

max

{
2,
√

4πnD(pi, k/n)

} (3.12)

If k is the transfer to processor i and Li is the initial load, then the total load at

processor i is Li + k. The above equation can be written in terms of final load

Mi = Li + k as:

P (Yi > Mi) ≤
e−nD(pi,k/n)

max

{
2,
√

4πnD(pi, k/n)

} (3.13)

Using union bound we determine that any of the processor has at least load M is
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Figure 3.2: Probability distribution of maximum load.

given by:

P (Y > M) ≤
∑
i

e−nD(pi,ki/n)

max

{
2,
√

4πnD(pi, ki/n)

} (3.14)

where ki = M − Li.

This can be written as the probability that the load of any processor less than

M is given by:

P (X ≤M) > 1−
∑
i

e−nD(pi,ki/n)

max

{
2,
√

4πnD(pi, ki/n)

} (3.15)

Figure 3.2 shows the probability distribution based on a simulation of the real

load data as well as the theoritical bound. This gives us a tight bound and we can

use it to get an estimate of the maximum load of the system.

3.4.3 Performance Analysis

To estimate the cost of load balancing, we will divide it into load balancing strategy

cost and migration cost. Let,

Clb : the cost of load balancing which includes strategy and migration
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Cstrat : the cost of the load balancing strategy

Cmig : the cost of migration

Tbefore : the application time before load balancing

Tafter : the application time after load balancing

Ti : the application run time at processor i

Clb = Cstrat + Cmig (3.16)

To get a performance model for Cstrat, we split the strategy phase into two stages:

1) information propagation via gossip; 2) probabilistic transfer of the work load.

Information Propagation

The information is propagated using a gossip protocol. At the very beginning, the

underloaded processors in the system start the gossip by sending its information

to two randomly chosen processors. On receiving this information, a processor

updates its knowledge base, combines it with its knowledge and forwards it to two

randomly chosen processors. In this information propagation protocol we don’t

necessarily need the entire information. To reduce the overhead of the algorithm,

only partial information is forwarded. We can set this threshold based on the cost

benefit analysis. For now let us assume that information about x processors is

forwarded which amounts to n bytes.

We consider a system of p processors and, for simplicity, assume that the proces-

sors communicate in synchronous rounds. In round r = 1, underloaded processors

initiate the information propagation by sending out two messages. In all successive

rounds, each processor that received a message in the previous round sends out

two messages. Let us assume that the number of underloaded processors is O(p)
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(typically some fraction of the total processors in the system).

For each initiated gossip, in the first step two messages are sent. The proba-

bility that a processor Pi received any of these messages is 2
p−1 ≈

2
p
. The number

of messages sent out in round r is 2r. We have proven in Section 3.4 that with

high probability all the processors will receive this message in log2n rounds. Con-

sequently, each gossip is propagated log2p rounds. There are O(p) such gossips

initiated. Taking that into account in round one the number of messages received

at Pi is p× 2
p

= 2 and the number of messages received by Pi in round r is 2r. Then,

the number of messages received at Pi in log2p rounds is 2, 22, 23, ..., 2log2p, which is

2 × (p − 1). The bytes sent in each message is n. The time taken by the gossip

algorithm for TTL of log2p is

Tlog = log2p× α + 2× (p− 1)nβ (3.17)

In this algorithm, we limit the propagation of the messages by using TTL (Time

To Live), which is set to a value such as log2n and whenever the message is re-

ceived, TTL is decremented and that message is forwarded again only when the

TTL > 0. With TTL of 1
2
log2n, the messages received a processor Pi now becomes

2, 22, 23, ..., 2
1
2
log2p, which is 2 × (

√
p − 1). Time for gossip algorithm for TTL of

1
2
log2p is

T0.5log =
1

2
log2p× α + 2× (

√
p− 1)nβ (3.18)

We ran the experiments on BlueGene/Q and used pingpong benchmark to obtain

the α and β cost. It was run in three configurations. 1) Pingpong between two nodes

with one rank per node, 2) Pingpong between 2 nodes with 32 ranks per node and

3) Pingpong between 512 nodes with 32 ranks per node. For 2 ranks, the values are

α = 1.14E−5 seconds and β = 5.6E−10 seconds/byte. For 64 and 16384 ranks, the
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values are α = 1.37E−05 seconds and β = 8.74E−09 seconds/byte.

Using the α and β cost model given in Eq 3.17,3.18, the timing for gossip is given

in Table 3.3. A threshold of 100 was set for the amount of information forwarded,

i.e., information of only 100 underloaded processors is forwarded. From Table 3.3,

we can see that the actual time is about 3-4 times the time based on the model.

On further investigation, it was found that the time depends on the topology

of the nodes for the job and the bisection bandwidth. To calculate the bisection

bandwidth the individual link speed as well as the topology has to be considered.

We used a tool to obtain the topology of the nodes for a particular job. The links

of BlueGene/Q is bidirectional with maximum throughput of 2 GiB/s per direction.

For 16, 384 cores 512 nodes were used with 32 threads per node. The physical

topology for our 512 nodes is 4×4×4×4×2 with torus links, therefore the bisection

bandwidth is 2 × 4 × 4 × 4 × 2 × 4GiB/s. The bisection rate βbi for 512 nodes is

1/(2× 128× 4× 230) = 9.09E−13 seconds/byte. For 8, 192, which is 256 nodes, we

use less than a midplane, therefore we use a mesh with a bisection rate of 3.63E−12

seconds/byte. Table 3.2 gives the nodes, topology and the bisection bandwidth for

different core counts. It is interesting to note that the topology obtained for 2048

nodes is 4 × 4 × 4 × 4 × 16 × 2 instead of 4 × 4 × 4 × 8 × 8 × 2. Since this is a

randomized information propagation, in expectation half of the traffic will be using

the bisection links. Using Eq 3.19,3.20 the time for information propagation due

to limiting bisection bandwidth is shown in Table 3.3. The time predicted by the

model is close to the actual time recorded from the experiments.

This analysis gives us more insights into the algorithm and shows that the gos-

sip is communication intensive and affected by the injection bandwidth. We can

consider improvements that reduce long hop large messages. For example: One

modification for the algorithm could be to change the way peers are chosen to for-

ward the information. When gossip starts, the message size is small and they can
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Cores Nodes Topology
Bisection
bandwidth
(bytes/sec)

βbi (secs/byte)

8192 256 2× 4× 4× 4× 2 2.75E+11 3.63E-12
16384 512 4× 4× 4× 4× 2 1.10E+12 9.09E-13
32768 1024 4× 4× 4× 8× 2 1.10E+12 9.09E-13
65536 2048 4× 4× 4× 16× 2 1.10E+12 9.09E-13

Table 3.2: Bisection bandwidth for different node counts

cores log2p (ms) model log2p (ms) 1
2
log2p model 1

2
log2p (ms)

8192 4.40E+02 2.30E+02 3.40E+00 2.59E+00
16384 9.00E+02 4.60E+02 6.00E+00 3.64E+00
32768 4.54E+03 9.20E+02 1.40E+01 5.13E+00
65536 8.90E+03 1.84E+03 2.80E+01 7.23E+00

Table 3.3: Time for gossip using α and β model

be sent to far off nodes, but when the gossip messages start to increase in size

considerably, then these can be forwarded to near by nodes.

Tlog = log2p× α + p× (p− 1)nβbi (3.19)

T0.5log =
1

2
log2p× α + p× (

√
p− 1)nβbi (3.20)

cores log2p (ms)
model log2p us-
ing βbi(ms)

1
2
log2p (ms)

model 1
2
log2p us-

ing βbi(ms)
8192 4.40E+02 3.90E+02 3.40E+00 4.35E+00
16384 9.00E+02 3.90E+02 6.00E+00 3.12E+00
32768 4.54E+03 1.56E+03 1.40E+01 8.68E+00
65536 8.90E+03 6.25E+03 2.80E+01 2.44E+01

Table 3.4: Gossip time taking bisection bandwidth into account
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3.4.4 Probabilistic Assignment

In the assignment phase, each overloaded processor transfers the excess load to a

randomly chosen underloaded processors from its list. To select processors we use

the inversion method for generating samples from a probability distribution. More

formally, if p(x) is a probability density function, then the cumulative distribution

function F (y) is defined as:

F (y) = p(x < y) =

∫ y

−∞
p(x)dx (3.21)

Given a uniformly distributed random sample rs ∈ [0, 1], a sample from the target

distribution can be computed by:

ys = F−1(rs) (3.22)

Using the above, we randomly select the processors according to pi for transferring

load. To select the object to be transferred, a min heap is constructed out of all the

object residing on that processor. Typically there are 20-50 objects per processing

element. For each transfer, the computation required is O(n) where n is the number

of underloaded processors at the sender. This can be optimized to use binary search

instead of linear search.

The clock speed of BlueGene/Q is 1.6 GHz, i.e., one cycle takes 6.25E-10 sec-

onds. The overall time for this phase is a few tens of microseconds and is small in

comparison to the other phases.

Migration

Migrating an object involves packing the object data into a message at the sender

side, sending the message, and unpacking it at the receiver end and registering it
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cores migrations migration time(ms) model time(ms)
8192 330 3 1.7
16384 416 3 1.7
32768 1322 4 1.7
65536 1386 5 1.7

Table 3.5: Migration time

with the runtime system. In our experiments, the size of each object being migrated

is 1.96E+02 KB. The time for migration will depend on the number of messages

received per processing unit. Table 3.5 shows the number of objects migrated and

the performance analysis for it. In all these experiments, there is only one object

received at the underloaded processors. Using the α and β cost model, the time

taken to transfer the message is computed. This model does not use the time taken

for packing and unpacking of the object thereby the model time is a lower bound.

3.5 Implementation

We provide an implementation of the proposed algorithm as a load balancing strat-

egy in Charm++. Details of the Charm++ programming model are given in

Chapter 2.

Charm++ has a user-friendly interface for obtaining dynamic measurements

about chares . The load balancers, which are pluggable modules in Charm++,

can use this instrumented load information to make their load balancing deci-

sions. Based on these decisions, the Charm++ run time system migrates the

chares .GrapevineLBwas also implemented as a separate load balancing module

in Charm++. Since the Charm++ run time system stores information about

chares and processors in a distributed database, it is compatible with GrapevineLB ’s

implementation requirements.

Although we have described the GrapevineLB algorithm in terms of rounds, an
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implementation using barriers to enforce the rounds will incur considerable overhead.

Therefore, we take an asynchronous approach for our implementation. But such an

approach poses the challenge of limiting the number of messages in the system. We

overcome this by using a TTL (Time To Live) based mechanism which limits the

circulation of information. It is implemented as a counter embedded in the mes-

sages being propagated. The first message initiated by an underloaded processor is

initialized with the TTL of desired number of rounds before being sent. A receiving

processor incorporates the information and sends out a new message with updated

information and decremented TTL. A message with TTL = 0 is not forwarded and

is considered expired. The key challenge that remains is to detect quiescence, i.e.

when all the messages have expired. To this end, we use a distributed termination

detection algorithm [37].

3.6 Evaluation

We evaluate various stages of GrapevineLB with simulations using real data and

compare it with alternative strategies using real world applications.

3.6.1 Evaluation using Simulation

We first present simulation results of the GrapevineLB strategy on a single proces-

sor. This simulation allows us to demonstrate the effect of various choices made in

different stages of the algorithm. For the simulations, the system model is a set of

8192 processors, initialized with load from a real run of an adaptive mesh refine-

ment application with same number of cores on an IBM BG/Q. This application

was decomposed into 253, 405 work units. Figure 3.3 shows the load distribution

for this application when the load balancer was invoked. The average load of the

system is 35, the maximum load is 66, therefore I, the metric for imbalance from
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Figure 3.3: Load distribution for a run of AMR used in simulation. Counts of
processors for various loads are depicted.

Equation 3.1, is 0.88. Note that the value of I ≈ 0 indicates perfect balance in

the system. Among the 8192 processors, 4095 are overloaded and 4097 are either

underloaded or have their load close to average. We perform a step-by-step analysis

of all the stages of the proposed algorithm based on this system model. It is to be

noted that we have simulated synchronous rounds. The experiments were run 50

times and we report the results as mean along with their standard deviation.

Number of Rounds and Fanout: Figure 3.4 illustrates the expected number

of rounds required to spread information on the system size. Here we consider

only one source initiating the propagation and report when 99% of processors have

received the information. As the system size (n) increases, the expected number

of rounds increase logarithmically, O(log n), for a fixed fanout. This matches our

analysis in Section 3.4. Note that the number of rounds decreases with increase in

the fanout used for the information propagation. A system size of 16K, fanout of

2, requires 17 rounds to propagate information to 99% processors whereas, fanout
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Figure 3.4: Expected number of rounds taken to spread information from one source
to 99% of the overloaded processors for different system sizes and fanouts(f).

of 4, takes 8 rounds.

Naive vs. Informed Propagation: Figure 3.5 compares the expected number

of rounds taken to propagate information using Naive and Informed propagation

schemes. Although the expected number of rounds for both the schemes is on the

order of O(log n), the Informed scheme takes one less round to propagate the infor-

mation. This directly results in the reduction of the number of messages as most

of the messages are sent in the later rounds. We can also choose to vary the fanout

adaptively to reduce the number of rounds required, while not increasing the number

of messages significantly. Instead of having a fixed fanout, we increase the fanout in

the later stages. This is based on the observation that messages in the initial stages

do not carry a lot of information. We evaluated this for a system of 4096 processors

where 50% were overloaded. Information propagation without the adaptive varia-

tion requires 13 rounds with a total of 79600 messages. While an adaptive fanout

strategy, where we use a fanout of 2 initially and increase the fanout to 3 beyond
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Figure 3.5: Expected number of rounds taken to spread information from one source
to 99% of the overloaded processors using Naive and Informed schemes for different
system sizes. Here f = 2 and 50% of the system size is underloaded

5 rounds and further increase to 4 beyond 7 rounds, helps reduce the number of

rounds to 10 with a total of 86400 messages.

Naive vs Informed Transfer: We compare the performance of the two ran-

domized strategies for transfer given in Section 3.3. Figure 3.1 shows the Naive

scheme for the transfer of load where an underloaded processor is selected uniformly

at random. Here we also show the probability distribution of the underloaded pro-

cessors for the Informed transfer strategy using the Equation 3.2 and the transfer

of load which follows this distribution, which are shown in Figure 3.1. It shows

the initial load distribution of the underloaded processors, probability assigned to

each processor (uniform distribution), number of transfers based on the probability

distribution and the final load of the underloaded processors. It can be seen that

the maximum load of the initially underloaded processors is 44 while the average is

35. Comparison with Figure 3.1 clearly shows that the final distribution of load is
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much more reasonable. Further, the maximum load of the underloaded processors

is 38 while the system average is 35.

Evaluation of a Pathological Case: We evaluate the behavior of the pro-

posed algorithm under the pathological case where just one out of 8192 processors

is significantly overloaded (I is 6.18). Analysis in Section 3.4 shows that qs decreases

rapidly with rounds for a particular source. Since all underloaded processors will

initiate information propagation, this scenario shouldn’t be any worse in expecta-

tion. We experimentally verify this and find that for a fanout value of 2 and using

the Naive strategy for information propagation, it takes a maximum of 14 rounds

to propagate the information which is similar to the case where many processors

are overloaded. Once the information is available at the overloaded processor, it

randomly transfers the work units, reducing the I from 6.18 to 0.001.

Evaluation of Quality of Load Balancing: To answer the question posed in

the earlier section as to what happens if the overloaded processors have incomplete

information, we simulate this scenario by providing information about only a partial

subset of underloaded processors to the overloaded processors. The subset of under-

loaded processors for each processor is selected uniformly at random from the set

of underloaded processors and the probabilistic transfer of load is then carried out

based on this partial information. The quality is evaluated based on the metric I

given by Equation 3.1. Figure 3.6 shows the expected maximum load of the system

along with standard deviation, σ and the value of I metric. It can be seen that

on one hand having less information, 10 − 50 underloaded processors, yields con-

siderable improvement of load balance although not the optimal possible. On the

other hand, having complete information is also not necessary to obtain good load

balance. Therefore, this gives us an opportunity to trade-off between the overhead

incurred and load balance achieved.

Evaluation of Information Propagation: Based on the earlier experiment,
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Figure 3.6: Evaluation of load balancer with partial information. Max load(left)
and Imbalance(right) decrease as more information about underloaded processors is
available. It is evident that complete information is not necessary to obtain good
performance.

it is evident that complete information about the underloaded processors is not

required for good load balance. Therefore, we evaluate the expected number of

rounds taken to propagate partial information about the underloaded processors

to all the overloaded processors. Figure 3.7 shows the percentage of overloaded

processors that received the information as the rounds progress for a fanout of 2.

The x-axis is the number of rounds and the y-axis is the percentage of overloaded

processors who received the information. We plot the number of rounds required to

propagate information from 200, 400, 2048 and 4097 underloaded processors to all

overloaded processors. In the case of propagating information about at least 200

underloaded processors in the system, 100% of the overloaded processors receive

information about at least 200 underloaded processors in 12 rounds and 99.8%

received the information in 9 rounds. It took 18 rounds to propagate information

about all the underloaded processors in the system to all the overloaded processors.
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Figure 3.7: Percentage of processors having various amounts of partial information
as rounds progress. There are a total of 4096 underloaded processors. 99% receive
information about 400 processors by 8th round while it takes 12 rounds for all the
4096 underloaded processors.

This clearly indicates that if we require only partial information, and that the total

number of rounds can be reduced, which will result in reduction of the load balancing

cost.

From the above experiments, it is evident that good load balance could be at-

tained with partial information. This is particularly useful as propagating partial

information takes fewer number of rounds and incurs lesser overhead. We utilize

this observation to choose a value of TTL much lower than log n for comparison

with other strategies on real applications.

3.6.2 Evaluation using Applications

We evaluate our GrapevineLB load balancing strategy on two applications, LeanMD

and adaptive mesh refinement (AMR), by comparing against various other load

balancing strategies. We use GrapevineLB with a fixed set of configurations, {f =

36



2, TTL = 0.4 × log2 n, Informed Propagation, Informed Transfer}, and focus on

comparing with other load balancing strategies. Results presented here are obtained

from experiments run on the IBM BG/Q Mira. Mira is a 49, 152 node Blue Gene/Q

installation at the ALCF. Each node consists of 16 64-bit PowerPC A2 cores run at

1.6GHz. The interconnect in this system is a 5D torus. In the following sections, we

first provide details about the applications and the load balancers and then present

our evaluation results.

Applications

Adaptive Mesh Refinement: AMR is an efficient technique used to perform

simulations on very large meshes that would otherwise be difficult to simulate, even

on modern-day supercomputers. Our AMR based application simulates a popular

yet simple partial differential equation called Advection. It uses a first-order up-

wind method in 2D space for solving the advection equation. The simulation begins

on a coarse-grained structured grid of uniform size. As the simulation progresses,

individual grids are either refined or coarsened. This leads to slowly-growing load

imbalance that requires frequent load balancing to maintain high efficiency of the

system. This application has been implemented using the object-based decomposi-

tion approach in Charm++ [38].

LeanMD: It is a molecular dynamics simulation program written in Charm++that

simulates the behavior of atoms based on the Lennard-Jones potential. The com-

putations performed in this code are similar to the short-range non-bonded force

calculation in NAMD [39], an application that has won the Gordon Bell award. The

three-dimensional simulation space consisting of atoms is divided into cells. In each

iteration, force calculations are done for all pairs of atoms that are within a specified

cutoff distance. For a pair of cells, the force calculation is assigned to a set of objects

called the computes. After the force calculation is performed by the computes, the
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cells update the acceleration, velocity and position of the atoms within their space.

The load imbalance in LeanMD is primarily due to the variable number of atoms

in a cell. The load on computes is proportional to the the number of atoms in the

cells, which changes over time as the atoms move based on the force calculation.

We present simulation results for a 2.8 million atom system. The load imbalance is

gradual and therefore load balancing is performed infrequently.

Load Balancers

We compare the performance of GrapevineLB against several other strategies includ-

ing centralized, distributed and hierarchical strategies. The load balancing strategies

are

GreedyLB: A centralized strategy that uses greedy heuristic to assign heaviest

tasks onto least loaded processors iteratively. This strategy does not take into con-

sideration the current assignment of tasks to processors.

AmrLB: A centralized strategy that does refinement based load balancing taking

into account the current distribution of work units. This is tuned for the AMR

application [38].

HierchLB: A hierarchical strategy [13] in which processors are divided into inde-

pendent groups and groups are organized in a hierarchical manner. At each level

of the hierarchy, the root node performs the load balancing for the processors in

its sub-tree. This strategy can use different load balancing algorithms at different

levels. It is an optimized implementation that is used in strong scaling NAMD to

more than 200K cores.

DiffusLB: A neighborhood averaging diffusion strategy [29, 32] where each proces-

sor sends information to its neighbors in a domain and load is exchanged based

on this information. A domain constitutes of a node and all its neighbors where

the neighborhood is determined by physical topology. On receiving the load infor-
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Figure 3.8: Comparison of time per step (excluding load balancing time) for various
load balancing strategies for AMR on Mira (IBM BG/Q). GV+ achieves quality
similar to other best performing strategies. Note that axes are log scale.

mation from all its neighbors, a node will compute the average of the domain and

determines the amount of work units to be transfered to each of its neighbors. This

is a two phase algorithm: in the first phase tokens are sent and in the second phase

actual movement of work units is performed. There are multiple iterations of token

exchange and termination is detected via quiescence [37].

We use the following metrics to evaluate the performance of various load bal-

ancing strategies: 1) Execution time per step for the application, which indicates

the quality of the load balancing strategy. 2) Load balancing overhead, which is the

time taken by a load balancing strategy. 3) Total application time, which includes

the time for each iteration as well as the time for load balancing strategy.

Evaluation with AMR

We present an evaluation of different load balancing strategies on the AMR appli-

cation on BG/Q ranging from 4096 to 131072 cores. AMR requires frequent load
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balancing to run efficiently because coarsening and refinement of the mesh intro-

duces dynamic load imbalance.

Time per Iteration: First we compare the execution time per iteration of the

application to evaluate the quality of the load balancers. This directly relates to I

metric given in Equation 3.1 because as I → 0, the maximum load of the system

approaches the average load, resulting in the least time per iteration. Figure 3.8

shows, on a logarithmic scale, the time taken per iteration with various load balanc-

ing strategies. The base run was made without any load balancing and is referred to

as NoLB. It is evident that with NoLB the efficiency of the application reduces as

it is scaled to higher number of cores. The Grapevine+LB load balancer (shown as

GV+ LB) reduces the iteration time by 22% on 4K cores and 50% on 131K cores.

AmrLB and HierchLB also show comparable performance for this metric. We see

an increase in gain because, on larger number of cores, the load imbalance becomes

significant. This is because the number of work units per processor decreases and

the chance that a processor becomes overloaded increases. DiffusLB also shows

some improvement, but much less than the aforementioned ones on larger scale.

For 131K, it reduces the time per step by 22%, while others (AmrLB , HierchLB

and Grapevine+LB) reduce it by 50%. An interesting thing to note here is that the

Grapevine+LB load balancer performs better than GrapevineLB (shown as GV LB)

for core counts of more than 32K. This is due to the fact that Grapevine+LB en-

sures that no underloaded processor gets overloaded using a Nack mechanism. From

this it is evident that the quality of load balance performed by Grapevine+LB is

at-par with the quality of the centralized and hierarchical strategies.

Overhead: Table 3.6 shows the overhead incurred by various load balancers

in one load balancing step for different system sizes. The overhead(load balancing

cost) includes the time for finding the new assignment of objects to processors and

the time for migrating the objects. The overhead incurred by AmrLB is 2.01 s
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LB
Number of Cores

4K 8K 16K 32K 65K 131K
Hierc 9.347 5.505 2.120 0.888 0.560 0.291
Amr 2.018 3.321 4.475 7.836 11.721 21.147
Diff 0.018 0.017 0.016 0.016 0.016 0.015
Gv 0.012 0.012 0.013 0.014 0.016 0.018

Gv+ 0.012 0.013 0.013 0.014 0.016 0.018

Table 3.6: Average cost (in seconds) per load balancing step of various strategies
for AMR

LB
Number of Cores

4K 8K 16K 32K 65K 131K
No 27.61 17.30 10.06 6.11 3.98 2.94

Hierc 87.58 41.23 21.06 9.84 6.03 3.25
Amr 36.98 35.40 37.55 58.42 84.19 149.22
Diff 22.26 12.16 7.23 4.41 3.24 2.21
Gv 22.21 12.00 6.56 4.21 2.76 1.69

Gv+ 21.50 11.48 6.44 3.73 2.34 1.48

Table 3.7: Total application time (in seconds) for AMR on BG/Q. Proposed strate-
gies Gv and Gv+ perform the best across all scales.

for 4K cores and increases with the increase in the system size to a maximum of

21.14 s for 131K cores. HierchLB incurs an overhead of 5.5 s for 8K cores and

thereafter the cost reduces to a minimum of 0.29 s for 131K cores. This is due to

the fact that as the number of processors increases, the number of sub groups also

increase resulting in a reduction of work units per group. Hence, the time taken

for the root to carry out the load balancing strategy reduces. The distributed load

balancing strategies, GrapevineLB and DiffusLB , incur considerably less overhead

in comparison to other strategies.

Total Application Time: The total application time using various strategies

is given in Table 3.7. In this application frequent load balancing is required. The

overhead of the centralized strategies diminishes the benefit of load balancing. Am-

rLB does not improve the total application time because of its overhead. This

is true for the hierarchical strategy as well. The DiffusLB results in a reduction
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Figure 3.9: Comparison of time per step (excluding load balancing time) for various
load balancing strategies for LeanMD on Mira (IBM BG/Q). Note that axes are log
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of the execution time by 28% for 16K cores and 24.8% for 131K cores where as

GrapevineLB gives a reduction of 35% and 49.6% respectively. GrapevineLB pro-

vides a large performance gain by achieving a better load balance and incurring less

overhead. It enables more frequent load balancing to improve the efficiency. A fu-

ture direction would be to use MetaBalancer [40] to choose the ideal load balancing

period.

Evaluation with LeanMD

We evaluate LeanMD by executing 1000 iterations and invoking the load balancer

first time at the 10th iteration and periodically every 300 iterations thereafter.

Execution time per iteration: We compare the execution time per iteration

of the application to evaluate the quality of the load balancers. For 4K to 16K

cores, the centralized, hierarchical and GrapevineLB strategies improve the balance

up to 42%. The diffusion-based strategy improves the balance only by 35% at 8K
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LB
Number of Cores

4K 8K 16K 32K 65K 131K
Hierc 3.721 1.804 0.912 0.494 0.242 0.262
Grdy 7.272 7.567 8.392 12.406 18.792 21.913
Diff 0.080 0.057 0.051 0.035 0.027 0.018
Gv 0.017 0.013 0.014 0.016 0.015 0.018

Gv+ 0.017 0.013 0.013 0.015 0.015 0.018

Table 3.8: Average cost per load balancing step (in seconds) of various strategies
for LeanMD

LB
Number of Cores

4K 8K 16K 32K 65K 131K
No 519.19 263.30 131.56 67.19 41.49 27.20

Hierc 325.00 163.65 84.62 44.56 33.49 22.43
Grdy 336.34 184.09 112.23 90.19 99.51 105.35
Diff 342.15 170.41 99.67 58.47 34.91 24.29
Gv 311.12 157.34 80.45 45.58 31.91 22.79

Gv+ 305.20 152.21 79.94 43.88 31.30 21.53

Table 3.9: Total application time (in seconds) for LeanMD on BG/Q

cores and there after it shows diminishing gains. GrapevineLB on the other hand

performs at-par to the centralized load balancer up to 32K. At 131K cores, it only

gives an improvement of 25% in comparison to 36% given by centralized scheme.

This reduction is because the number of tasks per processor decreases to 4 at 131K,

causing refinement-based load balancers to perform suboptimally. GrapevineLB is

consistently better than the DiffusLB because it has a representation of the global

state of the system which helps it make better load balancing decisions.

Overhead: Table 3.8 presents a comparison of overhead incurred by various

strategies for a single load balancing step. The load balancing cost of the centralized

strategy is very high and is on the order of tens of seconds. The high overhead of

GreedyLB is due to the overhead of statistics collection, making the decision at the

central location and the migration cost. The hierarchical strategy, HierchLB , incurs

less overhead. It takes 3.7 s for 4K cores and decreases to 0.26 s as the system size

increases to 131K. The overhead of DiffusLB is 0.080 s for 4K cores and decreases
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thereafter. This is because the number of work units per core decreases as the

number of cores increase. Finally, we observe that GrapevineLB has an overhead

of 0.017 s for 4K cores and decreases with increase in system size to 0.013 s for

16K cores and thereafter increases to 0.018 s for 131K. The load balancing cost

for GrapevineLB includes the time for information propagation and transfer of work

units. At 4K cores the load balancing time is dominated by the transfer of work

units. As the system size increases, the work units per processor decreases. This

results in cost being dominated by information propagation.

Total Application Time: Table 3.9 shows the total application time for

LeanMD. The centralized strategy improves the total application time but only

for core counts up to 16K. Beyond 16K cores, the overhead due to load balancing

exceeds the gains and results in increasing the total application time. DiffusLB in-

curs less overhead in comparison to the centralized and hierarchical strategies but it

does not show substantial gains because the quality of load balance is not good. At

32K cores, it gives a reduction of 12% in total execution time while GrapevineLB

gives 34% and HierchLB gives 33%. HierchLB incurs less overhead in compari-

son to the centralized strategies. It reduces the total execution time by 37% for

8K cores while GrapevineLB reduces it by 42%. GrapevineLB consistently gives

better performance than other load balancing strategies. Grapevine+LB gives the

maximum performance benefit by reducing the total application time by 20% for

131K, 40% for 16K cores, around 42% for 4K and 8K cores. Thus, GrapevineLB

and Grapevine+LB provide an improvement in performance by achieving a high

quality load balance with significantly less overhead.
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3.7 Conclusion

We have presented GrapevineLB , a novel algorithm for distributed load balancing.

It includes a light weight information propagation stage based on gossip protocol to

obtain partial information about the global state of the system. Exploiting this in-

formation, GrapevineLB probabilistically transfers work units to obtain high quality

load distribution.

We have demonstrated performance gains of GrapevineLB by comparing against

various centralized, distributed and hierarchical load balancing strategies for a molec-

ular dynamics simulation and an adaptive mesh refinement. GrapevineLB is shown

to match the quality of centralized strategies, in terms of the time per iteration,

while avoiding associated bottlenecks. Our experiments demonstrate that it sig-

nificantly reduces the total application time in comparison to other load balancing

strategies as it achieves good load distribution while incurring less overhead.
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4 Graph Partitioner Based Load
Balancers

The efficient use of large parallel machines requires spreading the computational load

evenly across all processors and minimizing the communication overhead. When the

processes/tasks that perform the computation co-exist for the entire duration of the

parallel program, the load balance problem can be modeled as a constrained graph

partitioning problem on an undirected graph. The vertices of this process graph

represent the computation to be performed and its edges represent inter-process

communication. The problem of mapping these processes/tasks to processors can be

viewed as the partitioning and mapping of a graph of n tasks to that of p processors.

The aim is to assign the same load to all processors and to minimize the edge cut

of the graph, which translates to reducing communication between processors.

This chapter evaluates the use of graph partitioning algorithms, traditionally

used for partitioning physical domains/meshes, for measurement-based dynamic

load balancing of parallel applications. We implement various load balancing strate-

gies in Charm++ using graph partitioners, such as Metis, Scotch and Zoltan.

4.1 Overview

A process graph that models the computation is constructed to compute a map-

ping. The vertices of the process graph represent the computational load and the

edges represent the communication between the processes. The set of processors

onto which the processes are mapped is also modeled as a graph, called the target

graph. The objective of the mapping algorithm is to obtain the load balance within
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the specified imbalance threshold while minimizing communication cost. We imple-

mented load balancing strategies in Charm++ that use graph partitioning methods

available in Scotch, Metis and Zoltan graph partitioners. These are described below:

• MetisLB: A strategy that passes the load information and the communication

graph to MeTiS, a graph partitioning library, and uses the recursive graph

bipartitioning algorithm in it for load balancing.

• ZoltanLB: A hypergraph partitioning based load balancer which uses Zoltan.

• ScotchLB: A strategy that uses Scotch graph paritioning library to make

load balancing decisions.

The two main classes of algorithms used to compute static mappings are direct k-

way methods and recursive bipartitioning methods. Both k-way and bipartitioning

methods are based on the multilevel graph partitioning paradigm which helps reduce

the problem complexity and execution time. The multilevel paradigm consists of

three phases: graph coarsening, initial mapping, and uncoarsening. In the graph

coarsening phase, the graph is repeatedly coarsened into a series of smaller graphs.

The graph at each step is derived from the previous graph by collapsing adjacent

pairs of vertices. In the initial mapping phase, mapping is performed on the coarsest

graph. Finally in the uncoarsening phase, the mapping of the coarsest graph is

projected back to the original input graph [41, 42]. After each uncoarsening step, the

mapping is refined to improve the quality using algorithms such as the Kernighan-

Lin (KL) [43] and Fiduccia-Mattheyses (FM) [44]. The KL algorithm minimizes

the edge cut by performing swaps between pairs of vertices, and hence the time

complexity is quadratic in the number of vertices. This algorithm moves vertices

between partitions, but it cannot perform major changes to the projected partitions.

Scotch uses FM-based algorithms for bipartitioning and k-way mapping. Fiduccia-
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Mattheyses is a modification of the KL algorithm that improves the time complexity

without significantly decreasing the quality.

Multicast-Aware Load Balancer using Zoltan: In many HPC applications,

the use of collective operations is crucial for performance and scalability. In a mul-

ticast communication, information is addressed to a group of destination processes

or objects. Many applications use multicast to send information to a subset of

objects. For example, in the case of LeanMD, which is a molecular dynamic simu-

lation benchmark, the Cell objects send information to the Compute objects. The

Compute objects calculate the forces for all pairs of atoms and sends it back to

the corresponding Cell objects. This uses a multicast collective operation. The

multicast operation is done via a multicast tree on the processors holding the desti-

nation objects. If the objects are spread across the system, this can result in a more

expensive multicast operation.

We explore the use of the hypergraph partitioning algorithm in Zoltan for mul-

ticast-aware load balancing. Hypergraph is a generalization of a graph, where a

hyperedge can connect any number of vertices. Hyperedge is a useful way of repre-

senting a group of vertices, which are connected in some respect (an edge is a special

case of a hyperedge that connects two vertices). In a multicast communication a

message is sent from a source to a group of destination objects. These objects form

the vertices of the hypergraph and the multicast forms a hyperedge in the hyper-

graph. This hypergraph is provided to Zoltan, which partitions the objects and

provides a mapping of them onto processors.
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4.2 Evaluation

We compare the performance of different load balancing strategies using a micro-

benchmark. We first provide details about the kNeighbor benchmark and then

present our evaluation results.

kNeighbor is a micro-benchmark with a near-neighbor communication pattern.

In this benchmark, each object exchanges fixed sized messages with a fixed set of

objects in every iteration. Each object is assigned a random computational load.

All the experiments were run on Intrepid, a 40960-node Blue Gene/P installation

at the Argonne National Laboratory. Each node on Intrepid consists of four 850

MHz PowerPC cores. The primary interconnect for point-to-point communication

in this system is a 3D torus with a bi-directional link bandwidth of 850 MB/s. The

experiments were run in VN mode, i.e., using all four cores per node.

Figure 4.1 shows the speedup obtained in execution time per step with respect

to NoLB for different message sizes. As we increase the message size from 2 KB to

16 KB, the improvement in the time per step using the graph partitioning based

load balancers over RefineLB increases from 30% to 79%. When compared to the
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baseline performance, the graph partitioning based load balancers give an overall

speedup of 1.2 to 4.6 when varying the message size from 2 KB to 16 KB. Hence,

graph partitioning based load balancers should definitely be used with applications

that are communication-intensive.

Multicast-Aware LB We use the leanmd mini-application to compare the per-

formance of multicast-aware load balancers, namely MultiCastLB, with MetisLB

and ScotchLB. leanmd is a molecular dynamics simulation program written in

Charm++. In each iteration of leanmd, the atoms contained in a cell are sent

to every compute that needs them. This transfer of atoms from cells to computes

is performed in an efficient manner using multicast.

1-away (27 chares in multicast) 2-away (45 chares in multicast)
MultiCastLB 5.5 7

MetisLB 8.5 10.15
ScotchLB 8.2 10.9

Table 4.1: Comparison between different load balancers using average number of
multicast messages sent for leanmd

Table 4.1 shows the impact of using MultiCastLB over MetisLB and ScotchLB

for multicast-aware load balancing. We show that ZoltanLB reduces the number of

average number of multicast messages by mapping chares participating in a mul-

ticast onto the same processors. Reducing the multicast messages will reduce the

congestion and contention in the network and thereby improve the performance of

the application.

4.3 Conclusion

Graph partitioners, such as Scotch, Metis and Zoltan, were used with the mea-

surement based load balancing framework in Charm++. Various graph partitioner

based load balancers were implemented and a performance comparison study was
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done. Graph partitioner based load balancers were successful in improving the

performance of communication intensive applications. ZoltanLB, which is a hyper-

graph partitioner, was used for multicast-aware load balancing to reduce the number

of multicast messages by placing the objects participating in a multicast within a

processor. Graph partitioner based load balancers provide good quality partitions

while minimizing the communication overhead, but at a high load balancing cost.

Therefore, these expensive, high-quality graph partitioning algorithms are used in-

frequently while cheaper refinement based algorithms are used more often.
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5 Handling Imbalance in
Distributed and Shared Memory

Several trends in high-performance computing are converging to drive applications

and systems software to rely on multi-threading in each node’s shared memory,

rather than running an independent process on each CPU core. Increasing per-chip

concurrency creates pressure on system memory, system software, and application

design. The general abandonment of specialized OS kernels [45, 46] in favor of

general-purpose Linux has rolled back past efforts to reduce system noise [47]. Fi-

nally, CPU heterogeneity [1] and increasing application sophistication both increase

load imbalance and unpredictability. In this thesis, we present a combination of the

Charm++ and Adaptive MPI distributed programming models with a new parallel

loop and concurrent task constructs that addresses many of these challenging trends

with a low-overhead and locality-conscious design.

The number of cores and threads in each chip is increasing rapidly. Within

each node, increased hardware parallelism entails reduced per-core/thread memory

capacity and bandwidth. Over entire parallel systems, treating each core as an inde-

pendent unit forces communication libraries to consume more memory and pushes

collective algorithms further toward asymptotic scaling limits. Applications that

wish to use each core independently must be structured to expose a correspond-

ingly large and growing degree of parallelism. General whole-job load balancing

mechanisms must then address the increased scale of both systems and applica-

tions. Thus, the prospect of grouping many cores together as multi-threaded units

mitigates many threats to continued performance scaling.

Many parallel applications no longer work in a regime where work and data can
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(a) Without intra-node LB (b) With intra-node LB

Figure 5.1: The potential benefits of intra-node work sharing on reducing load
imbalance

be neatly divided into uniform chunks distributed to each processor. This trend en-

compasses unstructured computations, data-dependent iterative methods, variable

resolution, multi-physics simulations, multi-phase execution, and many other devel-

opments that trade reduced total work or increased accuracy for more complicated

and less predictable execution. Even applications that do offer simple structured

decompositions are made imbalanced by hardware heterogeneity. Load balancing in

various forms can be applied to aid these applications, but it too must be scalable,

which often means coarsening the problem to the node level to avoid considering an

excessive number of cores. Discrete units of work assignment, heuristic algorithms,

and unpredictable processor performance also prevent perfect uniformity. Supple-

mentary within-node balancing can help make up for these short-falls, as illustrated

in Figure 5.1.

Even with a very balanced work assignment across nodes and individual cores,

execution may not proceed at a perfectly uniform pace. Network contention can de-

lay some messages more than others. System noise from OS processes can also non-

uniformly interfere with execution [47], with hard to predict knock-on effects [48].

Dynamic work redistribution can greatly help in mitigating these effects [49].

All of these pressures lead to a conclusion that multiple cores within each node

must share data and work to sustain continued scalability in problem size and per-
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formance. At the same time, any sharing mechanism ideally should not compromise

data locality or introduce excessive new bottlenecks or overheads. To address these

desires, we introduce a design that combines the Charm++ and Adaptive MPI dis-

tributed programming models with both standard OpenMP and new parallel loop

and concurrent task constructs. Charm++ intermittently performs coarse load bal-

ancing in terms of objects that encapsulate associated work and data together and

assigns them to particular cores with good balance among nodes. These objects then

adaptively share work with other cores in the same process, exposing fine-grained

tasks only to the extent that otherwise idle cores are available to help execute them.

Thus, our design ensures locality and low and proportionate scheduling overhead.

We demonstrate this design’s effectiveness through the improved performance and

scalability of several applications run on large supercomputers.

The contributions of this chapter are:

• An approach that combines infrequent global load balancing with shared-

memory task parallelism to handle transient and persistent load imbalance.

• Efficient implementation of dynamic scheduling of fine-grained tasks which

uses an adaptive schedule based on the state of the system.

• Improved performance by using the integrated runtime system on three dif-

ferent applications. We show improvements of 2X on ChaNGa on 128K cores

and more than 3X on NAMD at 2048 cores. We also show the benefit on an

MPI application, Kripke, using Adaptive MPI.

5.1 Related Work

Per-chip core and thread counts are steadily increasing in HPC systems. The trend

toward increasing core/thread counts will accelerate with the increased deployment
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of Knight’s Landing-generation Intel Xeon Phi hardware with several dozen cores

per chip as primary processors rather than as accelerators (e.g., in NERSC’s Cori,

LANL’s Trinity, and ANL’s Theta). This trend has driven scalability challenges

and opportunities for increased efficiency arising from multiple cores sharing access

to common memory. The ubiquitous MPI has correspondingly evolved in usage

and implementation to work well in this setting [50, 51, 52, 53, 54, 55], leading to

explicit support for shared memory in the MPI-3 standard. Charm++ has followed

a similar progression, as described in Section 5.2.

The process-per-core model of pure MPI has not been universally sufficient. Ap-

plications may have limitations in the scalability of their parallel algorithms and

data structures, or may present insufficient parallelism in their mode of work de-

composition among MPI processes. Communication that could be avoided in shared

memory is also an undesirable overhead. This has led to the rise of hybrid ‘MPI+X’

programming. OpenMP is the most prevalent shared-memory programming model

paired with MPI, with extensive work studying its implementation and impact

(e.g., [56, 57, 58]). The ‘MPI+X’ hybrid model has been increasingly used with other

shared memory programming models to handle within node parallelism [56, 59, 60].

Similar work has been done with Charm++ as the distributed substrate, combined

with both OpenMP1 and the bespoke ‘CkLoop’ loop-multithreading mechanism [61],

both of which we extend in the present work.

The MPI+X model on its own has been shown to improve load balance within

each node [62]. We combine a periodic measurement-based inter-node load balancing

scheme to attain approximate uniformity, with dynamic shared-memory execution

to smooth out residual imbalances. A recent set of papers by V. Kale, Gropp, et

al. have explored the hybrid model in more detail. They mix static and dynamic

scheduling of work among cores on a node to improve the tradeoffs among overhead,

1Unpublished work by Osman Sarood, 2011-2012
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locality, and load imbalance [63, 64, 65]. They also show that these techniques can

be used to reduce the impact of system noise [49]. Our work carries these ideas

further, by adaptively tuning the level of dynamic scheduling to match its potential

utility, thus pushing overhead lower.

Projects to more tightly integrate various shared and distributed memory models

have also arisen, with aims to improve scheduling and locality further. OmpSs

introduced concurrent tasks on top of OpenMP, with data dependences satisfied

by MPI communication operations and coordinated by its runtime system. Recent

versions of MPC bind an implementation of MPI that supports multiple ranks in

each OS process [66] to multi-threading via POSIX threads [67], OpenMP [68], and

Intel TBB. This work moves in a similar direction, by directly scheduling execution

of various shared-memory tasks to run on normal Charm++ worker threads, overlaid

on the work and data mappings generated by Charm++’s distributed memory load

balancing infrastructure.

The approach of work-stealing task scheduling has been used in Cilk [3], Intel

TBB [69], OpenMP 3.0 [70] and Habanero [71]. The randomized work-stealing used

in Cilk can result in loss of locality. TBB has a mechanism to bind each loop iteration

to the same worker thread that previously executed that iteration, thereby favoring

temporal cache-reuse. The Habanero runtime system has an adaptive locality-aware

work-stealing scheduler [72] to increase temporal data reuse.

5.2 Charm++ programming model for shared

memory

Charm++ is a parallel programming system which is based on an asynchronous

message driven execution model. Each application’s data and computations are

encapsulated in entities called chares, which are C++ objects. An application
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Figure 5.2: Charm++ Parallel Programming System

written in Charm++ is over-decomposed into these objects. Chares interact via

asynchronous method invocations and a method on a chare is executed when a mes-

sage is received for it. Chare objects are assigned to a core by the runtime system.

Typically there are many more objects than the number of cores, which is known as

over-decomposition. This encapsulation of data and its computation into a chare,

each of which is mapped to a specific core, inherently promotes data locality.

In the message driven execution model of Charm++, the runtime system actively

probes for incoming messages. On receiving a message, it identifies the correspond-

ing chare that is targeted by the incoming message and schedules it. Figure 5.2

shows the overdecomposition where multiple chares are assigned to a PE and com-

municating via messages.

The SMP mode of Charm++ takes advantage of multi-core shared memory

processors [61]. In this mode, a Charm++ OS process is called an SMP node and

each SMP node launches multiple threads each called a PE. In a typical configuration

the number of threads launched by the Charm++ process is equal to the number
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of cores or hardware threads on a node. A PE is mapped to a separate core or a

hardware thread. We use core, hardware thread and PE interchangeably. These

threads (PEs) have CPU affinity, i.e., each PE is bound to a specific core and the

operating system is not allowed to migrate the thread to another core. Each PE has

a separate message queue and the scheduler on the PE picks up messages from the

queue and handles it. Within an SMP node, data is shared between the PEs via

pointers. Utilizing the shared memory multi-core processor in this way has many

benefits. In SMP mode, intra-node communication is implemented via a single

copy, rather than the double copy scheme used between nodes. It also significantly

reduces the memory footprint of the program by eliminating the memory needed

for intra-node communication channels and buffers. Since all PEs within an SMP

node share a memory address space there needs to be only one copy of read-only

data structures. Running multiple threads in a single process enables work sharing

without explicit inter-process data transfer.

5.3 Overview

The challenge, as outlined in Section 5, is to balance load across PEs while manag-

ing locality. A pure task model with randomized work stealing, or a pure dynamic

schedule in OpenMP, sacrifices locality significantly to an extent that often nullifies

the benefits of dynamic load balancing [63, 65]. Dynamic load balancing strategies

are used to balance the load and redistribute the work at runtime. These load

balancing strategies can incur significant overhead due to the cost of computing a

new assignment and the consequent data movement. If done less frequently, the

overhead is reduced and locality is maintained, but dynamically emerging load im-

balance may last longer before being corrected. With an increasing number of cores

within a node, intra-node load balancing will become an effective way to reduce load
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imbalance.

The approach we propose is to utilize a relatively infrequent periodic assignment

of work to cores based on load measurement, combined with user assisted creation

of potential tasks from the work assigned to each core that the runtime can choose

to make available to other cores. The idea is to utilize the idle cycles on other

cores on a node to execute tasks. We also need to make sure we do not incur task

creation overhead when tasks are not needed. Figure 5.1 shows a schematic diagram

of such a scenario where most of the computations are executed on the core they are

assigned to, but the load imbalance towards the end triggers the dynamic creation

of fine-grained tasks, which are distributed across different cores.

We support this approach with two methods for users to create potential tasks.

The first method is a task abstraction that we have added to Charm++. The second

one, which builds on it, is an integration of OpenMP with Charm++, such that each

object can create potential tasks via OpenMP parallel loop constructs. Both of these

are capable of creating potential tasks that can be used for dynamically utilizing all

cores to restore balance. We also develop multiple runtime scheduling strategies for

managing these potential tasks.

In the following sections we describe our approach in detail. We first discuss

the periodic load balancing in Section 5.4. Then we describe the task model in

Charm++ in Section 5.5. Finally, we showcase the application performance im-

provements achieved by using the new integrated runtime system in Section 5.6.

5.4 Persistence Based Load balancing

Many HPC applications execute the simulation in a series of time-steps or iterations

until convergence is achieved. As a result, consecutive iterations have a similar

computation and communication pattern. For such applications, a heuristic called
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principle of persistence [6] holds, which says that the communication pattern and

computation load of the recent past is a good indicator of near future. We use

this to predict the load of future iterations; The predictions are used by the load

balancing strategies to make the global decisions. We work with Charm++ because

of its support for dynamic load balancing. As mentioned in the earlier Section 5.2,

in Charm++ the data and its computation is encapsulated into a chare object which

resides on a specific PE. A PE here refers to a processing element such as a core

or a hardware thread. This naturally promotes locality. Load balancing aims to

provide an assignment of these objects to PEs to reduce the load imbalance. The

Charm++ load balancing framework provides a mechanism to collect the load and

communication statistics of each chare object and the processor in a distributed

database. These statistics are used by the load balancing strategies to generate a

chare-to-core mapping at run time.

Charm++ contains a suite of load balancing strategies that balances load be-

tween PEs. For the purpose of this work, we use a two-level load balancing strategy

for one of the applications, ChaNGa: the load is first balanced across nodes and

then balanced within each node, both by assigning chares to PEs. This ensures

that the load is distributed evenly among the nodes; it is also distributed evenly

among cores of the node to the extent that the load predictions hold. The other load

balancing strategy used in this chapter is a hierarchical load balancer. In this hier-

archical strategy, the processors are divided into groups organized in a hierarchical

tree fashion. At each level of the hierarchy, the root performs the load balancing

strategy over the children in its sub-tree. The residual load imbalance that results

in spite of this periodic balancing can be handled by the fine-grained intra node task

balancing strategies described below.

60



5.5 Handling Residual and Transient Load

Imbalance with Charm++ Task Model

5.5.1 Task API

We support two methods of task creation. One is using an API in Charm++ to

support loop parallelization. The second one is creation of tasks via OpenMP’s

parallel loop construct which is built on top of the integrated run-time system. The

following API is provided to the programmer to expose loop parallelism.

ParallelFor(funcptr, int argc, void* argv,

int start, int end, int step,

int redOp, void *redBuf,

callback*, int sync)

The funcptr is the pointer to the function that executes the chunk of work on

any core within the node. We support a limited number of reduction operations. If

sync is set then it does not return control until all the chunks are done executing.

If sync is not set, then the control returns as soon as all the tasks have been picked

by any of the cores. If a callback is set, then it invoked once all the chunks of work

are completed.

5.5.2 Task Generation and Scheduling

A straightforward way to schedule parallel-for tasks is to statically assign equal

chunks of work to all the cores within the node as done by OpenMP’s static

schedule. This is not suitable for our case where worker threads may be busy with

their own computation. If other cores are busy with their computation work, then

they won’t pick up the statically assigned task to execute. This will result in the
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delay in completion of the parallel-for loop and wastage of CPU cycles at the caller.

Alternatively, one could create all the chunks and push them into a common task

queue from which other threads will pick work. This could have high overhead of

task creation and contention at the shared task queue. We use a separate task queue

for each PE which is described in detail in Section 5.5.3.

We explore other task generation and scheduling strategies many of which involve

work-stealing such as done in Cilk [3].

Recursive ParallelFor Task Generation

Algorithm 3 describes the algorithm for recursive ParallelFor. In this mode, one

task descriptor is created with all the information about the task. Typically the

task descriptor contains the object pointer, function pointer, total number of chunks

and an atomic variable to keep track of the number of finished chunks. In recursive

ParallelFor task generation, the loop iterations are split into two halves (similar to

the Cilk recursive spawn). A task message is created for one of the halves. This task

message contain the iteration range and a pointer to the common task descriptor.

The worker pushes the task message into the task queue and calls the function

recursively for the other half. If the iteration range is within the chunksize, then the

task is executed. The thief steals the task from the head of the queue. This ensures

that a large fraction of the work is stolen. The thief will then generate more tasks,

which are added to its task queue and starts working on chunks.

Broadcast Task Message

We have a single task descriptor with information about the task. A message con-

taining a pointer to the task descriptor is sent to all the PEs within the node via a

broadcast tree. Whenever the scheduler on a PE picks up the message, it repeatedly

and atomically increments a variable to get the next chunk to work on and executes
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Algorithm 3 Recursive Splitting
Input:
low - Lower Index of the Task Array
high - Higher Index of the Task Array
mid - Middle Index of the Task Array
taskDesc - Task Descriptor
chunkSize - Chunk Size

1: function recursiveSplit(low, high, taskDesc)
2: size = high− low
3: if (size < chunkSize) then
4: executeTask(low, high, taskDesc)
5: return 0
6: else
7: Task tPushed = new task(mid, high, taskDesc)
8: Push (tPushed)
9: recursiveSplit(low,mid, taskDesc)

10: Task tPopped = Pop()
11: if (tPopped = NULL) then . If Pushed task is stolen
12: return 0
13: else . If Pushed task is not stolen
14: recursiveSplit(mid, high, taskDesc)
15: end if
16: end if
17: end function

that chunk of work, until there are no chunks left to schedule.

Only When Idle

A PE incur unnecessary overhead due to task creation and queue contention when

there are no idle PEs who can steal and execute some of their tasks. We use an

atomic counter to keep track of the number of idle PEs within the node. Any

PE trying to generate fine-grained tasks can use this information to decide number

of tasks to generate thereby adaptively controlling the number of tasks generated

depending on the state of the system.

History

We utilize the principle of persistence to further reduce the overhead of task creation.

Each PE keeps a history of the fraction of tasks that was locally executed. This
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information is used to decide the number tasks to be generated and pushed to the

task queue to enable work sharing.

5.5.3 Task Queue

To support tasks, we created a task queue on each PE, which is distinct from the

normal message queue. The messages in the message queue are meant for that

specific PE ,whereas the tasks in the task queue can be distributed across different

PEs on a node. The scheduler on the PE polls both the local task queue and

the message queue for messages. We chose not to have a centralized task queue

at the node level because then we lose locality information and there could be

potential contention for the centralized queue. We have a separate task queue on

each PE, which is a single producer multiple consumer queue for the fine-grained

tasks. Whenever a PE becomes idle, it randomly chooses a PE and picks tasks

from that PE’s task queue. This is similar to Cilk’s workstealing [3], except that

our scheduler also polls other queues, including a PE-specific message queue for

messages to chares assigned to that PE by the periodic load balancer.

The task queue is implemented using the Chase-Lev [73] non-blocking algorithm.

The task queue is a double-ended queue. A push(t) call enqueues a task at the tail

of the queue. A pop() call dequeues a task from the tail of the queue. A steal() call

dequeues from the head of the queue. The queue is a cyclic array of task pointers

with non-wrapping head and tail indices. A worker does a push(t) by adding the

task at the tail of the queue and increments T, the tail pointer. A worker does a

pop() by decrementing T. If it detects that there could be a conflict, then it uses

compare and swap (CAS) to handle the conflict. A thief reads H and T and uses

CAS to atomically increment H and obtains the task.

The task descriptor contains details about the task such as the object pointer,

function pointer, parameters and an atomic variable. The message enqueued into the
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task queue contains range parameters and a pointer to the common task descriptor.

To avoid the overhead of creation of messages and task descriptors, we keep a pool

of task messages and descriptors, which are reused.

5.6 Application Study

We study the performance benefits of our new integrated runtime system that com-

bines the Charm++ distributed memory model with the task model on two pro-

duction scientific simulation codes, ChaNGa and NAMD, as well as its use in an

MPI+OpenMP proxy application, Kripke. We compare the performance of these

codes with and without the task model integrated. We show the performance of

ChaNGa on Blue Waters and NAMD on Blue Waters and Blue Gene Q. For all

the applications, we picked the scheduling strategy that performed the best. For

the Charm++ ParallelFor, we use the recursive task generation scheme and for

OpenMP we use the history scheme. Both of them were used in conjunction with

the when idle strategy.

Blue Waters is a Cray XE/XK hybrid machine hosted by NCSA consisting of

AMD 6276 Interlagos processors located at the National Center for Supercomputing

Applications (NCSA). It has 22,640 Cray XE nodes and 4,228 Cray XK nodes that

include NVIDIA GPUs. On the XE nodes there are two AMD Interlagos 6276 pro-

cessors processors and each processor has 8 Bulldozer cores. Each Bulldozer Core

compute unit has 16 integer cores and 8 floating point cores. Our benchmarks are

run entirely on the CPU-only XE nodes. Vesta, which is a Blue Gene Q installa-

tion located at Argonne National Laboratory (ANL), has 2048 nodes of 1600 MHz

PowerPC A2 cores. Each node has 16 PowerPC A2 cores available to applications

with 4 hardware threads per core.
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5.6.1 ChaNGa

ChaNGa is an N-body cosmology simulation application implemented in Charm++.

ChaNGa has been used in cosmology research to model the impact of a dwarf galaxy

on the Milky Way [74], study the role of Warm Dark Matter in dwarf galaxy for-

mation [75] and model the intracluster gas properties in merging galaxy clusters.

ChaNGa uses adaptive time scales for force evaluation at multiple scales. A wide

variation in mass densities results in particles having dynamical times that vary by

a large factor. The irregular distribution of particles in the simulation space as well

as having multiple scales creates severe load imbalance. Performing frequent load

balancing by object reassignment has unacceptable overhead due to strategy time

and data movement. In addition, for clustered datasets, it is often the case at the

trailing end of the gravity calculation that some of the PEs are idle while others are

busy. For our experiments we use a challenging dataset, cosmo25, which is a highly

clustered 2 billion particle dark matter simulation. In this multi-stepping run of the

cosmo25 dataset, 16 substeps constitute a big step.

A time-line view created with the Projections tool [76] is shown in Figure 5.3a.

We pick only a subset of cores within an SMP node for one of the substeps to

showcase the load imbalance problem. The colored bars indicate that the PE is

busy with computation work and the white shows idle time. We can see clearly

that there is severe load imbalance. We use the task parallelization in conjunction

with the node aware load balancer to handle this load imbalance. With the intra-

node task parallelization, we are able to handle the load imbalance and improve

the performance of this substep significantly. In Figure 5.3b we can see the impact

of this in the reduction of load imbalance, wait time and iteration time before the

barrier.

At the point where the application creates fine-grained tasks, it queries the adap-
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Time in Microseconds62,300,000 67,300,000

(a) Without intra-node load balancing

Time in Microseconds61,700,000 67,700,000

(b) With intra-node task parallelism

‘

Figure 5.3: Time line profile of ChaNGa for all the PEs (rows) on a SMP process
for the 128K cores run. White shows idle time and colored bars indicate busy time.
Fine-grained task parallelism achieves better distribution of work among PEs. The
total time per step reduces from 5.0 seconds to 4.2 seconds.

tive runtime system to find out whether it is beneficial to create tasks. The runtime

system monitors the state of the PEs on a node and when there are sufficient idle

PEs, it considers it as beneficial to create tasks. This prevents incurring unnecessary

overhead of task creation when there is no potential benefit to it because other PEs

are already busy. The chare object uses OpenMP or the Charm++ par for construct

to create tasks out of the unfinished buckets which gets distributed among other idle

cores.

Figure 5.4 compares the strong scaling performance of the original version of

ChaNGa with the improved one using intra-node fine-grain tasks. At the scale of

131, 072 cores, both ParallelFor and OpenMP give more than 2X speedup.

5.6.2 NAMD

NAMD [77] is a molecular dynamics application designed for the simulation of large

biomolecular systems. Its primary focus is on all-atoms simulation methods using

empirical force fields with a femtosecond time step resolution. Typical NAMD

simulations include all-atom models of proteins, lipids, and/or nucleic acids as well

as explicit solvent (water and ions) and range in size from 10,000 to 10,000,000
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Figure 5.4: ChaNGa strong-scaling performance on Blue Waters Cray XE6 system,
using Charm++ alone, with integrated OpenMP, and with the ParallelFor exten-
sion. Both intra-node balancing mechanisms give more than 2X speedup at 128K
cores.

atoms. NAMD played an instrumental role in a recent study resolving the atomic

level structure of the HIV Capsid. A recipient of the Gordon Bell Award, NAMD

is based on Charm++ parallel objects and scales to hundreds of cores for typical

simulations and beyond 500,000 cores for the largest simulations.

For the experiments shown here, we use the Colvar module. Colvar stands for

Collective Variables. Colvars are used to reduce the great number of degrees of

freedom present in molecular dynamics simulations into a few parameters which

can either be analyzed individually, or manipulated in order to alter the dynamics

in a controlled manner. In NAMD, we use the colvar module to perform energy

minimization runs and determine the time taken for each step. We use a hierarchical

load balancing strategy to infrequently to address the load imbalance problem. For

the load imbalance arising within the node, we use our intra-node task parallelization

to distribute the computation on idle PEs within a node.

Figure 5.5 compares the performance of the original version of NAMD running
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Figure 5.5: Strong scaling results comparing the performance of original Charm++
with the new integrated task model for NAMD’s colvar benchmark on IBM Blue-
gene/Q.

colvar module with the improved version using intra-node fine-grain tasks. At the

scale of 2048 cores it gives a speedup of approximately 3.5X.

5.6.3 Kripke

Kripke [78] is an LLNL proxy application for parallel deterministic transport codes.

It is written using MPI and, optionally, OpenMP for parallelism. Kripke imple-

ments the key computation and communication aspects of a production transport

simulation application. Such codes are used to deterministically simulate the flux

of neutral particles within a volume of interest. Kripke implements parallel sweeps

through a 3D domain. The domain is decomposed in spatial zones, and subdomains

are distributed to MPI ranks.

Parallel sweeps are vital communication kernels for the performance of determin-

istic transport codes. A sweep is a sequential traversal through a domain. Because

of the sequential dependencies through the domain, and because the domain is de-
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composed spatially, scaling sweeps efficiently is challenging. Thus, Kripke pipelines

successive sweeps over the different energy groups and directions in the problem to

attain higher efficiency. In addition to the sweep, a reduction is performed every

iteration to test the global particle count for convergence. While Kripke does not

actually check for convergence (it instead runs for a fixed number of iterations), the

reduction keeps the communication pattern faithful to production transport codes.

The reduction acts as a barrier, preventing ranks that own subdomains in the center

of the domain from advancing until all ranks have finished all sweeps.

Adaptive MPI (AMPI [79]) is an implementation of the MPI standard written

on top of Charm++. It provides the high-level features of Charm++, such as

over-decomposition, dynamic load balancing, and automatic fault tolerance, to pre-

existing MPI applications. It does so by implementing MPI ranks as lightweight,

migratable user-level threads, which are encapsulated in chares. The runtime system

schedules and load balances AMPI ranks the same way it does chares in Charm++

programs. MPI applications with no mutable global/static variables, such as Kripke,

need only be compiled using AMPI’s compiler wrappers instead of MPI’s to run on

AMPI.

Our implementation of the GNU OpenMP runtime can be used with AMPI +

OpenMP programs the same way it is with Charm++ applications. This allows

users to run an AMPI code on a node with N PEs using two modes: (a) 1 or a few

AMPI ranks per node with OpenMP threads within each rank or (b) N or more

AMPI ranks per node with each rank using up to N OpenMP threads, without

actually oversubscribing the physical resources on the system. Our results show

the benefits of this approach for applications such as Kripke which have transient

load imbalances within iterations but little to no load imbalance that persists across

iterations.

All of the tests below were performed on Blue Waters, using 32 cores per node.
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We use the default input parameters for Kripke version 1.1, meaning we run with

4096 zones per core in 1 set, 32 groups in 2 sets, and 96 directions in 8 sets. The

data is laid out in the default DGZ nesting. Note that no changes are necessary to

the source code of Kripke to run it on AMPI and our implementation of OpenMP,

and that all of the computational kernels use OpenMP parallel for loops. We

show weak scaling in the number of zones, with the number of groups and directions

held constant.

Figure 5.6 shows the time per iteration of Kripke using MPI, MPI+OpenMP,

AMPI, and AMPI+OpenMP with two different configurations. The parenthetical in

MPI+OpenMP (1) and others identifies how many ranks were launched per node.

Thus, MPI+OpenMP (1) signifies the use of 1 rank per node with 32 OpenMP

threads per rank, and MPI+OpenMP (16) means 16 ranks were launched per node

with 2 OpenMP threads per rank. AMPI+OpenMP are similarly presented, but

since our OpenMP implementation allows scheduling OpenMP threads along with

AMPI ranks without resource contention, we always specify 32 OpenMP threads per

rank. Consequently, AMPI+OpenMP (32) means 32 ranks were launched per node

with 32 OpenMP threads per rank. In addition to MPI-only, AMPI-only, and both

with one process and 32-way threading, we show the best performing combination

of rank and thread counts for each.

Kripke’s parallel sweeps benefit from the finer-grained pipeline parallelism that

decomposing into more MPI ranks offers. On the other hand, the computational

kernels benefit from OpenMP threading. Since sweep dependencies translate to idle

times within a node while each wavefront passes through the domain, within-node

parallelism can be also be used to balance the load across the idle threads at a given

time. The combination of 32 ranks and up to 32-way threading per rank performs

the best. It gives the runtime the most freedom to schedule work across all available

cores on a node while still decomposing the sweep pipeline into small pipeline stages
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Figure 5.6: Weak scaling Kripke with 4096 spatial zones per core on Blue Waters,
the time per iteration is shown for MPI and AMPI with and without OpenMP.
Numbers in parentheses indicate how many ranks were used per node.

and ensures that each thread has its own work to schedule in addition to stealing

others’ work when idle.

5.7 Conclusion

The recent trend of rapid increase in the number of cores per chip has resulted in

vast amounts of on-node parallelism. Not only the number of cores per node is

increasing substantially but also the cores are becoming heterogeneous. The high

variability in the performance of the hardware components introduces imbalance due

to heterogeneity. Applications are also becoming more complex resulting in dynamic

load imbalance. Load imbalance can result in loss of performance and decrease in

system utilization. We address the challenge of balancing load across cores while

maintaining locality and low overhead. In this paper, we proposed a new integrated

runtime system that combines the Charm++ distributed programming model with

concurrent tasks to handle load imbalance. It utilizes a relatively infrequent periodic
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assignment of work to cores based on load measurement, in combination with user

created tasks to handle both the persistent and transient load imbalance. OpenMP

integration with Charm++ was built on top of this framework. It enables objects

to create potential tasks via OpenMP’s parallel loop construct. This contribution is

not specific to Charm++; it is also available to MPI applications through integration

with Adaptive MPI. The benefits of using this integrated runtime system is shown

on three different applications. We show improvements of 2X on ChaNGa on 128K

cores and more than 3X on NAMD at 2, 048 cores. In these applications, benefit

naturally increase with high core counts, when one is nearer to the limit of strong

scaling. We also show the benefit on an MPI application, Kripke, in a weak-scaling

experiments on up to 2, 048 cores using Adaptive MPI.

The task generation scheme we used currently admits a relatively flat set of

tasks generated by parallel loops. A possible future extension is to admit tasks

with dependences, similar systems like OmpSs [59] or PaRSEC [80]. These will also

create opportunities for runtime scheduling based on the knowledge of dependencies

and cache or scratchpad availability of data.
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6 Meta Balancer for LB Period

Modern parallel applications running on large clusters often involve simulations of

dynamic and complex systems [81, 82]. A significant amount of effort is spent on

writing these parallel applications in order to fully exploit the processing power of

large systems and show scalability. For such applications, load balancing techniques

are crucial to achieve high performance on large scale systems [83], because load im-

balance among processors leads to significant drop in system utilization and hampers

application’s scalability. With ever-growing parallelism available in supercomputers

of today, tackling the imbalance in an efficient manner is a difficult problem.

In a large class of scientific applications such as NAMD [81], FEM [84] and

climate simulation, the problem is broken into smaller data and work units that

execute on processors. The computation being performed consists of a number of

time steps and/or iterations with frequent interaction among data/work units via

messages. Independent of the programming paradigm being used (such as MPI or

Charm++ [85]), handling load imbalance in such applications is a multi-faceted

problem and involves the following common tasks:

1. Identify movable work units and estimate their load

2. Make load balancing decisions, including how often to balance load

3. Move the work units

One method to estimate the work load is using performance modeling techniques

with a cost function that models the work load based on the programmer’s a pri-

ori knowledge of the application domain. Another method, which is adopted in
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Charm++, is based on instrumenting the load information from the recent past as

a guideline for the near future, using a heuristic known as the principle of persis-

tence [6]. It posits that, empirically, the computational loads and communication

patterns of the work units tend to persist over time, even in dynamically evolving

computations. Therefore, a load balancer can use the instrumented load informa-

tion to make load balancing decisions. The key advantage of this approach is that

it is application independent, and it has been shown to be effective for a large class

of applications, such as NAMD [39], ChaNGa [8] and Fractography3D [9].

Performing load balancing entails overheads that include the time spent in find-

ing the new placement of work units and the time spent in moving the work units.

Due to the cost of load balancing, it is important to determine if invoking the load

balancer is profitable, i.e., whether the overhead due to load balancing is less than

the gain obtained after load balancing for a period of time. Typically, application

behavior depends on the size of system being simulated and the parallel system be-

ing used for simulation. As a result, finding the time steps (or iterations) at which

load balancing should be invoked to obtain best performance is a difficult task. Most

runtime systems (RTS) depend on the application programmers to decide when to

balance the load. A common practice is to choose a fixed period to invoke the

load balancer; for example every 100 time steps. This, however, prevents the load

balancing from adapting to the changing application behavior.

In this thesis, we introduce the Meta-Balancer framework, which is a step to-

wards automating load balancing related decision making. Based on the application

characteristics observed at runtime and a set of guiding principles, Meta-Balancer

relieves the application programmer from the critical task of deciding when the load

balancer should be invoked. Unlike many existing models, which rely only on the

most recent data and do not make predictions based on dynamic nature of appli-

cations [10, 86], Meta-Balancer continuously monitors the application and predicts
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load behavior. Using a linear prediction model on the collected information, Meta-

Balancer predicts the time steps (or iterations) at which load balancing should be

performed for optimal performance. In addition, Meta-Balancer monitors for sudden

changes in the application behavior and invokes the load balancer if needed.

We have implemented Meta-Balancer on top of Charm++ load balancing frame-

work in order to take advantage of its support for load balancing. We demonstrate

that Meta-Balancer improves application performance by choosing the correct time

steps to invoke load balancer for iterative applications. We show that, using Meta-

Balancer, performance of LeanMD, a molecular dynamics simulation program, can

be improved by upto 18% in cases where a fine-tuned fixed load balancing pe-

riod provides marginal gains of 1.5%. For Fractography3D, we demonstrate that

Meta-Balancer identifies the dynamic characteristics of the application without any

input from the user and, at least, matches the performance of periodic load bal-

ancing with a carefully chosen fixed period. Note that working of Meta-Balancer

is transparent to a user and only a trivial change in application is required to use

Meta-Balancer. Moreover, the same concepts can be used for any other parallel

programming paradigm such as MPI.

The key contributions of this chapter are as follows:

• We introduce a generic concept that can be used to automatically decide when

to invoke the load balancer based on application characteristics.

• We present an implementation of our concept as Meta-Balancer in Charm++

using asynchronous algorithms, which executes in the background and is in-

terleaved with application’s execution.

• We demonstrate that Meta-Balancer takes correct decisions regarding invoca-

tion of the load balancing without any input from the user for two real world

applications, and improves performance in most cases.
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In Section 6.1, we provide a background on the load balancing framework in

Charm++, followed by a description of Meta-Balancer in Section 6.2. Thereafter,

results on using Meta-Balancer with two real world applications are presented in

Section 6.3. Finally, previous work in presented in Section 6.4 followed by conclusion

and future work in Section 6.5.

6.1 Background

In our design, we consider a large scale application as a collection of migratable

objects distributed on a large number of processors, communicating via messages.

A load balancing framework can migrate these objects and the associated work

from an overloaded processor to an underloaded processor. Our implementation

takes advantage of the existing Charm++ load balancing framework that is based

on such an execution model [10].

6.1.1 Charm++ and its Load Balancing Framework

Charm++ is a parallel programming model that implements message-driven parallel

objects (chares), which are migratable among processors. An application written in

Charm++ is comprised of a collection of chares, distributed among the processors

and communicating via messages. When there is imbalance of work among the

processors, migrating the objects from an overloaded processor to an underloaded

processor helps in achieving balance and thereby improves the performance of the

application.

The load balancing framework in Charm++ is a measurement based framework

and is responsible for two key tasks. First, it instruments the application code at

a very fine-grained level and provides vital statistics for load balancing. Second,

it executes the load balancing strategy to determine a mapping of objects onto
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processors and performs the migration.

Charm++’s object model simplifies the task of application instrumentation. The

runtime system (RTS) instruments the start and the end time of each method invo-

cation on the chares. The advantage of this method is that it provides an automatic

application-independent method to obtain load information without user input or

manual prediction of load. Further, the Charm++ RTS can record chare-to-chare

and collective communication patterns as every communication initiated by chares

is eventually handled by the RTS. The RTS also records the idle time and the back-

ground load on a processor. However, the task of initiating load balancing and

selection of a load balancing strategy is the responsibility of the programmer. The

load balancing strategies are plugins in Charm++.

Algorithm 4 Application Code on every Chare

1: when ResumeWork invoked
2: perform work
3: if (curr iter % fixed period == 0) then
4: call AtSync
5: else
6: call ResumeWork
7: end if
8: curr iter + +

In Algorithm 4, we present the iterative component of a typical Charm++ pro-

gram. In Charm++, execution proceeds when functions are invoked on chares by

the RTS on receiving messages for them. An application run begins with the RTS in-

voking appropriate functions (ResumeWork in our example) targetted at the chare.

Most function calls (such as call ResumeWork) results in a message send to the RTS,

which subsequently results in a function invocation. After the message is sent, exe-

cution resumes assuming that the function call returned. Each object calls AtSync,

a blocking collective, when it is ready for load balancing.

Once all chares on a processor call AtSync, the load balancing framework takes

control. Thereafter, the load statistics associated with all processors and chares
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is sent either to a central processor (if using a centralized strategy) or to a set

of processors (if using a hybrid strategy) [13]. At these hub(s), the load balanc-

ing framework computes a new mapping of chares to processors using the collected

statistics, and the strategy specified by the programmer either as a run time ar-

gument or during code compilation. Once the new mapping is computed, the load

balancing decision is broadcast to every processor involved and the migrations are

performed. Eventually, the chares resume their execution when they are invoked by

the RTS.

6.2 Meta-Balancer

Meta-Balancer is designed as a framework that, given an application and a load

balancer, automatically makes decision at runtime on when to invoke the load bal-

ancer, taking into account the application characteristics. It is implemented on top

of the Charm++ load balancing framework (Section 6.1.1). Meta-Balancer relies on

a heuristic known as the principle of persistence described. in Section 6. The idea is

to let the runtime continuously monitor the application’s load behavior and, based

on the collected statistics, predict the trend of the change of the load and make

decisions on when to invoke load balancing. Meta-Balancer consists of three major

components, namely, asynchronous statistics collection, a decision making module

for the ideal LB period and consensus of LB period.

6.2.1 Meta-Balancer Statistics Collection

Meta-Balancer collects load information about the running application to determine

if load balancing is needed. Using the same AtSync interface as described in Sec-

tion 6.1.1, every chare informs its work load to the Meta-Balancer and moves on to

the next iteration. Once all the chares residing on a processor have deposited their
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load for an iteration, Meta-Balancer gathers these statistics via an asynchronous

reduction as shown in Figure 6.1. However, the application needs to call AtSync

not when the application thinks the load balancing is needed, but everytime it is

possible to balance, for example at the end of every iteration.

Since Meta-Balancer requires frequent aggregation of the statistics at a central

location, this may incur significant communication overhead on large systems. In

order to reduce the overhead, we select a minimal set of statistics to be collected pe-

riodically by the Meta-Balancer. These statistics include the maximum load, average

load and the minimum utilization on all processors in the system. We have found

that these vital statistics are sufficient for deciding the LB period for good perfor-

mance. Further, the overheads are mitigated by the use of Charm++’s asynchronous

reduction of the minimal statistics that runs in the background and overlaps with the

normal execution of the application, thanks to Charm++’s asynchronous message

driven execution model.
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c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

Figure 6.1: Periodic Statistics Collection
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6.2.2 Ideal Load Balancing Period Computation

Using the aggregated result of the load statistics, Meta-Balancer determines whether

there is load imbalance, which can be calculated by

ζ =
Lmax
Lavg

− 1 (6.1)

where Lmax is the load on the most loaded processor and Lavg is the average load

of all processors. If there is load imbalance in the system (ζ > 0), it will lead to

performance loss. However, presence of load imbalance does not necessarily require

load balancing as it may not be profitable due to the overhead in the load balancing

step.

With load balancing, the total execution time of an application is sum of the

load balancing overhead and the time spent in running the application. The goal

is to minimize the total execution time. This can be a challenging problem since

we need to model the effectiveness of the load balancer on the application and how

the application load evolves over time after load balancing. We present a simple

mathematical analysis based on an assumption that the maximum and average load

can be modeled linearly with time (i.e., iterations). A linear model has been chosen

because more complex models in the proximity can be approximated to piecewise

linear. The mathematical analysis helps derive the ideal load balancing period which

can be used by Meta-Balancer to decide the next iteration at which load balancing

should be performed. Let,

τ be the ideal LB period,

γ be the total iterations an application executes,

Γ be the total application execution time, and

∆ be the cost associated with load balancing
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Let the average load be represented by the line equation:

Lavg = at+ la (6.2)

where a is the slope and la is the average load for the first iteration.

Let the maximum time per iteration, approximately equal to the maximum load

on the most loaded processor, be represented by the line equation:

Lmax = mt+ lm (6.3)

where m is the slope w.r.t. to the average load line, lm is the difference of maximum

load and average load for the first iteration and t is the time steps (or iterations).

Application execution time, Γ, can be computed by an integral of maximum time

per iteration over the total iterations and load balancing cost as shown below:

Γ =
γ

τ
× (

∫ τ

0

(mt+ lm)dt+ ∆) +

∫ γ

0

(at+ la)dt

Γ =
γ

τ
× (

mτ 2

2
+ lmτ + ∆) + γ × (

aγ

2
+ la)

Γ = γ × (
mτ

2
+ lm +

∆

τ
+
aγ

2
+ la)

Note that γ
τ

represents the number of times load balancing is invoked during

the execution of an application. Also, for the purpose of this analysis, we have

assumed that the load balancing leads to a perfect balance. In order to minimize

Γ, we differentiate it with respect to τ , and obtain the following value of τ used by

Meta-Balancer as the ideal load balancing period.

d

dτ
(Γ) = γ × (

m

2
− ∆

τ 2
) = 0

τ =

√
2∆

m
(6.4)
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Eq 6.4 effectively states that once the load balancer is invoked, the next invo-

cation should be performed only when the cost for load balancing invocation has

been covered. The load balancing cost is estimated using the cost incurred during

the previous invocation. The cost for a load balancing is covered by the gains which

are obtained as load balancing reduces the iteration time represented by the area

of the triangle in Figure 6.2. The ideal LB period is calculated and continuously

refined by Meta-Balancer, using Eq 6.4, as the application executes. The simpli-

fying assumption that the load balancing leads to a perfect balance is handled by

shifting the average curve upwards, if a perfect balance is not achieved, during the

gain calculation.
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Figure 6.2: Ideal Load Balancing Period

6.2.3 Distributed Consensus

In the original case without using Meta-Balancer, to perform load balancing, all

chares enter the load balancing phase in the same iteration, controlled by the fixed

load balancing period. After the load balancing step, the execution resumes on
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each chare. However, when using Meta-Balancer, there may be a race condition

scenario that causes the program to hang. As an example, let Meta-Balancer’s

decision of the next load balancing time be iteration number i. Consider a chare

a, which receives the notification of load balancing at iteration i before it reaches

iteration i. When this chare arrives at iteration i, it waits for the load balancing

to be done. Consider another chare b, which is already at the iteration i + 1 when

the notification of load balancing at iteration i is delivered to it. As a result, it

will not join other chares waiting for the load balancing to be done. This scenario

is possible for applications that have no explicit global synchronization at each

iteration, because chares perform the computation work at their own speed and

the load balancing decisions are taken asynchronously and communicated to the

processors asynchronously. Since a centralized load balancing strategy enforces a

global barrier, which requires the participation of all chares, load balancing will never

happen in this scenario as chare b missed the iteration i, causing the application to

hang.

To avoid such a scenario, all chares need to reach consensus on the iteration

number that chares can reach to enter the load balancing stage. Since the chares

can be in different iterations, we use the scheme shown in Figure 6.3 to obtain the

consensus.

First, the central processor (root) broadcasts the calculated ideal LB period as a

tentative decision for the next load balancing time. Whenever a processor receives

the tentative LB period, it sets its own local tentative LB period to be the maximum

of the received tentative LB period and the maximum iteration of any chare that

resides on it and prevents any chare from going beyond that. It contributes its local

iteration number via a reduction to find the maximum iteration number any chare

is executing. Recall that the reductions in Charm++ are asynchronous. In the

final step, when the root receives the maximum iteration number, it sets the final
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Figure 6.3: Three Step Consensus Mechanism in Meta-Balancer

load balancing period to be the maximum of the tentative load balancing period

and the maximum iteration number that was received. This final load balancing

period is then broadcast to every other processor. Note that it is guaranteed that

no chare would have moved beyond this final load balancing period as the RTS on

each processor blocks a chare which has reached its local tentative LB period.

6.2.4 Implementation

In this section we describe the implementation of Meta-Balancer and its interaction

with the application and the Charm++ RTS. As mentioned earlier, a typical ap-

plication can be depicted using Algorithm 4. Periodically, the application invokes

AtSync, which passes the control to the Charm++ RTS for potentially invoking

the load balancer. The functionality of the Charm++ RTS for a chare is shown in
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Algorithm 5. When AtSync is invoked, the Charm++ RTS registers the chare load

for the previous iteration with Meta-Balancer. It also performs load balancing if the

chare has reached the LB period. In case the consensus mechanism is active and the

chare reaches the tentative LB period, it blocks any further execution of the chare.

If none of these conditions are met, execution of the next iteration is initiated for

the chare.

The Meta-Balancer code on each processor is presented in Algorithm 6. When

the Charm++ RTS registers the load for a chare, Meta-Balancer contributes to

the minimal statistics reduction if the load for all chares on that processor has

been registered. Thereafter, when the central processor receives the result of this

reduction, as shown in Algorithm 7, it finds the ideal LB period and follows the

consensus mechanism described in Section 6.2.3 to find the final load balancing

period. The root broadcasts this final load balancing period to all processors. On

receiving the final load balancing period, the RTS on each processor either initiates

load balancing or invokes the next iteration on the chares to progress locally to the

iteration chosen for the next load balancing step.

Algorithm 5 Charm RTS on each Chare

1: when AtSync invoked
2: update chare load in Meta-Balancer
3: if (reached LB period) then
4: perform load balancing
5: else if (reached tentative LB period) then
6: wait for final LB period
7: else
8: call ResumeWork
9: end if

1: when received final LB period
2: if (curr iter == finalLBperiod) then
3: perform load balancing
4: else
5: call ResumeWork
6: end if
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Algorithm 6 Meta-Balancer on every Processor

1: when received chare load
2: if (all chares have registered their load for an iteration) then
3: contribute to reduction for statistics collection
4: end if

1: when received tentative LB period
2: find maximum iteration number of chares
3: contribute to reduction for maximum iteration number

Algorithm 7 Meta-Balancer on Central Processor

1: when received result of statistics reduction
2: find tentative LB period
3: inform tentative LB period to all processors

1: when received result of maximum iteration reduction
2: set final LB period as max{tentative LB period, maximum iteration}
3: inform final LB period to all processors

6.3 Experimental Results

In this section we present a comparison of the performance of Meta-Balancer with

respect to periodic load balancing using two real world applications, LeanMD and

Fractography3D. We show that Meta-Balancer is able to identify the ideal load

balancing period, which changes as the application evolves, and extracts the best

performance for the applications automatically at runtime. For the experiments we

use two machines - Ranger and Jaguar. Ranger is a SUN constellation cluster located

at the Texas Advanced Computing Center consisting of 3, 936 nodes connected via

a full-CLOS Infiniband interconnect providing 1 GB/s of peer-to-peer bandwidth.

Jaguar is a Cray system at Oak Ridge Leadership Computing Facility equipped with

Cray’s new high performance Gemini network.

6.3.1 LeanMD

LeanMD is a molecular dynamics simulation program written in Charm++. It

simulates the behavior of atoms based on the Lennard-Jones potential, which is an
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effective potential that describes the interaction between two uncharged molecules or

atoms. The computation performed in this code mimics the short-range non-bonded

force calculation in NAMD [39], an application widely used by biophysicists, which

won the Gordon Bell award.

The force calculation in Lennard-Jones dynamics is done within a cutoff-radius,

rc for every atom. The three-dimensional (3D) simulation space consisting of atoms

is divided into cells of dimensions that are equal to the sum of the cutoff distance, rc

and a margin. In each iteration, force calculations are done for all pairs of atoms that

are within the cutoff distance. The force calculation for a pair of cells is assigned to

a different set of objects called computes. Based on the forces sent by the compute

objects, the cells perform the force integration and update various properties of their

atoms – acceleration, velocity and positions. Load imbalance in LeandMD is due

to the variation in the number of atoms that reside in a cell. The load on compute

objects is directly proportional to the product of the number of atoms in the cells for

which the force is being computed. LeanMD is a computation intensive benchmark,

in which load imbalance is high when the application begins.

We use LeanMD to study the behavior of 1 million and 300,000 atom system for

2000 time steps on Jaguar and Ranger respectively. First we describe the results

of the runs on Jaguar followed by the runs on Ranger. On Jaguar, the base runs

for LeanMD were made for a range of core counts (128, 256, · · · , 4096) without any

load balancing. The processor utilization graph for running LeandMD on 256 cores

without load balancing is shown in Figure 6.4a. On the y-axis, we have the average

percentage utilization for all the processors in the system, and the x-axis represents

time progression as the simulation proceeds. The key thing to note is that, there is

no significant variation in processor loads as the simulation progress. However, the

utilization is as low as 60% for the entire run.

In the next step, we ran LeanMD with periodic load balancing over a range of
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(a) No Load Balancing

(b) Meta-Balancer

Figure 6.4: Processor Utilization of LeanMD on 256 cores

periods (10, 20, · · · , 700), leading to the result shown in Figure 6.5. There are two

important points to note in these results: 1) the LB period which gives the best

period varies with the system size, and 2) in some cases, such as 4096 processors,

periodic load balancing provides only marginal improvement in performance. In

such scenarios, it is very difficult and time consuming for the user to find and use a

LB period that gives the best performance.

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)
128 1945.16 1451.30 (200) 1388.29
256 1005.22 750.11 (200) 695.55
512 516.47 393.30 (400) 355.85
1024 264.15 209.64 (400) 190.52
2048 135.92 116.69 (400) 94.33
4096 70.68 69.6 (700) 57.83

Table 6.1: LeanMD Application Time on Jaguar
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Figure 6.5: Variation in LB Period for LeanMD on Jaguar

In Figure 6.4b, we present processor utilization for the case where LeandMD

is run with Meta-Balancer on 256 cores. Note that to run Meta-Balancer, the

only change in the application was to change the frequency at which AtSync was

invoked. For our experiments, we invoke AtSync every 5 iterations. The vertical

notches in the plot indicate the time when load balancing was performed. It can be

seen that Meta-Balancer invokes load balancing at the very beginning due to the

load imbalance. Thereafter, since the processor utilization is very high (95%) with

insignificant variation, load balancing is invoked very infrequently. This translates

into performance improvement of 31% as shown in Table 6.1. For large core count

of 4096, we observe that while periodic load balancing provides marginal gains of

1.5%, Meta-Balancer improves the performance by 18%. For smaller core counts,

Meta-Balancer outperforms any fixed LB period used.

We also ran LeanMD on the Ranger cluster to simulate a 300, 000 atom system

for 2000 time steps. Figure 6.6 presents the performance of periodic load balanc-

ing when the period is varied from 10 to 700 iterations. For runs on 128, 256

and 512 cores, we observe that the best performance is obtained at different LB

periods when compared with the runs on Jaguar. This suggests that the LB pe-
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riod at which the best performance is obtained also changes with the problem being

simulated and the system being used to execute the application. In Table 6.2, a com-

parison of performance of Meta-Balancer with other runs is shown. It can be seen

that Meta-Balancer consistently outperforms periodic load balancing, and improves

the performance over base runs by upto 28%. These experiments on Ranger and

Jaguar highlight the utility of Meta-Balancer in identifying the characteristics of an

application and invoking load balancing appropriately to obtain good performance

without any input from the user.
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Figure 6.6: Variation in LB Period for LeanMD on Ranger

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)
128 2169.85 1570.45 (100) 1545.9
256 1087.39 798.28 (100) 787.01
512 552.96 411.71 (200) 401.78
1024 285.8 230.39 (400) 228.55
2048 203.29 159.42 (400) 159.28

Table 6.2: LeanMD Application Time on Ranger
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6.3.2 Fractography3D

Fractography is used to study fracture surfaces of materials. Fractographic meth-

ods are used to determine the cause of failure in engineering structures and evaluate

theoretical models of crack growth behavior. Our simulation program, called Frac-

tography3D, is written using a Charm++ based FEM framework [84].

In Fractography3D, the framework discretizes a 3-D volume into tetrahedras.

Typically, the number of elements is very large, and they are grouped into a number

of chunks distributed across processors. During the simulation, each tetrahedral

element is considered to have one of two material properties: elastic or plastic.

When an external force is applied to the material under study, the initially elastic

response of the material may change to plastic as stress increases, resulting in a much

more expensive computation in that region. This in turn causes some of the mesh

partitions to spend more time on computation per timestep than other partitions,

resulting in load imbalance.

Using Fractography3D, we study the effect of applying an external force to a bar.

The bar is represented using 88641 points in 3D space, which are used to generate

tetrahedras. The simulation is performed for 3.6 ms of real world time with a time

step of 32 micro seconds. Therefore, there are approximately 11,200 iterations exe-

cuted during the simulation. For the base runs, we ran Fractography3D on Jaguar

without any load balancing being performed for core counts of 64, 128, · · · , 1024.

Figure 6.7a shows the processor utilization graph generated when Fractorgraphy3D

is run on 64 cores of Jaguar. On the y-axis, we have the average percentage utiliza-

tion for all the cores in the system, and the x-axis represents time progression as

the simulation proceeds. It can be seen that Fractography3D has a large variation

in processor utilization during a simulation run. Also, for a large portion of the

execution, substantial amount of processor resources are wasted. Similar trend was
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found in processor utilization on other core counts as well.

(a) No Load Balancing

(b) Periodic Load Balancing (300 iterations)

(c) Meta-Balancer

Figure 6.7: Processor Utilization of Fractography3D on 64 cores

Following the base runs, we ran Fractography3D with load balancing being per-

formed periodically. We experimented with a large range of LB periods (5, 10, 20, · · ·

, 7000) to find the period that gives the best performance. Figure 6.8 shows the ap-

plication run time for Fractography3D using these LB periods on various core counts.

We find a significant variation in application execution time as the LB period is var-
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ied. If the load balancing is done very frequently, the overheads of load balancing

overshoot the gains of load balancing, which results in bad performance. On the

other hand, if load balancing is done very infrequently, the load imbalance in the

system reduces the gains achieved by load balancing. However, for intermediate

periods, such as 300 iterations, best performance is obtained. In Figure 6.7b, we

present the processor utilization graph for Fractography3D on 64 cores when the

load balancing is performed every 300 iterations. The key thing to note in Fig-

ure 6.7b is the substantial increase in the processor utilization due to periodic load

balancing that results in reduction in application execution time by 28%.

Finally, we ran Fractography3D using Meta-Balancer on the same range of core

counts as used for the earlier cases. As mentioned earlier, the only change in the

user code required for using Meta-Balancer is the invocation of AtSync frequently

(every 5 iterations). Figure 6.7c shows the processor utilization graph generated

when Fractography3D is run on 64 cores with Meta-Balancer. It can been seen

that Meta-Balancer increases processor utilization, which results in a performance

gain of 31% in comparison to the case in which no load balancing is performed.

An interesting thing to note is the frequent invocation of load balancing by Meta-

Balancer in the first quarter of the execution as seen by the vertical notches in the

plot. This is because of the fact that the load variation among processors changes

frequently in the first quarter. Thereafter, when the load variation decreases in the

second half of execution, the frequency of load balancing also goes down. This shows

that a single static frequency is insufficient.

In Table 6.3, a comparison of total execution time of Fractography3D for the

following three cases is presented - without load balancing, periodic load balancing

every 300 iterations and Meta-Balancer. We observe that in most cases Meta-

Balancer either matches or improves the best performance obtained by periodic

load balancing. The only exception is at 1024 cores, which we believe is because of
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Figure 6.8: Variation in LB Period for Fractography3D on Jaguar

the very small run time of the application. Both Meta-Balancer and periodic load

balancing outperform the base case with no load balancing by 28% to 31%. Thus,

we have shown that, for Fractography3D, Meta-Balancer is able to invoke load

balancing whenever required without any input from the user and at least matches

the performance of periodic load balancing. This shows the utility of Meta-Balancer

in automating the load balancing decisions and helping the user avoid numerous runs

to find the best LB period for an application. Note that, unlike benchmark runs, the

users do not have the luxury of repeating the runs to find the best load balancing

period as their objective is to get their runs completed as fast as possible to extract

the intended scientific results.

Core No LB (s) Periodic LB - 300 (s) Meta-Balancer (s)
64 654.5 468.35 448.76
128 375.51 244.9 231.36
256 200.78 131.4 127.25
512 109.45 74.6 74.03
1024 59.49 44.4 48.8

Table 6.3: Fractography3D Application Time

In order to measure the overhead of using Meta-Balancer, LeanMD and Frac-
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tography3D were run using Meta-Balancer with a constraint that, irrespective of

the load balancing period determined by Meta-Balancer, load balancing was not

invoked. In comparison to the base case, only a negligible performance drop was

observed. The absence of significant overhead can be attributed to the asynchronous

manner in which Meta-Balancer is run by the RTS and its overlap with the appli-

cation run.

6.4 Previous Work

Dynamic load balancing strategies have been studied extensively in the past [31, 32].

One important category of load balancing scheme is the periodic load balancing for

iterative applications with persistent load patterns. Exemplar runtime systems im-

plementing this approach are Zoltan [83], Chombo [87], and Charm++ [10]. Similar

schemes have also been proposed and used in MPI applications [88, 89]. This the-

sis proposes concepts that build upon these existing frameworks in order to make

decisions related to load balancing to get good performance.

As described in [32], deciding when to invoke load balancing is a critical step in

a load balancing process. This decision depends on determining if performing load

balancing at an instance will improve overall application performance. A simple

model based on a load imbalance factor φ(t) is proposed in [32], which is based on

the estimate of the potential gain through load balancing at time t. However, this

model does not consider the dynamic behavior of the application. In contrast, the

proposed work uses a linearized extrapolation model for predicting load based on

recent past, which is used to predict the time steps at which load balancing should

be performed.

A more complex scheme to decide a good load balancing period is proposed

by Siegell et al. [90]. Several factors such as interaction overhead, load balancing
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overhead and application time quantum are measured at run time, and are used to

decide the time at which next load balancing should be invoked. The main drawback

of this approach is its reliance on users to decide the acceptable granularity of each

of these factors for several inputs. Our work requires no input from the user and

hence results in complete automation.

Techniques for automation of load balancing related decisions are also presented

in a recent work by Pearce et al. [86]. The primary focus of this work is on the

selection of a load balancing strategy based on the simulation of multiple strategies.

For load prediction, the dynamic nature of application is not considered, and a

synchronous global barrier based scheme is used for making decisions. In contrast,

our work focuses on deciding when to invoke load balancing based on prediction

of application load characteristics. We also avoid barriers by using asynchronous

communication which may be beneficial on large systems.

6.5 Conclusion

Load imbalance is a key factor that affects performance and scalability of an applica-

tion. Leaving it to the application programmer to manually handle the load imbal-

ance in a dynamic application and to find an optimum load distribution throughout

the run of the application, is unreasonable and inefficient. In this thesis, we pre-

sented techniques for deciding when to invoke load balancing based on application

characteristics and their embodiment in the Meta-Balancer. Meta-Balancer rep-

resents an application independent concept that is helpful in extracting the best

performance of an application without requiring the user to make multiple bench-

mark runs or use domain specific knowledge to estimate the load balancing period.

We also presented details related to a practical implementation of Meta-Balancer

on top of Charm++.
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We demonstrated the adaptive nature of Meta-Balancer in the context of two

real world applications. We showed that Meta-Balancer is able to identify the ideal

load balancing period that changes as the application evolves and extracts the best

performance automatically. In the process, we presented scenarios in which Meta-

Balancer is able to extract substantial gains whereas periodic load balancing provides

only marginal gains.
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7 Meta Balancer for LB Strategy

Many applications require dynamic load balancing to achieve good performance and

increase their scalability. Different applications need to use different load balancing

strategies. The Charm++ load balancing framework contains more than a dozen

load balancers. Each of these load balancers is suitable for certain applications.

Using a load balancer that is not well suited for an application will result in loss

of performance. For example, in the case of a communication intensive application,

using a strategy that just balances the load without considering the communication

pattern will result in bad performance. Typically, the application behavior depends

on the machine characteristics and the problem being simulated. As a result, choos-

ing the load balancing strategy that gives the best performance becomes difficult.

Most commonly, the application programmer decides which load balancer to use

and when to do load balancing based on some educated guess. That load balancer

is then used for the entire run of the application, which may result in suboptimal

solutions.

In this thesis, we propose the Meta-Balancer framework that monitors the system

and application characteristics to decide the load balancing strategy. This runtime

system component continuously monitors the system and, based on the observed

characteristics, automatically chooses different load balancing strategies at runtime.

This enables multiple load balancers to be used at different times in the application

in an adaptive manner. The main contributions of this chapter are

• Identification of different features or statistics that are used to automate the

decision
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• Automatic collection of these statistics in an asynchronous manner

• A decision tree to identify the load balancing strategy

• Use of machine learning to identify the load balancing strategy

7.1 Meta-Balancer

Our Meta-Balancer framework monitors the application and system characteristics

by automatically collecting statistics about it. It then chooses the load balancing

strategy based on the observed characteristics. It is implemented as a part of the

Charm++ runtime system. Meta-Balancer consists of three major components,

namely, asynchronous statistics collection, construction of the features and decision

making module for the ideal load balancing strategy.

7.1.1 Meta-Balancer Statistics Collection

Meta-Balancer collects load and communication information about the application

frequently. These statistics are collected at the iteration boundary. The load bal-

ancing framework in Charm++ automatically collects the load and communication

at each PE and stores it in a distributed manner. Meta-Balancer uses some of the

information stored in the load balancing framework and gathers these statistics via

an asynchronous reductions, as shown in Figure 6.1. Table 7.1 shows the different

statistics that are collected.

7.1.2 Meta-Balancer Feature Construction

The raw statistics that are collected need to be converted into meaningful features

based on which the load balancing strategy can be chosen. If Max PE Load will

vary from one application to another and therefore new features that give a relative

100



Statistics Description
Num PEs Number of PEs in the system
Num Ovld PEs Number of overloaded PEs in the system
Avg PE Load Average load of the PEs in the system
Min PE Load Minimum load of the PEs in the system
Max PE Load Maximum load of the PEs in the system
PE Load STD Standard deviation of the PE loads
PE Load Skewness Skewness of the PE loads
PE Load Kurtosis Kurtosis of the PE loads
Avg PE BGLoad Average background load of PEs
Avg Utilization Average utilization of the PEs
Min Utilization Minimum utilization of the PEs
Max Utilization Maximum utilization of the PEs
Num Objs Per PE Number of objects per PE
Avg Obj Load Average object load
Min Obj Load Minimum object load
Max Obj Load Maximum object load
Total Msgs Total number of messages transferred
Total Bytes Total amount of bytes transferred
Total Ext Msgs Total number of messages transferred outside a PE
Total Ext Bytes Total amount of bytes transferred outside a PE
Avg Comm Nghbor Average number of communicating neighbors per object
Avg Hops Average number of hops per message
Avg Hopbytes Average number of hop bytes per message
Alpha Cost of latency per message
Beta Per link 1/bandwidth
Rate Max Load Rate of change of maximum load of PEs across iterations
Rate Avg Load Rate of change of average load of PEs across iterations
Migration Size Average amount of data per object to be transferred during migration

Table 7.1: Meta-Balancer strategy selection statistics

measure instead of absolute values need to be constructed out of the statistics.

Table 7.2 shows the different features that are derived from the statistics in Table 7.1.

7.1.3 Load Balancing Strategy Selection

There are a number of load balancing strategies in Charm++. These strategies han-

dle load imbalance for different application characteristics. When no load balancing

is required, we refer to it as NoLB. Some of these strategies are:

• GreedyLB: A centralized strategy that uses greedy heuristic to assign heav-

iest tasks onto least loaded processors iteratively. This strategy does not take
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into consideration the current assignment of tasks to processors. It also doesn’t

consider the communication pattern. It has a high overhead because the strat-

egy is done serially. GreedyLB is most suitable for applications which has high

compute load imbalance but is not affected by communication.

• RefineLB: A centralized strategy that carries out load balancing by incre-

mentally transferring the load away from the overloaded processors. It takes

into account the current assignment of work units onto processors and there-

fore reduces the number of work units migrated. Since this strategy is done

sequentially and tries to optimize for the best possible assignment for a given

threshold, it has a high strategy cost.

• MetisLB: A centralized strategy that passes the load information and the

communication graph to MeTiS, a graph partitioning library, and uses the

recursive graph bipartitioning algorithm in it for load balancing. This strat-

egy takes into account the communication pattern and tries to balance load

while minimizing the edge cut. MetisLB is most suitable for communication

intensive applications.

• ScotchLB: A centralized strategy that uses Scotch graph paritioning library

to make load balancing decisions. This strategy takes both communication

and computation load to perform the mapping. ScotchLB is suitable for ap-

plications that is affected by communication as well as the computation load

imbalance.

• HierarchicalLB: A hierarchical strategy [13] in which processors are divided

into independent groups and groups are organized in a hierarchical manner.

At each level of the hierarchy, the root node performs the load balancing for

the processors in its sub-tree. This strategy can use different load balancing
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algorithms at different levels.

• GrapevineLB/DistributedLB: GrapevineLB, also referenced as Distribut-

edLB in this chapter, is a distributed load balancing strategy that uses gossip

based information propagation to obtain partial information about the global

state of the system. Using this information it does randomized work transfer.

Details are in Chapter 3.

7.1.4 Load Balancing Strategy Selection Using Decision

Tree

Figure 7.1 shows the decision tree for choosing the different load balancing strate-

gies. If the average system utilization is low, then it indicates that there is a load

imbalance problem and a suitable load balancing strategy needs to be called. If

there is a higher communication cost in comparison to the computation load, then

a communication aware load balancers, such as MetisLB and ScotchLB, is more

suitable. But if the computation load imbalance is more dominant, then one of

the different computation balancers, such as GreedyLB, RefineLB, DistributedLB,

HierarchicalLB, needs to be called. If the load varies very frequently, then load

balancing strategy will need to be called frequently. But if the load does not vary

frequently, then strategies that give good balance of load is chosen even though

they tend to have higher load balancing cost. In this case centralized strategy that

have a complete view of the system tend to perform better than the distributed of

hierarchical strategies. But if the estimated overhead of the centralized strategy is

more than the benefit, then strategies with low overheads, such as DistributedLB

and HierarchicalLB, are used.

This runtime system based automatic selection of strategy can perform load

balancing adaptively and choose different load balancing strategies at different stages

103



low 
utilization

No LB

Y

start

high 
comm load / 
compute load

N

Y N

high rate 
of change Y

 DistLB/Hierarchical LB

large 
serialization 

cost

N

high benefit 
vs overhead 

of central
Y

N

N Y

high 
imbalanceY N

GreedyLB RefineLBRefineLBCommLB 
decision tree

Figure 7.1: Decision tree for choosing the load balancing strategy.

of the application run depending on the runtime characteristics of the application.

7.1.5 Load Balancing Strategy Selection Using Machine

Learning

Machine learning techniques have been used to do pattern recognition and have been

employed in a variety of tasks such as classification, data mining, computer vision

etc. These techniques operate by building a model from a sample input set and learn

to predict the outcome. In this work, a supervised random forest technique is used

to predict the load balancing strategy for a particular run. In supervised learning
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algorithms, the tool is presented with example inputs and their desired outputs.

In our case, we used a benchmark, called lbtest, to generate the training set for

the random forest. This benchmark is flexible and can generate various scenarios

representative of a real application. It supports different communication pattern,

such as 3D mesh, 3D mesh and random. It can be also vary the bytes communicated

and the amount of computation load. We ran this benchmark with different param-

eters to generate different characteristics. For each parameter option, all the load

balancers were run to identify the best performing load balancing strategy. For the

training set, the derived features shown in Table 7.2 are used as input to the ma-

chine learning algorithm. The desired output for the training is the best performing

load balancing strategy.

7.2 Experimental Results

The benchmark used for the strategy selection is lbtest. We collected more than 200

samples to generate the training set for the machine learning model. We divided the

samples into training and test set and the learning algorithm was given the training

set and evaluated on the test set. All the derived statistics in table 7.2 were given

as features and expected outcome is the best performing load balancing strategy.

Figure 7.2 shows the performance of the machine learning model in predicting

the expected outcome. We can see that it is able to achieve an accuracy of 88%. The

confusion matrix shows how the expected outcome varied. In this figure it shows

that predictions for RefineLB was misclassified and HybridLB and ScotchLB were

chosen instead.
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Figure 7.2: Accuracies on the training and test set along with confusion matrix.

7.3 Conclusion

Load imbalance is a very important factor affecting the performance of various

applications. Application programmers have to deal with the complexity of choosing

load balancing strategy and period under dynamic conditions. This may result in

suboptimal solutions. In this chapter, we presented a runtime system module that

automatically predicts a suitable load balancing strategy to employ based on the

runtime characteristics of the application as well as the system. We selected and

collected a number of statistics in an asynchronous manner. Using these statistics

a set of features were constructed based on which a decision tree was proposed. A

random forest machine learning technique was used to predict the load balancer

based on those features. We were able to achieve a good accuracy of 80% with the

model that was trained.
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Features Description Derived
Num PEs Total number of PEs in the system

Ovld PEs Percent Percentage of overloaded PEs w.r.t total PEs Ovld PEs
Num PEs

PE Load Imb PE load imbalance Max PE Load
Avg PE Load

PE Load RSD Relative standard deviation of PE load PE Load STD
Avg PE Load

PE Load Skewness Skewness of the PE loads

PE Load Kurtosis Kurtosis of the PE loads

PE BGLoad Percent Background load in percentage w.r.t average PE load Avg PE BGLoad
Avg PE Load

LB Gain Expected improvement in time with LB Max PE Load− Avg PE Load

Avg Utilization Average utilization of the PEs

Min Utilization Minimum utilization of the PEs

Max Utilization Maximum utilization of the PEs

Num Objs Per PE Number of objects per PE

Avg Obj Load Average object load

Min Obj Load Minimum object load

Max Obj Load Maximum object load

Total Msgs Total number of messages transferred

Total Bytes Total amount of bytes transferred

Ext Msgs Percent Percentage of messages transferred outside a PE Total Ext Msgs
Total Msgs

Ext Bytes Percent Percentage of bytes transferred outside a PE Total Ext Bytes
Total Bytes

Internal Msgs Percent Percentage of messages transferred within a PE Total Int Msgs
Total Msgs

Internal Bytes Percent Percentage of bytes transferred within a PE Total Int Bytes
Total Bytes

Avg Comm Nghbor Average number of communicating neighbors per object

Avg Hops Average number of hops per message

Avg Hopbytes Average number of hop bytes per message

Alpha Cost of latency per message

Beta Per link 1/bandwidth

Comm Cost vs Compute Cost Alpha∗Total Msgs+Beta∗Total Bytes
Avg PE Load∗Num PEs

Rel Rate Max Load Relative rate of change of maximum load of PEs Rate Max Load
Max Load

Rel Rate Avg Load Relative rate of change of maximum load of PEs Rate Avg Load
Avg Load

Migration Overhead Migration cost Alpha+Beta ∗Migration Size

Overhead vs Benefit Central Overhead vs benefit of using centralized strategy

Table 7.2: Meta-Balancer strategy selection features
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8 Meta Balancer for Thermal
Variation

With the move towards exascale, power and energy consumption have become im-

portant issues in high performance computing. Recent studies show that HPC sys-

tems are drawing enormous amounts of electrical power. The increase in the number

of cores and clock speed results in heat generation and increase in core temperatures.

This makes the hardware more vulnerable to both transient and permanent faults.

Therefore, cooling is necessary to prevent overheating of the chip. However, cooling

also takes large amounts of energy. A study done in 2004 shows that 40% to 50%

of the energy consumed by a data center is spent in running the computer room at

a low temperature [91]. In order to reduce the cooling energy, the computer room

air conditioning (CRAC) temperature can be set at a higher value. But this will

result in high ambient temperature and possible overheating of the cores. To avoid

overheating, modern day microprocessors are equipped with an on-chip temperature

sensor and mechanisms to control the dynamic voltage and frequency using DVFS.

Dynamic voltage and frequency scaling, DVFS, is commonly used to reduce power

and the amount of heat generated by the chip by adjusting the frequency of the mi-

croprocessor. Running a processor at a lower frequency reduces the amount of heat

generated and conserves power. Therefore, setting a high CRAC temperature and

controlling the chip temperature using DVFS can be a possible solution to reduce

the cooling energy, which accounts for a significant part of the power consumption.

However, using DVFS to control temperature has its drawbacks. Reducing the

frequency may incur a timing penalty. Since the processors may overheat at different

times, they may be running at different frequencies. The timing penalty is not

108



just due to the lower frequency but also due to the load imbalance created by the

different processor speeds. In HPC applications, where there is an interdependence

of tasks across processors, if one processor is slowed down, the entire application

may consequently be slowed down. Even if there are no such dependency, there will

be load imbalance between the processors. As a result, decreasing the frequency will

result in degradation of performance and increase in the total execution time. In

order to minimize the timing penalty, load balancing can be employed to improve

the system utilization. This technique has been shown to be effective in reducing

the cooling energy [92, 93].

In a recent work [92], a temperature-aware dynamic load balancing strategy was

proposed which controls the chip temperature using DVFS and uses load balancing

to reduce that timing penalty. This scheme performs periodic temperature checks,

applies DVFS on cores that are hotter or colder than the threshold temperature

and invokes the load balancer. This approach puts the burden on the application

programmer to specify the period to control the temperature and invoke the load

balancer. If the user performs frequent temperature checks and load balancing, it

may lead to loss of performance due to overhead. But if the user specifies long

interval to check and load balance, then the temperature of the core may exceed

the specified temperature threshold leading to overheating. Moreover, invoking a

load balancer also incurs overhead. Thus, if the user invokes the load balancer

frequently, then the overhead of load balancing may exceed the benefit. But if the

load balancer is invoked infrequently, then it may result in loss of performance due

to load imbalance. Putting the burden on the user to specify an ideal temperature

check and load balancing period may be inefficient.

In this work, we propose a framework, MetaTempController, which will auto-

matically control the temperature of cores and perform load balancing without any

support from the user. In this framework, which will be a part of the adaptive run-
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time system, the runtime system will monitor the application characteristics and

the core temperatures asynchronously. To minimize the cooling energy we increase

the CRAC temperature, use DVFS to limit the processor temperature and perform

load balancing automatically based on the information collected by the runtime sys-

tem. This work extends the cool load balancer approach [92] and builds upon on

the concept of an automated load balancing framework [40].

The key contributions of this chapter are:

• We introduce a generic technique that can be used to automatically control

the temperature of the processors and avoid hot-spots.

• We demonstrate that our dynamic technique has less timing penalty and can

be used with a wide range of applications having different characteristics.

• We present an implementation of our concept as MetaTempController in

Charm++ runtime system which executes in the background and is transpar-

ent to the application programmer.

8.1 Background

Our approach to saving cooling energy involves setting a high CRAC temperature

value. But to prevent overheating and formation of hot spots, we use DVFS to

control the temperature of each chip. In order to efficiently control the tempera-

ture and minimize the timing penalty, we rely on an adaptive runtime system with

the capability for load balancing. We chose the Charm++ parallel programming

system for this purpose.
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8.1.1 Charm++ and its Load Balancing Framework

Charm++ [85] is a message driven parallel programming model that has paral-

lel entities called objects or chares. Chares form the basic unit of computation.

A programmer divides the computation into chares, which are distributed among

processors by the runtime system. It hinges on the idea of over-decomposition, i.e.,

dividing the problem into more work units than the total number of processors in

the system. In turn, this over-decomposition improves the performance by overlap-

ping communication and computation. Each of these tasks or chares is a migratable

C++ object that can reside on any processor and can be migrated to any processor.

This migratable nature of chares provides the capability for load balancing. When

there is an imbalance of load, migrating the objects from overloaded processors to

underloaded processors helps achieve balance and improve the performance of the

application. The Charm++ runtime system records the computation load and the

communication pattern of these chares and use this information for load balancing.

The load balancing framework in Charm++ is based on a heuristic known as the

principle of persistence [6], which states that the recent past is a good indication of

the future. Charm++ provides the application programmer with a suite of load

balancers and the capability to add new custom load balancing strategies. These

load balancers can be easily plugged in to the application at runtime. The key

advantage of this approach is that it is application independent.

8.1.2 Temperature Control using DVFS

Dynamic voltage and frequency scaling (DVFS) is a widely used technique to auto-

matically adjust the frequency of a processor either to conserve power or to reduce

the amount of heat generated. Several manufacturers have developed processors

capable of global dynamic frequency and voltage scaling.
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Algorithms using DVFS have shown dramatic energy savings while providing the

necessary peak computation power in general-purpose systems [94]. Fine-grained

DVFS has emerged as a popular way for designers to exploit growing transistor

budgets [95] in chip-multiprocessors (CMPs). The decrease in temperature allows

the system to decrease the power dedicated for cooling or, if possible, to be turned

off entirely increasing the overall system power savings.

However, reducing the frequency level slows down the computation. Ideally,

DVFS techniques are used to manage the frequency and/or voltage so as to provide

the minimum speed the processor needs to manage its workload while maintaining

computational time constraints or throughput constraints and thereby reducing its

energy consumption [96].

8.2 Related Work

Minimizing energy consumption has become an important subject for research in

HPC. Cooling energy optimizations have been primarily addressed for data cen-

ters [97, 98]. In general, these techniques involve placing the most heat generating

jobs in the coolest areas of the data center. This particular solution cannot be

applied to our current work because different tasks in an HPC application behave

very similarly and thus consume the same amount of energy and produce the same

amount of heat and they often cover a large fraction of the machine. Another

approach to reducing total energy consumption presented in [99] limits the temper-

ature of the cores by turning the different nodes on and off as needed. This solution

is problematic when applied to HPC because of the high interdependence between

tasks, and the time penalty in execution time it would incur.

In HPC, controlling CPU frequency and voltage to reduce the energy have been

studied before. For example, a previous work showed significant energy savings by
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using DVFS to change the frequency of the cores during the communication phase

of an MPI application [100]. The major drawback of this approach is the time

penalty incurred in the execution time of the application. Another interesting work

proposed in [101] creates a schedule for when DVFS should be run for a particular

HPC application. The schedule tries minimize the timing penalty for a given power

limit. In [102] a kernel-level DVFS governor is proposed that tries to determine an

optimal frequency for a particular workload.

The closest work to the present work is the ‘Cool’ load balancer by Sarood

Et al. [92]. In that work, an approach was proposed for saving cooling energy

by constraining core temperature while minimizing the associated timing penalty

using task migration. It uses DVFS and a temperature-aware load balancer to

achieve this task. Although this scheme has shown substantial energy reduction for

HPC applications at the cost of some modest timing penalty in the computation

time, it relies on the user to specify a fixed period for temperature check and load

balancing. Our approach, which is a part of the run time system, will automatically

and dynamically perform the task of checking the temperature and load balancing

without any input from the user.

8.3 Limitations of Periodic Approach

Although the recent work proposed by Sarood [92] is successful in reducing the cool-

ing energy significantly, it has certain short comings. In this scheme, a temperature-

aware load balancing strategy is proposed, which is invoked periodically at the

user specified interval. At the specified period, a global barrier is enforced and

temperature-aware load balancing is performed at the central location. As a part

of the load balancing framework, the temperature of each processor is checked and

if it exceeds the pre-set threshold, the frequency of that processor is reduced. If the
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Algorithm 8 Periodic temperature-aware dynamic load balancing
Input:
P - Set of processors
T - Temperature threshold
Temppi - Temperature of processor pi

At user specified period p

1: Enforce a global barrier
2: for all pi ∈ P do
3: if Temppi > T then
4: Decrease the frequency of pi
5: else
6: if Temppi < T then
7: Increase the frequency of pi
8: end if
9: end if

10: end for
11: Invoke the load balancer

temperature is below the threshold, then the frequency is increased. An adjustment

of frequencies can result in load imbalance and to handle that, the load balancer is

invoked. This scheme is depicted in Algorithm 8.

In this section, we will highlight the drawbacks of this scheme. Notice that the

temperature check is triggered periodically every p seconds, where p is specified

by the user. After the global barrier, DVFS is used to limit the temperature of

cores and load balancing is performed to reduce the timing penalty due to load

imbalance. Here, the application programmer has the responsibility of identifying

the period for temperature checks and load balancing. This becomes increasingly

a burden as the period is application and system dependent. This not only puts

the burden on the application programmer, but also may result in not being able to

control the temperature in a dynamic environment. Processors tend to have higher

temperatures in computation intensive applications, while some applications with

lower system utilization generate less heat. This indicates that the ideal temperature

check and load balancing period is application dependent. Further, invoking the

load balancer also incurs overhead. If the load balancing cost exceeds the benefit,
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Figure 8.1: Comparison for maximum temperature and timing penalty for various
user specified period

it results in increasing the total execution time.

Figure 8.1 shows the maximum temperature and timing penalty using this al-

gorithm with different user specified periods for a run of wave2D on 128 cores.

The CRAC is set to 24◦F and the threshold temperature is 50◦C. Details of the

application and the experimental setup are described in Section 8.5. If the tempera-

ture check is performed frequently, the overhead due to barriers and load balancing

may increase the timing penalty , whereas if the temperature check is performed

infrequently, it could result in overheating of cores. Leaving it to the application

programmer to manually identify the period in a dynamic application is inefficient.

8.4 MetaTempController

The MetaTempController framework is implemented as a part of the Charm++

adaptive runtime system. The generic idea of this framework is to let the runtime

system monitor the system temperature and application characteristics, and based

on the collected information, make decisions to adjust the frequencies or invoke

the load balancer. We choose to implement this framework in Charm++, how-
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ever, it is possible to implement this approach in any other programming model.

MetaTempController consists of two major components, namely, automatic temper-

ature controller and automatic load balancer.

8.4.1 Temperature Control

If the CRAC temperature is increased to reduce the cooling energy, it may result in

an overheating of the processors. To ensure that the processors are not over heated

and hot spots are not created, the temperature of the chip needs to be controlled.

Temperature control plays an important part in reducing the cooling energy. In

order to control the temperature effectively, MetaTempController collects the tem-

perature information for each core in a distributed fashion. Temperature measure-

ments for all the cores on a chip is collected frequently and decisions to control the

temperature are made. Note that in this scheme, the temperature control is done

independently on each processor, whereas in [92] there is a global barrier. Since

the computer hardware in the cluster does not allow frequency changes of a single

core, DVFS is applied to the entire chip. Further, the hardware has discrete voltage

and frequency levels built into it, called the ’P-states’. The chip frequencies can

be set only to those discrete operating points. Whenever the temperature of a core

exceeds the specified threshold, the MetaTempController identifies this and triggers

mechanism to limit the temperature. It uses DVFS to lower the frequency by one

step (increase P-state by one level). Running the processor at a lower frequency

reduces the amount of heat generated and helps reducing the machine and cooling

energy. However, if all the cores on a chip have temperatures below the specified

threshold, then the frequency of the chip is increased by one step. Since the tem-

perature statistics are collected in a distributed manner without enforcing a barrier,

this scheme incurs very little overhead.
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8.4.2 Load Balancing

Even though DVFS limits the processor temperature and eliminates hot spots, it

incurs a timing penalty. This timing penalty can occur due to: 1) processors oper-

ating at lower frequency or 2) load imbalance due to different processor speeds. In

order to reduce the timing penalty, load balancing needs to be performed. However,

performing load balancing entails overheads that include the time spent on collect-

ing load balancing statistics, finding a new mapping and migrating the objects based

on the mapping. Since the load balancer incurs overhead, it becomes necessary to

determine whether invoking the load balancer is profitable. If the load balancer is

invoked too frequently, the overhead of load balancing may exceed the benefit and

result in increased execution time. A common practice is to invoke the load balancer

periodically at a period specified by the user. However, this prevents load balancing

from adapting to the dynamic application and system characteristics. MetaTemp-

Controller relies on the concept of an automated load balancing framework [40]. This

framework collects a minimum set of load balancing statistics in an asynchronous

manner via a reduction tree. Once the aggregate information is available, it deter-

mines whether there is any load imbalance. If there is load imbalance, it may lead

to performance loss. However, if the overhead of load balancing is more than the

benefit, performing load balancing won’t be beneficial. MetaTempController identi-

fies an ideal load balancing period based on the application characteristics and the

cost of load balancing.

8.5 Results

In this section, we present an evaluation of the effectiveness of MetaTempController

and compare it with other schemes using three applications wave2D, leanMD and

kNeighbor. We show that MetaTempController is able to constrain the core tem-
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perature to a specified threshold, invoke the load balancer whenever beneficial and

extract the best performance for the application automatically at run time.

8.5.1 Experimental Setup

The experiments were run on a cluster with 160 cores (40 nodes). Each node of the

cluster is a single socket Dell T5500 machine with a quad-core Intel Xeon E5520

chip. The Intel Xeon E5520 chip supports seven different frequencies ranging from

1.6GHz to 2.53GHz through Intel’s Turbo Boost Technology. The cpufreq module

which is available in Ubuntu 10.04 allows us to step up or down the frequency by

0.13GHz in each step. A frequency shift from one level to another takes a processor

a few microseconds. For all our runs, we use 128 cores out of the 160 cores.

For all the experiments, the computer room air conditioning temperature was set

to 74◦ F and the threshold temperature was fixed at 50◦ C. These are independent

variables and each can effect the power reduction greatly. The effect of those to

power reduction is discussed in detail in an earlier work [92].

8.5.2 Applications

wave2D is a computation-intensive finite differencing application. It is implemented

using a 2-D mesh structure. Our runs execute 25, 000 iterations with a mesh of size

128× 16.

leanMD is a molecular dynamics application written in Charm++ that simu-

lates the behavior of atoms based on the Lennard-Jones potential. The computations

performed in this program are similar to the force calculation in NAMD [81]. The

simulation is in a three-dimensional space consisting of atoms which are divided into

cells. In each iteration, force calculations are done for all pairs of nearby atoms.

Once the force calculation is performed, the cells update the acceleration, velocity

and position of the atoms within their space. We benchmark leanMD on a system
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Figure 8.2: Maximum Temperature of the Processors for wave2D
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Figure 8.3: Maximum Temperature of the Processors Over Time for wave2D

of 128, 000 atoms for 500 iterations.

kNeighbor is a micro-benchmark with a near-neighbor communication pattern.

In this benchmark, each object exchanges 16KB sized messages with a fixed set of

fourteen neighbors in every iteration. We evaluate this benchmark by executing

25, 000 iterations.

All the above applications do not have any inherent load imbalance. Thus, any

imbalance that occurs is a result of changes to processor frequencies.
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Figure 8.5: Maximum Temperature of the Processors Over Time for kNeighbor

8.5.3 Experimental Results

We use the following metrics to evaluate the effectiveness and behavior of MetaTem-

pController: 1) Temperature Control, 2) Timing Penalty 3), Frequency, 4) Over-

head, 5) Power and Energy

Temperature Control

wave2D: wave2D being computation intensive benchmark, results in an increase in

core temperature and hot-spots. Figure 8.3 shows that for a run of wave2D without
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Figure 8.6: Maximum core temperature for the entire run for leanMD. This indicates
region of hot-spots.

any temperature control, the maximum temperature on any core reaches 82◦ C .

Figure 8.2 indicates that some of the cores are hot-spots. Core temperatures are

checked periodically and DVFS is used to keep the temperature of a core within the

threshold of 50◦ C. Figure 8.3 shows the maximum temperature of any core over

time for various temperature check period. A period of 1 min is able to bring the

maximum temperature down to 62◦ C but it is insufficient to keep the tempera-

ture within the threshold. Temperature check with 20s period is able to reduce the

temperature further but it is still above the threshold. For this application, a pe-

riodicity of 5 seconds is necessary to ensure that the maximum temperature of any

core is within the threshold. MetaTempController is able to automatically control

the temperature using DVFS and keep it within the threshold.

kNeighbor: Unlike wave2D or leanMD, kNeighbor is a communication intensive

benchmark because of which the temperature of the cores reaches a maximum of

61◦ C without any temperature control as shown in Figure 8.5. Again Figure 8.4

indicates the formation of hot-spots. A periodicity of 1 min for temperature check is

not sufficient to keep the temperature within threshold of 50◦ C. Whereas a period-

icity of 10 or 5 seconds controls the temperature. MetaTempController successfully
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Figure 8.7: Maximum temperature on any core over time for leanMD. Without
any control, temperature reaches 73◦ C and MetaTempController keeps it within
threshold.

controls the temperature to within the specified threshold of 50◦ C. The key thing

to note here is that the ideal period to control the temperature is application de-

pendent. For wave2D the ideal period was 5 seconds whereas for kNeighbor it is 10

seconds. MetaTempController automatically adjusts the temperature without any

support from the user.

leanMD: Figure 8.7 shows the maximum temperature for any core in the system

for the entire run of leanMD using various periodicity for temperature control. It can

be seen that for the run of leanMD without any temperature control, the maximum

temperature goes up to 73◦ C. This is above the threshold of 50◦ C. Figure 8.6

indicates that there are few hot-spots created resulting in high temperature. A

periodicity of 1 min is able to control the temperature to a certain extend, but still

causes the temperature to reach 59◦ C. This indicates that periodicity of 1 min is

not frequent enough to keep the temperature within the threshold. For leanMD, a

periodicity of 10 seconds is required to ensure that the maximum temperature of

any core in the system is within the threshold. We find that, MetaTempController

is successful in keeping the temperature within the threshold of 50◦ C.
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Figure 8.9: Execution time and temperature for different strategies

Timing Penalty

wave2D: Using DVFS to control temperature results in load imbalance which leads

to low system utilization. Figure 8.8 shows the average system utilization when the

temperature is controlled. The system utilization drops from 89% to 60% during the

run. The frequency of the cores that are hot-spots are reduced, which results in load

imbalance. Figure 8.8 shows the average system utilization when load balancing is

performed. It can be seen that the load balancer is successful in improving the

utilization and attains a minimum utilization of 73%.

Load balancing incurs overhead that includes the time for finding a new as-

signment of objects to processors as well as the time for migration. Figure 8.9

compares various schemes including no temperature control, temperature control

without load balancing, periodic load balancing and MetaTempController. In the
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no temperature control case, the total execution time is 1069 seconds, but the core

temperature reaches 82◦ C. Controlling the temperature using DVFS keeps the

temperature within the threshold, but the execution time increases by 40% to 1499

seconds. Performing load balancing frequently incurs overhead that may overshoot

the gains from load balancing. A periodic load balancer with a period of 5 seconds

has an execution time of 1477 seconds and therefore does not provide much benefit.

A period of 10 seconds is insufficient to keep the temperature within threshold and

causes temperature to rise till 57◦ C. MetaTempController successfully controls the

temperature and removes hot-spots using DVFS and also reduces the timing penalty

by 10%.

kNeighbor: kNeighbor being communication intensive, its characteristics is dif-

ferent from wave2D or leanMD. Figure 8.9 shows the maximum temperature and

the total execution time for various schemes including no temperature control, tem-

perature control, periodic load balancing and MetaTempController. Without any

temperature control, the execution time is 368 seconds and the maximum tempera-

ture is 61◦ C. It can be seen that controlling the temperature with DVFS results in

a slowdown of only 4%. This indicates that there is no significant load imbalance.

Therefore, performing load balancing very often will not yield any benefit and in-

stead will incur more overhead. Figure 8.9 shows that the periodic load balancer

incurs more overhead and increases the total execution time by 13% in comparison to

the no temperature control run and 8% to the temperature control run. MetaTemp-

Controller automatically calls the load balancer only if the benefit of load balancing

exceeds the overhead. It identifies that load balancing does not improve and hence

invokes load balancing only once. The timing penalty of MetaTempController is 4%

over the no temperature control run. Thus MetaTempController is able to automat-

ically control the temperature within the threshold as well as minimize the timing

penalty depending on the application characteristics.
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leanMD: In order to control the temperature, the frequency of the chip is ad-

justed using DVFS. Decreasing the frequency results in load imbalance which leads

to lower system utilization. Figure 8.8 shows the average utilization of the system

when the temperature is controlled using DVFS. In the beginning of the run, the

average utilization is 85% and reduces to 67%. This is due to the load imbalance

created as a result of the reduction in the frequency of the cores which are hot-spots.

Figure 8.8 shows the average utilization using the load balancer. The average uti-

lization of the system improves in comparison to no load balancer and attains a

minimum utilization of 73%.

In Figure 8.9, without any temperature control, the total execution time is 247

seconds, but the maximum temperature reaches 73◦ C. Performing temperature

control without any load balancing results in a total execution time of 335 seconds

and a slowdown of 35%. Periodic load balancing reduces the timing penalty by

5% with a total execution time of 318 seconds. MetaTempController automatically

performs temperature control and load balancing leading to an execution time of

313 seconds. This shows that MetaTempController is able to keep the temperature

within the threshold as well as reduce the timing penalty automatically without any

user support.

Frequency

Without load balancing, the processor with the slowest frequency dictates the total

execution time of the application. In the timing penalty section we have shown that

when the temperature check period decreases, total execution time increases. The

reason for this behavior can be seen in Figure 8.10. Frequent temperature checks

causes to reach the minimum frequency at a faster rate and the stable minimum

frequency to be lower.

Load balancing enables MetaTempController to maintain a higher frequency
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Figure 8.10: Minimum frequency of the processors over time

compared to naive DVFS in all of the applications as the Figure 8.10 shows. It

removes the work from the overloaded processors so that they do not heat up that

126



much and need to decrease the frequency. Without load balancing the processor

with the slowest frequency dictates the total execution time of the application. In

the timing penalty section we have shown that when the temperature check period

decreases, total execution time increases. The reason for this behaviour can be

seen in Figure 8.10. Frequent temperature checks causes the system to reach the

minimum frequency at a faster rate and the stable minimum frequency to be lower.

Overhead

Figure 8.11 shows the slowdown caused by the load balancing and temperature

check. The starting point of the y-axis is the execution time of the plain run.

MetaTempController has less slowdown caused by frequency decreases compared to

both naive DVFS and periodic load balancing as it has a higher stable frequency

as stated in the previous section. Moreover, MetaTempController has a negligible

load balancing overhead. The reason for this is its smart load balancing strat-

egy. kNeighbor represents an exceptional case. Because it is highly communication

bound, naive DVFS does not cause a significant overhead. The processors do not

heat up and exceed the threshold temperature, and thus frequency decrease and

load balancing is not needed. MetaTempController understands this and only does

load balancing two times in the beginning of the application. On the other hand,

periodic temperature check strategy continues load balancing until the end, which

is the main reason for the significant difference between MetaTempController and

the periodic approach. MetaTempController has more severe frequency slowdown

than naive DVFS, but this is a cost worth paying for the universality.

Power and Energy

In this section, we evaluate the ability of MetaTempController to reduce energy con-

sumption in comparison to the naive DVFS scheme and periodic temperature-aware
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Figure 8.11: Execution time breakdown into temp check and lb overhead

load balancer. We also reduce the timing penalty for applications while limiting

the core temperatures to the specified thresholds. While we get savings from cool-
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ing energy, we also manage to improve the machine energy. Figure 8.12 shows the

normalized machine energy for periodic strategy and MetaTempController with re-

spect to the naive DVFS. Machine energy is calculated as the product of the average

power and the execution time. For leanMD and wave2D, the hand tuned periodic

temperature-aware load balancer and MetaTempController are able to reduce the

machine energy in comparison to the naive DVFS scheme. For leanMD, periodic

scheme gives 2% whereas MetaTempController gives 5% reduction in machine en-

ergy. We see a much higher reduction for wave2D, where the periodic scheme pro-

vides 9% and MetaTempController provides 12% reduction in machine energy. Since

kNeighbor is a communication intensive benchmark, naive DVFS results in an only

slight increase in the total execution time. We also saw in Section 8.5.3 that invoking

the load balancer frequently increased the execution time. This results in increasing

the machine energy for the periodic scheme by 15.5%. Since MetaTempController

automatically identifies this, it invokes load balancing less frequently. Therefore,

even though it increases the machine energy it is not as bad as the periodic scheme.
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8.6 Conclusion

Increase in power demands and total energy consumption in HPC has become an

important issue in the construction and maintenance of machines. In this work,

we extended a previous approach on temperature-aware load balancing and our

work on an automated load balancing framework to implement an automatic con-

trol system for reducing the cooling energy. We introduced MetaTempController,

which automatically controls the temperature using DVFS and performs load bal-

ancing to minimize the overhead without any input from the user. We demonstrated

the effectiveness of MetaTempController using three applications. We showed that

MetaTempController is able to successfully limit the temperature and reduce the

timing penalty in comparison to the existing schemes.
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ing of mpi+openmp applications. In ICPP, pages 195–202, 2004.

[89] Ioana Banicescu and Susan Flynn Hummel. Balancing processor loads and
exploiting data locality in n-body simulations. In In Proceedings of Supercom-
puting95 (CD-ROM, 1995.

[90] Bruce S. Siegell and Peter A. Steenkiste. Automatic selection of load balancing
parameters using compile-time and run-time information, 1996.

[91] R. Sawyer. Calculating total power requirements for data centers. White
Paper, American Power Conversion, 2004.

[92] Osman Sarood, Phil Miller, Ehsan Totoni, and L. V. Kale. ‘Cool’ Load Bal-
ancing for High Performance Computing Data Centers. In IEEE Transactions
on Computer - SI (Energy Efficient Computing), September 2012.

[93] Osman Sarood and Laxmikant V. Kalé. A ‘cool’ load balancer for parallel
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