
Optimizing Molecular Dynamics and Stencil
mini-applications for Intel’s Knights Landing

Kavitha Chandrasekar, Laxmikant V. Kale
University of Illinois Urbana Champaign

I. ABSTRACT

To achieve the best performance and energy efficiency, HPC
applications may require tuning on new architectures like
Knights Landing, Intel’s 2nd generation Xeon Phi processor.
Furthermore, different applications with varying characteristics
might benefit from variant configurations and tuning.

In order to study the different types of applications, we
select a molecular dynamics kernel, LeanMD [1] and Sten-
cil3D code from the Charm++ [2] benchmark suite, which are
representative of compute and communication intensive HPC
benchmarks, respectively.

We analyze these applications on different KNL configu-
rations, namely MCDRAM usage mode for a given cluster
mode and perform within node optimizations, specfically use
of hyperthreading and enabling CPU affinity.

With this tuning of applications based on their characteris-
tics, we show a performance improvement of upto 1.8X when
enabling hyperthreading and energy savings of nearly 10%.

II. APPLICATIONS

LeanMD is a molecular dynamics application which com-
putes the forces on atoms in cells and based on the calculated
forces, the atoms velocity and positions in the cells are
determined. LeanMD is computationally intensive and exhibits
high load imbalance. We use GreedyLB load balancer to
perform load balancing in our experiments.

Stencil3D performs high data exchange between its neigh-
boring cells in a 3 dimensional space. It is a communication
intensive application and is a representative of stencil codes
like iterative Jacobi solvers. We use GreedyLB load balancer
to ensure load is balanced in our experiments.

We use the Charm++ framework to run these applications.
The experimental runs have been made on a single node. We
plan to extend our studies on the Stampede 2.0 KNL cluster
in the future.

III. EXPERIMENTAL RESULTS

Experiments were on a single KNL node with MCDRAM in
Cache mode. For MCDRAM configuration comparison, both
Flat mode and Cache mode configurations were used. The
clustering mode used was Quadrant mode.

For LeanMD, it was observed that with hyperthreading, the
application benefitted the most when using all 4 hyperthreads
as seen in 1. The graph shows energy usage (lower the better)
and speedup (higher the better). We measure performance after

Fig. 1: Performance of LeanMD with Hyperthreading.

Fig. 2: Performance of Stencil3D with Hyperthreading.

load balancing phase, since load balancing is a one-time, but
varying overhead in each case.

For Stencil3D, the peformance degraded by about 10%
when using four hyperthreads per core and energy usage was
close to 10% higher when using 4 hyperthreads per core. Best
energy usage and within 5%of best performance was obtained
when utilizing one hyperthread per core, as seen in 2. The
amount of memory accesses is seen in 3.



Fig. 3: Amount of memory accesses by Stencil3D with Hy-
perthreading.

Fig. 4: Performance comparison of applications using MC-
DRAM in Flat vs Cache Mode.

CPU-pinning We saw close to 30% performance degra-
dation without CPU-pinning. This can be attributed to per-
formance loss from lack of L2 cache locality and poor load
balancing when migrating workers across processors with
varying frequencies.

We compare the performance of applications when using
MCDRAM in Cache vs Flat mode, when the working set size
fits within the MCDRAM, in 4.

Stream is the only application which suffered from per-
formance degradation when running on cache mode. The
potential for reduced miss penalty with prefetch and avoiding
thrashing due to conflicts between near-simultaneous addresses
as seen in Stream is where Flat mode is expected to perform
better than Cache mode.

IV. CONCLUSION

We have demonstrated that HPC applications like LeanMD
and Stencil3D can benefit in terms of performance and energy

when tuned appropriately on the 2nd generation Xeon Phi pro-
cessor, Knights Landing. We plan to automate this tuning for
application characteristics within the Charm++ framework by
adjusting architectural knobs like hyperthreading, cpu affinity
and high-bandwidth memory usage modes.

REFERENCES

[1] “leanmd,” http://charm.cs.illinois.edu/research/leanmd.
[2] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object Ori-

ented System Based on C++,” in Proceedings of OOPSLA’93, A. Paepcke,
Ed. ACM Press, September 1993, pp. 91–108.


	Abstract
	Applications
	Experimental Results
	Conclusion
	References

